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MATHEMATICS AND DISCOVERY 
IN GALILEO'S PHYSICS 
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SUMMARIES 

Galileo's steps in the discovery of the law of free 
fall and its application to inclined planes are retraced 
from one of his letters and some manuscript notes. 
Proofs of two preliminary theorems are reconstructed, 
and his methods of calculation are analyzed. Eudoxian 
proportion theory, and not mean-speed analysis, was the 
foundation of Galileo's work on motion. 

Le chemin suivi par Galil&e au tours de la d6couverte 
de la loi de chute libre, et ses applications aux plans 
inclin&, est reparcouru 2 partir d'une de ses lettres 
et des manuscrits. Les d&nonstrations de deux theor&mes 
preliminaires sont reconstitu&es, et ses m&hodes de 
calcul sont analysges. La th&rie eudoxienne des pro- 
portions, au lieu d'une analyse fondle sur la vitesse 
moyenne, est p&sent&e comme le vrai fondement de 
l'oeuvre de Galil&e sur le movement. 

I passi compiuti da Galileo durante la scoperta 
della legge di caduta libera, e della sua applicazione 
ai piani inclinati, sono ripercorsi partendo da una 
lettera e alcuni manoscritti. Le dimostrazioni di due 
teoremi preliminari sono ricostruite, e i suoi metodi 
di calculo sono analizzati. La teoria delle proporzioni 
di Eudossio, e non quella della velocita media, fu la 
base dell' opera di Galileo sul moto. 

I. 

Truly I begin to understand that although logic is 
a most excellent instrument to govern our reasoning, it 
does not compare with the sharpness of geometry in 
awakening the mind to discovery. [Galileo 1973, 1331 

So said Simplicio, normally a spokesman for Aristotle, in the 
Two New Sciences, the book in which Galileo presented the 
mathematical theory of freely fall,ing bodies which he had worked 
out some thirty years earlier. That theory was published in 
deductive form, starting from a single definition (of uniform 
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acceleration) and a single postulate (that the same speed is 
attained in fall from rest through the same vertical height 
along any inclined plane). This orderly unfolding of results 
affords no clue to the procedures by which Galileo had in fact 
been led to them in the first place. When we reconstruct his 
steps from his own rough notes, we find that mathematics was 
indeed his most fertile source of discovery; hence it was natural 
for him to have one of his interlocutors express the above view. 
And since Galileo had begun his investigations of motion along 
conventional logical lines which had led him into many fallacies 
and errors, it was suitable to place the remark in the mouth of 
an Aristotelian philosopher. 

Past attempts to reconstruct Galileo’s procedures in discover- 
ing his new science of motion have made little use of his manu- 
script notes. These are bound in haphazard order in volume 72 
of the Galilean manuscripts preserved at the National Library in 
Florence, and many of them consist only of diagrams and calcula- 
tions with little to identify their nature and purpose. Indeed, 
as might be expected, the individual sheets that most likely 
record significant discoveries, are characteristically chaotic 
in appearance. The orderly development of implications of each 
basic discovery is less difficult to trace among these notes, 
but it is also much less interesting than the identification of 
probable discovery documents. 

Once a discovery has been made, the use of mathematics to 
develop its implications is almost routine, at least to us, and 
it was hardly less so to Galileo, though his methods were very 
elementary compared to ours in this regard. There are in fact 
two sorts of mathematical discovery in physics. One sort 
consists in the following out, systematically, of implications, 
and some of these may be so surprising as to be entitled to be 
called “discoveries I’ in the sense that they were unforeseen by 
the investigator. +hey were, however, implicit in what had gone 
before, and any mathematician would have been perfectly capable 
of finding them. The other sort of discovery is not a rigorous 
consequence of what has gone before, though it may have been 
suggested by that; it consists in the perception that a certain 
mathematical relationship holds for physical phenomena considered 
in a certain way. These two types of discovery in mathematical 
physics probably do much to account for the historical fact that 
progress seems to be jerky; the consequences of a discovery of 
the second type are usually exhausted in a generation or two, 
with innumerable discoveries of the first type, whereas centuries 
may elapse between bona fide discoveries of the second type. It 
is mainly with the latter that I shall be concerned in this 
paper. 

The popularly-offered reconstructions of Galileo’s procedures 
in establishing his new science of motion are certainly mistaken 
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with respect to the role of mathematics in them. It is quite 
true that if Galileo had started out with a correct definition 
of uniform acceleration, as he did in his final published book, 
he would have been led ineluctably to his conclusions; and it 
is also true that such a definition had been given in the Middle 
Ages. All he would have needed to do would be to have applied 
this definition to the case of free fall, and of course to have 
added the postulate concerning speeds at the ends of inclined 
planes, which seems really to have been rather trivial and easy. 
And it is thus that Galileo’s work is presented in textbooks, as 
a rather humdrum extension of medieval analyses of motion. 

One trouble with that account is that Galileo’s first treatise 
on motion, far from including a correct definition of uniform 
acceleration, does not mention that concept at all; and indeed, 
it treats acceleration as essentially irrelevant to the mathe- 
matics of free fall and as entirely irrelevant to motion along 
inclined planes. Another trouble is that in 1604, nearly a 
quarter-century later, Galileo seems to have adopted a quite 
erroneous rule for speeds in free fall as a basis for deriving 
the times-squared law, which in fact follows directly from the 
correct definition. A third difficulty is that the fundamental 
concept employed by all medieval analysts, that of the mean 
speed, appears nowhere in Galileo’s published works nor even in 
any of his private notes on motion, in which his final theorems 
were worked out. Hence the simplistic historical theory that 
Galileo’s science of motion was worked out as an extension of 
medieval results is quite false, though it remains true that any 
competent mathematician could have so extended those results, 
given the idea that free fall is in fact a case of uniform 
acceleration, and given the postulate about inclined planes. 

There is a very good reason that no mathematical physicist 
had done this. Or rather, there are two such reasons, one of 
them mathematical and the other physical. The mathematical 
reason is that it was only shortly before the time of Galileo 
that the Eudoxian theory of proportion, embodied in the fifth 
book of Euclid’s Elements, became available again to European 
mathematicians. It was that theory which Galileo applied to free 
fall, treating the growth of speed as continuous in the modern 
mathematical sense, and all his results depended on that treat- 
ment . The physical reason is that the causal approach to 
acceleration in free fall, demanded by Aristotelian principles, 
could not allow this to be rigorously continuous. No one before 
Galileo had been willing to abandon the idea of cause in physics, 
and in fact many of his younger contemporaries, including 
Descartes, rejected his assumption that in order to reach any 
speed from rest, a body must first have passed through every 
possible lesser speed. The opponents of Galileo preferred hypo- 
thetical causes to the principle of sufficient reason. But these 
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topics must not detain us; our purpose is to reconstruct 
Galileo’s procedures, in which mathematics replaced philosophy 
and led on to his discoveries concerning free fall. 

II. 

In his first treatise on motion, composed at Pisa about 1590, 
Galileo reduced the conditions of equilibrium on inclined planes 
to the law of the lever [Drabkin and Drake 1960, 63-691. Since 
the topic of his treatise was motion, he tried to find from this 
a rule for the ratio of speeds along inclined planes. He 
reasoned that since weight was the cause of downward motion, it 
was also the cause of speed; and since speed varies with the 
slope of the plane, he assumed that speeds along planes of equal 
height should be inversely proportional to the lengths of those 
planes. He noted that such ratios were not borne out by actual 
trial, but among the reasons he listed for this he did not 
mention acceleration, which at the time he considered to be only 
a negligible effect at the very beginning of fall. 

Shortly after moving to Padua in 1592, Galileo composed a 
treatise on mechanics. In an expanded version of this, probably 
about 1600, he refined his derivation of equilibrium conditions 
on inclined planes. This time he related the tendency to motion 
along an inclined plane to that of fall along a vertical circle 
tangent to the plane, whether the body was supported by an arc 
or was suspended from the center of the circle. [Drabkin and 
Drake 1960, 1731 Though he was careful to note that this 
applied to the tendency at the initial point of fall, he still 
did not allude to acceleration. 

By the year 1602, Galileo had concluded that descent along 
any chord to the lowest point of a vertical circle was made in 
equal time, and also that descent was swifter along two conjugate 
chords than along the single chord determined by them. He also 
conjectured that descents along all arcs of the lower quadrant 
were isochronous. Guidobaldo de1 Monte, to whom Galileo 
communicated these ideas, replied that they were implausible and 
were not borne out by experiments in which a ball was dropped 
along the inner surface of a large hoop. The earlier letters 
are lost, but Galileo’s reply (dated 29 November 1602) reads as 
follows [Favaro 1934, Vol. 10, 97-1001: 

You must excuse my importunity if I persist in trying to 
persuade you of the truth of the proposition that motions within 
the same quarter-circle are made in equal times. For this 
having always appeared to me remarkable , it now seems even more 
SO that you have come to regard it as impossible. Hence I should 
deem it a great error and fault in myself if I should permit 
this to be repudiated by your theory as something false; for it 
does not deserve that censure, nor yet to be banished from your 
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mind -- which better that any other will be able to keep it the 
nwre readily from exile by the minds of others. And since the 
experience by which the truth has been made clear to me is so 
certain -- however confusedly it may have been explained in my 
other [letter] -- I shall repeat this more clearly so that you, 
too, by making this [experiment], may be assured of this truth. 

Therefore take two slender threads of equal length, each 
being two ox three braccia long; let these be AB and EF . 
Hang A and E from two nails, and'at the other ends tie two 

A E 

B 

D 
F 

L 
I c 

equal lead balls (though it makes no difference if they are 
unequal). Then, removing both threads from the vertical, one of 
them very much, as by the arc CB , and the other but little, 
as by the arc IF , let them go free at the same moment of time. 
One will begin to describe large arcs like BCD , while the 
other describes small ones like FIG . Yet in this way the 
moveable B will not consume more time in passing the whole arc 
BCD than that which is used by the other moveable F in passing 
the arc FIG . Of this I am rendered quite certain, as follows. 

The moveable B passes through the large arc BCD and 
returns by the same DCB and then goes back toward D , and it 
goes 500 or 1000 times repeating its oscillations. The other 
goes likewise from F to G and then returns to F , and 
similarly will make many oscillations; and in the time that I 
count, say, the first 100 large oscillations BCD , DCB , and so 
on, another observer counts 100 of the other oscillations through 
FIG , very small, and he does not count even one more -- a most 

evident sign that one of these large arcs BCD consumes as much 
time as each one of the small ones FIG . Now if all BCD is 
passed in as much time [as that] in which FIG [is passed], 
though [the latter is] but one-half thereof, these being descents 
through unequal arcs of the same quadrant, they will be made in 
equal times. But even without troubling to count many, you will 
see that moveable F will not make its small oscillations more 
frequently than moveable B makes its large ones; they will 
always go together. 

The experiment you tell me you made in the [rim of a vertical] 
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sieve may be very inconclusive, perhaps by reason of the surface 
being not perfectly circular , and again because in a single 
passage one cannot well observe the precise beginning of motion. 
But if you will take the same concave surface, and let ball B 
go freely from a great distance, as at the point B , it will 

go through a large distance at the beginning of its oscillations, 
and a small one at the end of these; yet it will not on that 
account make the latter more frequently than the former. Then 
as to its appearing unreasonable that given a quadrant 100 miles 

long, one of two equal moveables might traverse the whole, and 
the other but a single span [in the same time], I say that it is 
true that this contains something of the wonderful. But our 
wonder will cease if we consider that there could exist a plane 
as little tilted as that of the surface of a very slowly running 
river, so that in this [plane] a moveable will not have moved 
naturally more than one span in the time that on another plane, 
steeply tilted (or coupled with a great [initial] impetus even 
on a small incline), it will have passed 100 miles. Perhaps the 
proposition has inherently no greater improbability than that 
triangles between the same parallels and on equal bases are 
always equal, though one may be quite short, and the other a 
thousand miles long. But sticking to our subject, I believe I 
have demonstrated that the one conclusion is no less thinkable 
than the other. 

s c I 
C J D 

E 

Let BA be the diameter of circle BDA erect to the horizontal, 
and from point A out to the circumference draw any lines AF, 
AE, AD, and AC . I show that equal moveables fall in equal 
times, whether through the vertical BA or through the inclined 
planes along lines CA, DA, EA, and FA . Thus, leaving at 
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the same moment from points B, C, D, E, and F , they arrive 
at the same moment at terminus A ; and line FA may be as 
small as you wish. 

And perhaps even more surprising will this appear, [which is] 
also demonstrated by me: that line SA being not greater than 
the chord of a quadrant, and lines SI and IA being any [two 
chords conjugate to SA ] whatever, the same moveable leaving 
from S will make its journey SIA more swiftly than just the 
trip IA starting at I . 

I have demonstrated this much without transgressing the 
bounds of mechanics. But I cannot manage to demonstrate that 
the arcs SIA and IA are passed in equal times, which is what 
I seek. 

Do me the favor of conveying my greetings to Sig. Francesco 
[de1 Monte?], and tell him that when I have a little leisure I 
shall write to him of an experiment that has come to my mind for 
measuring the force of percussion. And as to his question, I 
think that what you say about it is well put, and that when we 
commence to deal with matter, [then] by reason of its accidental 
properties the propositions abstractly considered in geometry 
commence to be altered -- from which, thus perturbed, no certain 
science can be assigned, though the mathematician is so absolute 
about them in theory. I have been too long and tedious with 
you; please pardon me, and love me as your most devoted servitor. 

III. 

Of all the interesting points raised by this letter of 1602, 
we are concerned only with the nature of Galileo’s proofs of 
the two propositions about descent along chords of a vertical 
circle. He considered those proofs to belong to mechanics, and 
he did not mention acceleration. Those clues suffice for 
reconstruction of his probable proofs in 1602, which do not 
survive in their original form among the surviving notes. [l] 
Previous speculations about them have assumed that Galileo’s 
proofs followed from correct premises. I shall take nothing for 
granted except Galileo’s knowledge of geometry and what he is 
known to have assumed earlier. 

One of the problems posed by Galileo in his De motu of 1590 
was that of finding two planes of equal height along which the 
speeds would be those of two bodies having different “natural” 
speeds in free fall, (The weights of bodies in air were supposed 
to affect their speeds.) His idea was thus to equalize the 
times by dropping the faster body along the longer plane. A 
logical variant of this problem would be to seek two distances 
along different planes which would be traversed in the same time. 
Under the mistaken assumption of uniform speeds determined by 
slopes in accordance with equilibrium conditions, Galileo’s 
theorem of 1602 is evident from the following diagram: 
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By Galileo's mistaken premise, the speed along DA is to 
that along EA as EA is to DA . Since CA is the mean 
proportional between AF and AD , and also between AG and 
AE , it is evident that EA is to DA as FA is to GA . @A 
is to DA as sin CDA is to to sin CEA ; angles CDA and 
ACF are equal, as are angles CEA and ACG ; hence AF and 
AG are inversely proportional to AD and EA .) 

Hence that the overall speeds along the chords are as the 
chords follows as a consequence of the mistaken assumptions. 
But when overall speeds are as the distances traversed, the times 
consumed are equal; this rule is valid for all motions, whether 
uniform or not. It can be proved from Aristotle's definitions 
of equal and greater speed by using the Eudoxian definition of 
"same ratio," as shown later by Galileo in the Two New Sciences. 
[cf. Drake 1973b] Galileo's reasoning at the time of writing 
to Guidobaldo was doubtless of this form. 

Thus this striking result, that the times of descent are 
equal through all chords to the bottom of a vertical circle, was 
discovered mathematically from a false premise. The result 
would be easy to test by releasing two balls simultaneously from 
points properly marked on facing planes of different slope, or 
by propping two boards against the sides and bottom of a large 
circular frame. If Galileo made such a test, however, it would 
have further confirmed him in his mistaken belief that "speeds" 
along planes of the same height are inverse to the lengths of 
planes. At the,same time, it would make the experimental 
failure of his earlier (and illusory) ratios even more puzzling 
to account for. 

The second proposition likewise followed from the same false 
premise. Chords SA and IA are traversed in equal times, by 
the foregoing theorem, and the motion along SA is the swifter, 
by Aristotle's definition (more distance covered in the same 
time). Then motion along SI is still swifter, since at this 
speed it is OA , parallel to SI , that would be traversed in 
the same time as SA , again by the foregoing theorem. But the 
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A 

motion in IA ensuing after motion through SI cannot be 
slower than the motion in SI alone, since in this case the 
body starts with that speed from I ; and even if IA were 
level, motion through it would not be less swift than that with 
which it started. Hence the motion in every part of descent 
SI-IA is swifter than that in SA , and is at least swift 
enough to traverse OA in the time of SA or IA . It follows 
that descent along SI-IA is completed in less time than 
descent through SA , -and hence than descent through IA alone. 
[Favaro 1934, 2131 

All these things are in fact true, and Galileo was later to 
prove them correctly, after he had discovered the law of 
acceleration in free fall and extended it to inclined planes. 
But here it will be good to note that these correct results are 
much easier to reach from Galileo’s mistaken assumption of 
constant speed depending only on slope of plane than they were 
for him to deduce from the law of acceleration. Thus, if it is 
assumed that the appropriate speed is gained immediately, with- 
out acceleration, on the steeper plane, no problem arises when 
SI is very short; but is is not equally obvious, under the 
assumption of acceleration, that an overall,gain in speed will 
more than make up for the increased length of descent along 
conjugate chords. The analysis gave Galileo a good deal of 
trouble later, when he tried to prove his earlier theorems by 
means of the law of free fall; indeed, his various attacks on 
propositions 6 (equal times along equal chords) and 36 (time is 
shorter along conjugate chords) are among the hardest of the 
fragments to arrange in chronological order. 

Both these theorems, discovered mathematically, involved the 
comparison of “speeds, I’ though there had been no prior attempt 
to define that concept. The existence of a ratio of speeds had 
been assumed from a well-defined concept in mechanics, that of 
a ratio of weights. Galileo later compared speeds by confining 
himself to time-ratios and distance-ratios, virtually eliminating 
the need for our speed concept. Under Euclidean rules no ratio 



138 S. Drake HMl 
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4 miles with 10 of speed in 4 hours 

9 miles with 15 of speed [in] 5? hours 

4 miles with 
15 of speed in 4 

8 miles in 8 

through AB speed as 10 
through AC as - 15 

AB 4 
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AB - 4 
AC - 6 

a. 18 AC, and let BE be the 
degree of speed at B; and 
as BA to AD, let BE be to 

27. a. 
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CF; CF will be the degree 
of speed at C. And since 
as CA is to AD so CF is 
to BE, then as the square 
of AC to the square of AD 
so will be the square of 
CF to the square of BE; 
and further, since as the 

=-I square of CA to the square 
A of AD, so CA is to AB, the 

square of CF will be to the 
square bf BE as CA is to AB; therefore 
the points E and F are in a parabola. 

one hour B 

1 E 

[Xl 

# 

through AB 
speed as 4 

through AC 
as 13 l/2 

As BA to AD, let DA be to 

c I 

D . 

with one degree of impetus it makes 
2 miles in one hour; with 4 degrees 
of impetus it will make 8 miles in 
one hour, and 16 in two hours 

Figure 1: English transcription of Mss. Gal., vol. 72, f. 152r 
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could be formed of .magnitudes unlike in kind, such as distance 
and time; hence speed could be rigorously treated only by 
proportionalities. 

IV. 

The importance of acceleration in free fall probably did not 
become apparent to Galileo until Guidobaldo’s objection to his 
theorems in 1602 stimulated him to suggest the use of pendulums 
in place of circular surfaces. Observations of long pendulums 
call attention to acceleration. The bob of a Foucault pendulum 
is visibly accelerated on each downswing, as one of three 
braccia (about six feet) long would be. Having in mind the 
association in his Mechanics between initial speeds on an 
inclined plane and along the tangent circle, Galileo may well 
have speculated that a similar, but even faster, increase of 
speed ought to occur along a plane of fixed slope, since the 
successive tangent planes become less and less tilted as the 
pendulum approaches the lowest point. At any rate, Galileo did 
turn his attention to the question of acceleration as such during 
1603-04, and successfully searched for a rule linking distances, 
speeds, and times in free fall. 

The discovery of this rule in turn was mathematical in 
character, and it also started from an initial false premise, 
though in this instance the error was immediately corrected in 
the process of discovery. The document recording this event 
(f. 152r) has recently been reproduced and analyzed. [Drake 
1973a] Here I shall include only an English transcription of 
it (Figure 1) and a brief comment. It is a typical discovery 
document, written partly in Italian and partly in Latin; it starts 
with a common but false hypothesis of medieval origin, and ends 
with the correct result. A mistaken attempt to apply compound 
ratios of time and distance, at the upper right, is related to 
still another fragment, probably of 1601. To obviate conflicts 
of ratios, Galileo adopted the mean proportional, and this put 
the times-squared law into his hands. 

Galileo’s first move after obtaining the law of free fall was 
to return to his investigations of motion along inclined planes 
and to test its applicability to them. The principal document 
here is f. 189r (Plate 1), linked to f. 152r by the parabola 
roughly sketched at the left. This sheet is also linked to 
Galileo’s letter to Paolo Sarpi in October, 1604, and to the 
important demonstration written out for him at the same time, by 
another figure, probably drawn with the sheet turned clockwise 
through 90°, which shows a parabola in a right triangle. This 
diagram marks Galileo’s reduction of the inconvenient parabola 
of speeds to a simple triangle by the simple device of squaring 
the abscissae. [2] In the proof written out for Sarpi, he 
dealt with “speed” as the square of the value we now use, which 
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Plate I: f. l&?r, vol. 72, Mss. Galileiani (reproduced with 
permission of the Biblioteca Nazionale Centrale di 
Firenze, Florence, Italy) 
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Figure 2: A partial transcription of f. 189r, vol. 72, Mss. 
Galileiani. 
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value Galileo himself adopted in 1609. That f. 189r comes very 
early among Galileo's developments of the law of free fall is 
also shown by the erroneous value adopted for fi, corrected in 
calculations belonging to 1605 that will be shown later. Here 
Galileo wrote 7071 as a first approximation for &/2 and then 
mistakenly wrote 70771 (for 70711) as the next approximation. 

The calculations made on f. 189r confirmed that the new law 
of free fall could be applied to inclined planes consistently, 
and that the theorems previously sent to Guidobaldo de1 Monte 
were consistent with this treatment. Since the reproduction of 
the manuscript is hard to read, a partial transcription (Figure 
2) is provided for use in following the reconstruction of 
Galileo's procedure. 

Galileo's procedure was the following: 
1. He drew the circle with quadrant chord CF and its two 

equal conjugate chords CE and EF , extending the latter out 
to intersect the horizontal ABC , produced. The radius BC 
was taken as 100000, later reduced to 100 in order to simplify 
the calculations. 

2. The calculated total length of FD (using the erroneous 
value for fi/2 previously mentioned) was 261761 (or 262); the 
length of ED was obtained by subtracting from this the length 
of FE , 76536, giving 185225. Calculation of the time through 
ED by the mean-proportional rule relating times to distances 
from rest was then begun just below and to the right of the 
diagram, but was broken off in favor of using only three-digit 
figures. 

3. Taking the length FD as a measure also of the time from 
rest through that distance, TDE was computed from the propor- 
tionality TDE :TDF :: 4185 x 262 ; this gave TDE = 220. 

4. The next step was of capital importance, since it marks 
Galileo's abandonment of his old mistaken assumption that speeds 
should be inverse to lengths of plane and his adoption of the 
direct proportionality of times to lengths of planes of the same 
height. Here Galileo assumes that TDE:TCE :: DE:CE; this enables 
him to calculate TCE = 90 (immediately below the previous work). 

5. Since the correct new assumption makes the times to F 
from rest at any points along the horizontal BCD proportional 
to the lengths of the corresponding planes, the time of descent 
along EF after fall from D along DE can be obtained by 
simple subtraction, and thus TDF - TDE = DTEF = 42. (The time 
through a distance in motion from rest at any point other than 
the initial point of that distance will be designated by showing 
the point of rest as a preceding subscript; thus DTEF means 
the time through EF in motion starting from rest at D .) 

6. Galileo's next assumption is in effect that of the single 
postulate adopted in the Two New Sciences. He supposes that the 
time along EF after fall from rest at a given height remains 
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the same, whether fall from that height to E . is vertical, or 
is supported on the incline. This amounts to assuming that the 
same speed is acquired in a given vertical fall from.rest, 
regardless of the path of fall. This assumption, at the time of 
writing f. 189r, probably had no other basis than that it made 
possible a very simple calculation. Here it gave the total time 
along the conjugate chords CE-EF as 90 + 42, or 132. This is 
a shorter time than TCF = 141, confirming Galileo’s earlier 
theorem that the time along conjugate chords is shorter than 
that along their corresponding single chord. And for the first 
time it indicated a quantitative measure of these times and 
their difference. 

In all the above, the new assumptions required had their 
basis in mathematical simplicity alone, though they were in a 
way not devoid of experimental confirmation, since the results 
conformed to two theorems that Galileo already knew to be borne 
out by test. A rough direct test would also have been possible 
for the assumption that speeds are the same at the ends of two 
planes of equal height; Galileo would only have had to watch 
balls rolling along a level surface after leaving the planes. 
But whether or not Galileo made such a test, it is evident from 
the work on f. 189r that he did not reach his postulate on that 
basis. 

Two other investigations are found on f. 189v, one of which 
relates to the general relation of motions on planes differing 
in both height and slope, but these probably belong to a some- 
what later date. [3] 

V. 

The next important fragments in point of time are ff. 166 and 
183, which show a very elaborate diagram and a related tabulation 
of distances and times. Across the face of the diagram, after 
making the tabulation,‘Galileo wrote a number of notes. The 
diagram is accordingly reproduced [Plates II, III, and IV] from 
Favaro’s printed edition, where the notes were placed separately 
and do not obscure the diagram. Many of the calculations relat- 
ing to these sheets are preserved on ff. 184 and 192. All these 
sheets bear watermarks related to one another and to dated 
letters of Galileo’s, placing them in the year 1605. 

The purpose of the diagram and tabulation is evident. Having 
found the law of free fall and related it to motion on inclined 
planes and broken lines, Galileo was in a position to resume his 
earlier inquiry into the question of fall along circular arcs. 
He now approached this through an analysis of the time of fall 
along the chord of a quadrant as compared with the time along 
two equal conjugate chords; that is, two sides of the inscribed 
octagon, then along four sides of the 16-gon, eight sides of 
the 32-gon, and so on. A relation discovered among the ratios 
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Plate II: Mss. Galileiani, vol. 72, f. 166r (Reproduced from 
A. Carugo and L. Geymonat, ed., Galileo Galilei: 
Discorsi e Dimostrazioni Matematiche Intorno a Due 
Nuove Scienze (Torino, Paolo Boringhieri, 1958), p. 
544. The notes Galileo wrote across the diagram or 
elsewhere on the same leaf are given separately in 
Plates III and IV. 
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Cum semidiameter sit IOOOOO, quadrantis circumfcrcntia 

est IS7143 
157042; 

seu si semidiameter sit 1000, circumfcrcnti.~ 

quadrantis p*= Is70* si I-J sit IOOOOOO, L] erit 785250. 
I minus 1571’ 

Tempus quo conficeretur circumferentia quadrantis, si esset 
recta ct ad perpcndiculum, 125331. 

Tempus per UC ad tempus per I, net est ut IOOO ad 9371/r fere; 
tcmpus per cc ad tempus per 2 egc, ut 1000 ad 86@/s; tempus 
per S c ad duas suas, ut 1000 ad 733 z/s. 

fld longa puncta 180; sit tempus casus per ipsam m’ 180, et per 

. ambas adc m* 270. 
ac --~.- 254 ‘Is; m’ 254 =/s. 
ue 13s; tempus casus per illam m1 164.1 
cc 138; tempus casus per earn post AC m’ 75, et 420 

per ambas uec m* 239. 
af recta - 70 1/z; tempus etc. I 13 ‘le et per ambas 
JL---- 70 1/2; tempui casus post 01 48 I 
cl ---- 70 ‘/*; tempus 39 

afe m’ 161’/, 1 Itargz 
et per ambas 

‘s ~ 7o’lz; - 36 I 
I 

egc 75 
236% 

Considcra num tcmpus per nc ad tcmpus per duas aer sit 
ut radix radicis liners pr a ccntro b super m cadit perpcndi- 
culariter. ad radickn radicis perpendicularis cx codcm ccntro 
super ae. Tcmpns per 2 e.qc cx quiete in e rst 66326; dcberct 
autem esse 71757,jsi casus per egc ad tempus per ec liabcret 
eandem rationem quam casus per aec ad casum per ac: movctur 
ergo citius per egc quam per sec. Et ex quiete in S tcmpus per 
duas 8 c ad tempus per solam 8 c est ut 14378 ad 19598: longe 
igitur adbuc citius movetur quam per 2 egc. 

Plate III: b#s. Galileiani, vol. 72, f. 166r (Reproduced from 
A. Carugo and L. Geymonat, ed., Galileo Galilei: 
Discorsi e Dimostrazioni Matematiche Intorno a Due 
Nuove Scienze (Torino, Paolo Boringhieri, 1958), p. 
542-544. Transcription by A. Favaro, p. 419-421.) 
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Plate IV: Ms. Galileiani, vol. 72, f. 1831~ (Reproduced from 
A. Carugo and L. Geymonat, ed., Galileo Galilei: 
Discorsi e Dimstrazioni Matematiche Intorno a Due 
Nuove Scienze (Torino, Paolo Boringhieri, 1958), p. 
545-546. Transcription by A. Favaro, p. 421-422.) 
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of those times would lead to the arc as a limit. Some notations 
written over the diagram embody such conjectures; but it appears 
that Galileo then abandoned this project in favor of further 
explorations of fall along straight lines in various combinations 
Of special interest is his concept of casus, discussed below. 

Galileo’s diagram (Plate II) does not show the circle of 
which ac is the chord of a lower quadrant; this circle would 
pass through points a-f-e-g-8-c. [4] To compute the figures in 
the tabulation requires only the assumptions previously made on 
f. 189r -- that the times along inclined planes of equal height 
are proportional to the lengths of plane, and that the times 
from rest to two points along a given plane are as the shorter 
distance is to the mean proportional between the two distances. 

The letter x, seen along the vertical ad in Plate II, 
indicates the point of intersection of the designated line with 
the horizontal ba, extended. Zodiacal symbols near ad likewise 
refer to to points of intersection with the upper horizontal 
line. Galileo’s procedure in the calculations was to apply the 
mean-proportional rule to vertical distances, and then to adjust 
them to the incline by recourse to similarity of triangles. 
Thus the mean proportional between ad and te is 84090, which is 
multiplied by 76536/70711 to get 91707, the time through de. 

A notation across the diagram to which I alluded earlier 
reads as follows: “The time through the two [planes] eg-gc, 
from rest at e, is 66236; it should be 71757 if [that] fall 
(casus) had the same ratio to fall through ec as fall through 
ae-ec has to fall through ac." Here the word casus means “time 
of descent in units in which the time through ad is 100000.” 
This meaning can be ascertained by deriving Galileo’s figure of 
66236 (or rather, 66326, since it appears that he made a trans- 
position in writing this). The derivation, outlined below, 
shows that he was able not only to calculate the time along a 
broken line of any number of sections, but that he could do this 
in terms of a single standard unit of measure. Since Tad and 
ad had both been taken as 100000, Galileo had in effect a unit 
speed-, giving him a means of comparing speeds without violating 
the Euclidean rule against forming ratios between magnitudes 
unlike in kind. The modern reader may object that the concept 
of “unit speed” already implies such a ratio. I shall not argue 
this point here, but am content to point out that the calcula- 
tions outlined below foreshadow Galileo’s later device of taking 
a selected line to represent both a distance and the time of 
fall from rest through that distance, which device was used 
frequently in the theorems of the TWO New Sciences, and in his 
notes. [S] 

The table on f. 183 gave the time of fall through eg-gc, but 
only after initial fall from rest through ae; that is, it gave 
not Teg-gc, but rather aTW-gc = 21657 + 19896 = 41553. The new 
problem was to find Tegmgc, and to find this in units such that 
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Tad = 100000. Galileo’s procedure was a direct extension of 
what had been done on 189r. 

Since ad = 100000, ec = 76536. Let Tee = ec; then Tee = e0 
= 29289. Now, ew = vg - te = 21677, the difference between 
verticals dropped from ab to g and to e. Hence T,, is 25197, 
mean proportional of ew, e9. It follows that T, = 25197(eg/ecrl) 
= 25197(39017/21677) = 45353. Likewise eTgc = e ue(gc/we) ‘5; 
= 29289 - 25197)(39017/7612) = 20974. And Teg-gc = TW + 
= 45353 + 20974 = 66327. 

eTgc 

Thus Galileo had developed a systematic procedure for the 
calculation of times of fall along any broken lines in terms of 
the time of fall through a standard vertical distance. (It 
should be noted, however, that these comparisons would not be 
borne out by experiment because of the factor of 5/7 for inertial 
moment in rolling as against the rate of acceleration in free 
fall.) 

One other notation on f.166 also deserves comment: “Let ad 
be 100 punti long; let the time of fall through this be 180 
minutes, and through both ad-dc, 270 minutes.” This implies the 
the double-distance rule, to which Galileo may have been led by 
noting the numerical relations as the inclined planes on f. 166 
were approaching the horizontal. The rule was proved by Galileo 
later, probably in 1607, in a memorandum establishing one-to-one 
correspondence between speeds in uniform and in uniformly- 
accelerated motions. 

VI. 

The foregoing documents show the manner in which purely 
mathematical considerations entered into Galileo’s basic discov- 
eries concerning free fall. The procedures seem to me rather 
different from Plato’s demonstration that the triangle and the 
number 3 are the cause of fire, and from Kepler’s proof that the 
number of planets must be six in order to accommodate the five 
Platonic solids each once and only once. Nor do they particularly 
resemble the calculations of Swineshead, Heytesbury’s proof that 
uniform acceleration from rest is possible, or the famed triangu- 
lar proof of Oresme that such acceleration is represented by its 
middle speed. 

Galileo’s first correct theorem concerning fall was that of 
the equality of times of descent along chords of a vertical 
circle to its lowest point. He reached that theorem by valid 
mathematical reasoning from a false assumption about ratios of 
speeds and without considering the role of acceleration at all. 
His attempt to persuade a friend that the conclusion was correct 
appears to have called his own attention to the importance of 
acceleration. An attempt to discover consistent ratios for 
accelerated motion, starting from an erroneous legacy of the 
Middle Ages, was successful through the adoption of an arbitrary 
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mathematical device. That success gave him the law of free 
fall, but in a form that tempted him to define "velocity" in a 
bizarre way and then to abandon That concept for several years 
in favor of time and distance ratios. By means of these, he 
was able to discover many theorems concerning accelerated motion 
without formalizing their conceptual basis separately from the 
mathematics employed in them. It was only toward the end of 
his life that he turned to that task. 

The profound difference between medieval and Galilean physics 
involves many things. Not least among these was the restoration 
of Eudoxian proportion theory in the sixteenth century, an event 
of great importance to the history of mathematics quite apart 
from the work of Galileo. An excessive concern with the history 
of philosophy on the part of historians of science has tended to 
conceal this fact and to create an illusion of greater continuity 
between the fourteenth century and the seventeenth than is 
justified by the events. It is probably true that given the 
correct text of Euclid and the authentic works of Archimedes, 
Galileo needed nothing from the Middle Ages for his work on 
motion. It is probably also true that given only the medieval 
Euclid, all the works of Jordanus Nemorarius, Thomas Bradwardine, 
William Heytesbury, Jean Buridan, and Albert of Saxony, this would 
not have enabled Galileo to go even as far as Nicole Oresme in 
the approach to a valid mathematical physics in the modern sense 
of that phrase. 
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NOTES 

1. A proof on mechanical assumptions is found on f. 151, but 
this is probably of later date. A similar proof was given 
as the second of three under Theorem 6 on accelerated motion 
in the TWO New Sciences; this resembles the proof on f. 160. 

2. Explanation of the proof for Sarpi was given in Drake 1973a, 
91-2, on the basis that Galileo meant by velocita what we 
call v2, before this diagram was noted. 
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3. The page was folded and the other side used with the paper 
turned at right angles to the position of f. 189r at one 
time, and then reversed at another. The two portions are 
unrelated, and the writing is smaller. 

4. Galileo ran out of letters for this diagram and continued 
with numbers and conventional symbols; see below. 

5. Galileo did not explicitly justify the procedure when he 
introduced it in the Third Day of the Two New Sciences. It 
was also used in the Fourth Day for “impetus,” and explained 
in the discussion there. He would not have considered time- 
distance fractions legitimate, as we do, though his 
contemporary Marin Mersenne moved in that direction. 

*****SC**********  

A QUOTE ON HISTORY OF MATHEMATICS COURSES 

II 
. . . A year or two ago, we were arguing about the syllabus 

for students studying mathematics at the University. It was wide 
ly agreed that the existing syllabus was too difficult. Two pos- 
sibilties for change presented themselves, the obvious one of 
making the existing syllabus easier, and the much less obvious 
one of introducing certain new courses which it was claimed would 
be easier and more suitable for the weaker half of the students. 
A suggestion for such a course, later adopted, was that instruc- 
tion be given in the history of mathematics. It was taken as 
axiomatic by-ninety percent of the committee which had to deal 
with the problem that a course on the history of mathematics 
would be easier than mathematics itself, a proposition which 
escaped me. The whole affair was buried and forgotten in my mind 
until I happened to be acting as examiner. To my astonishment I 
found that the questions in the examination dealing with the his- 
tory of mathematics were answered by only one candidate. When 
the final list was drawn up in order of merit it turned out that 
the solitary man stood at the head of the list. What struck me 
as particularly curious was that my colleagues seemed in no way 
interested in this complete reversal of what had been claimed 
before. So far from the history of mathematics being suitable 
for the weaker students, it was suitable only for the best.” 

-- from Encounter with the Future by Fred Hoyle (Simon and 
Schuster, 1965) 


