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Abstract

A usual technique to generate upper bounds on the optimum of a quadratic 0–1 maximization problem is to consider
a linear majorant (LM) of the quadratic objective function f and then solve the corresponding linear relaxation. Several
papers have considered LMs obtained by termwise bounding, but the possibility of bounding groups of terms simultaneously
does not appear to have been given much attention so far. In the present paper a broad and 4exible computational
framework is developed for implementing such a strategy. Here is a brief overview of our approach: in the 7rst place, a
suitable collection of “elementary” quadratic functions of few variables (typically, 3 or 4) is generated. All the coe:cients
of any such function (block) are either 1 or −1, and agree in sign with the corresponding coe:cients of the given quadratic
function. Next, for each block, a tightest LM (i.e., one having the same value as the block in as many points as possible),
or a closest LM (i.e., one minimizing the sum of slacks) is computed. This can be accomplished through the solution
of a small mixed-integer program, or a small linear program, respectively. Finally, the objective function is written as a
weighted sum of blocks, with non-negative weights. Replacing in this expression each block by the corresponding LM
yields an LM of f. We shall choose the weights in this process so that the maximum value of the resulting linear function
is as small as possible. This amounts to a large-scale (but still polynomial-size) linear program, which may be solved
exactly or, for larger instances, approximately by truncated column generation. The results of a set of 480 numerical tests
with up to 200 variables are presented: the upper bounds on the quadratic optimum obtained by the above procedure
are (provably) never worse, and often turn out to be substantially sharper, than those resulting from termwise bounding.
Moreover, our bounds turn out to be close to the optimum in many (although not all) instances of some well-known
benchmarks.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The present paper deals with the problem of 7nding tight upper bounds of the optimum value z∗ of the quadratic 0–1
maximization problem

max
x∈Bn

xTQx; (1)

where Q is an n× n upper triangular real matrix with null diagonal entries, and B= {0; 1}. Such problems are known to
be NP-hard [14], in general. Thus, it makes sense to try to 7nd good bounds of z∗ at a reasonable computational cost.
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A usual method to generate upper bounds of z∗ is to consider a linear majorant (abbr. LM), that is, a linear function
c0 + cx such that c0 + cx¿ xTQx for all x∈Bn. Then the optimal value of the linear relaxation of (1),

c0 + max
x∈Bn

cx (2)

is an upper bound of z∗. The simplest way to obtain an LM is to majorize each individual quadratic term qijxixj (i ¡ j)
by a linear function of the form aijxi + bijxj + cij , where the parameters aij; bij ; cij must be chosen so that

cij¿ 0; aij + cij¿ 0; bij + cij¿ 0; aij + bij + cij¿ qij (3)

and then add up all such linear terms. The LMs obtained in this way are called paved upper planes in [19]. An important
subclass are the roofs, obtained through the majorization of each term qijxixj by either ijxi+(qij−ij)xj or ij(1−xi−xj),
where 06 ij 6 |qij|, depending on whether qij is positive or negative. Among the paved upper planes, the roofs have
the property that they minimize the sum of the slacks in inequalities (3). The roof-dual problem consists in 7nding a
best roof, i.e., one that makes the optimal value of the corresponding linear relaxation as small as possible. The theory
of roof-duality was set forth in [15], and further carried on in [1,7–10,16–20]. Several characterizations of the roof-dual
optimum were given: in particular, it was shown in [19], that it coincides with the smallest possible value of (2) when
c0 + cx is a paved upper plane.

However, the possibility of bounding groups of terms, rather than individual ones, by an LM does not appear to have
been given much attention so far. Actually, this idea is not entirely new: in [5] LMs of groups of terms involving at most
k variables, for a 7xed k, are introduced and some theoretical properties of the resulting upper bounds as k increases are
investigated. The special case k = 3 is analyzed more closely in a subsequent paper [6]. However, as far as we know,
computational issues have not been addressed in the literature. In the present paper a general and 4exible algorithmic
framework is developed for generating tight LMs of groups of terms, and for exploiting them in order to produce upper
bounds on the quadratic optimum that are as sharp as possible. Our experiments clearly indicate that these bounds are
often substantially sharper than the roof-dual bound.

We demonstrate the potential of the idea of bounding groups of terms by the following simple example. Consider the
quadratic function of three binary variables

x1x2 + x1x3 − x2x3: (4)

It is easy to check that x1 is an LM, but not a roof, of (4). As a matter of fact, x1 turns out to be an extremely tight
majorant of (4), since its values coincide with those of (4) in 6, out of 8, points of B3. For the sake of comparison, the
only best roof in this case is the constant 1, which coincides with (4) only in 3 points.

In the present paper, pursuing the strategy of bounding groups of terms, we take the following approach:
(1) A suitable collection F of “elementary” quadratic functions (blocks) of at most p variables (typically, p is equal to

3 or 4) is generated. We shall consider blocks with coe:cients ±1 according to the signs of the corresponding coe:cients
of the given function f(x) = xTQx.

(2) For each block in F a tightest LM (where “tightest” means “having the same value as the block in as many
points as possible”) or a closest one (where “closest” means “minimizing the sum of slacks”) is generated. This can be
accomplished through the solution of a small mixed-integer program, or a small linear program, respectively. Actually, one
needs to solve such a program only once and for all for each “template” block from a small-size catalogue independent
of f.

(3) Then, the objective function f(x) is written as a weighted sum (with non-negative weights) of these blocks. Clearly,
if in this expression each block is replaced by the corresponding tightest, or closest LM, an LM of f(x) of the form
c0 + cx is obtained. We shall then choose the weights so that the maximum value (2) of the resulting linear function is
as small as possible. This optimization problem amounts to a large-scale (but still with size polynomial in n for 7xed
p) linear program (abbr. LP), which can be solved exactly or approximately by a variety of techniques, e.g., by straight
column generation or some heuristic variant of it.

The paper is structured as follows. In Section 2, an appropriate notational framework is established, and basic de7nitions
are given. Section 3 deals with properties that “good” collections of blocks are required to have. Section 4 shows how to
compute both tightest and closest LMs; the section includes a full catalogue of tightest LMs for all possible “template”
blocks with up to 4 variables. Section 5 deals with the problem of choosing optimal weights, as indicated above. A
4exible column generation algorithmic scheme for the ensuing LP is described. The section ends with a brief analysis
of the worst-case complexity of the diMerent stages of our procedure, which is shown to run in overall polynomial time
under the assumption that the maximum number of variables in a block of F is 7xed. Finally, in Section 6 we report on
the results of our numerical experimentation on 480 test problems with up to 200 variables. The paper is completed by
two appendixes: in Appendix A some properties of tightest and closest LMs are discussed, and several conjectures about
them are presented; in Appendix B some results about the maximum clique problem are given.
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2. Basic notation and de�nitions

Let f(x)=xTQx be the given objective function to be maximized over Bn. One can associate with f a signed undirected
graph G ≡ Gf = (V; E) as follows: the vertex-set V is the standard set {1; : : : ; n} and the edge-set E is partitioned into
two sets E+ and E−, where

E+ = {(i; j) : 16 i ¡ j6 n; qij ¿ 0}; E− = {(i; j) : 16 i ¡ j6 n; qij ¡ 0}:
The unordered pair {i; j} is simply denoted by ij and identi7ed with the ordered pair (i; j); i ¡ j.
We denote by m= |E| the number of edges of G.
The support of G is the ordinary (unsigned) undirected graph obtained from G when the partition E = E+ ∪ E− is

disregarded.
Set

�ij =

{−1 if ij∈E−;

+1 if ij∈E+:

A signed isomorphism is any isomorphism between two signed graphs that preserves the edge signs �ij . A block is a
connected signed subgraph B=(V (B); E(B)) of G, with E(B)=E+(B)∪E−(B). If x∈Bn and B is any block, we denote
by xB the vector (xi1 ; : : : ; xir ), where i1; : : : ; ir are the elements of V (B), taken in increasing order. For a block B, the
associated block function (often also called a block for short) is the quadratic pseudo-boolean function

fB(xB) =
∑

ij∈E(B)
�ijxixj: (5)

Next, we de7ne the convenient notions of “template” and “block-template”. For any given positive integer p, consider
a collection C of undirected connected graphs, all with vertex-set {1; : : : ; p}, such that every connected graph with p
vertices is isomorphic to one and only one graph in C . For each graph H in C , consider the set of all signed graphs
whose support is H , and partition this set into equivalence classes of sign-isomorphic graphs. Choose in each equivalence
class a unique representative: any such representative will be called a template of order p.
Every connected signed graph is sign-isomorphic to a unique template. Hence with any given block B of the signed

graph G one can associate a unique sign-isomorphic template Bt = (V (Bt), E(Bt)). Any such Bt is called a block-template
(relative to G). Notice that in general Bt is a block of Kn, the complete graph on n vertices, but not a block of G. A
similar de7nition applies to block functions. For example, a common template of the three blocks x1x5 + x1x4 − x4x5,
x3x4 + x3x6 − x4x6, and x1x2 + x1x3 − x2x3 is −x1x2 + x1x3 + x2x3, say.

Now let g(x) = c0 + cx be an LM of f(x). The contact of f and g is the set

Cont(f; g) = {x∈Bn : g(x) = f(x)}: (6)

The excess of g w.r.t. f is de7ned by

exc(f; g) =
∑
x∈Bn

(g(x) − f(x)): (7)

Let M be a family of LMs of f. The LM g∗ ∈M is said to be

• tightest (in M) if |Cont(f; g∗)| =max{|Cont(f; g)| : g∈M};
• closest (in M) if exc(f; g∗) = min{exc(f; g) : g∈M};
• best (in M) if

max
x∈Bn

g∗(x) = min
g∈M

max
x∈Bn

g(x): (8)

We assume that all the above optima exist. This is certainly true, for example, if M—regarded as a subset of Rn+1—
is closed and bounded.

3. Covering and exhaustive families of blocks

In the present section the question of choosing “good” collections F of blocks is addressed. Surely, in order to carry
out the approach outlined in the introduction, the chosen family F must have the property that the objective function f
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can be expressed as a weighted sum of the block functions fB, B∈F :
f(x) =

∑
B∈F

wBfB(xB); x∈Bn; (9)

where wB¿ 0 for B∈F . When this property holds the family F is said to be exhaustive for f. One obvious example of
exhaustive family is the collection of all the edges of G, taken with their signs.

For each ij∈E, let Fij = {B∈F : ij∈E(B)}. In view of (5), F is exhaustive for f if and only if the system of
( n
2

)
linear equations in the unknowns wB∑

B∈Fij
wB = |qij|; ij∈E (10)

has a non-negative solution.

Property 3.1. The family F is exhaustive for f if and only if there is no edge-weighting � such that∑
ij∈E(B)

ij¿ 0; B∈F ;

∑
ij∈E

ij|qij|¡ 0: (11)

Proof. Following Farkas’s Lemma, system (10) has a non-negative solution if and only if there is no edge-weighting �
satisfying (11).
We shall say that F is a covering family for G if

⋃
B∈F E

+(B) = E+ and
⋃
B∈F E

−(B) = E−, i.e., if every edge of
G belongs to some block of F . Obviously, a necessary condition for F to be an exhaustive family for f is that F is a
covering family for Gf.

Given a small positive integer p, one can use the following “skimming” procedure to obtain an exhaustive family of
blocks with at most p vertices in each of them.

Skimming Algorithm
Step 1: Build the graph G ≡ Gf associated with the input quadratic function f(x) = xTQx;

Let H = G;
Let R= Q; {the entries of the current R are denoted rij}
Let F = ∅;

Step 2: Find a block B of H , such that |V (B)|6p;
Step 3: Compute #=min{|rij| : ij∈E(B)};
Step 4: For each ij∈E(B):

Replace rij by rij − #;
If the updated rij is zero, then delete edge ij from H ;

Step 5: Add B to F ;
Set wB = #;

Step 6: If E(H) = ∅ then stop: output F and wB, for all B∈F ;
otherwise go to Step 2;

end
Notice that each block added to F must be diMerent from all the subsequent ones, since it contains at least one edge

that is missing from all of them.
The above algorithm runs in O(mnp) time for any 7xed p. As a matter of fact, the number of iterations (additions

of one block) is at most m, since at each iteration at least one edge is deleted from the residual graph H . Moreover,
identifying each block B in Step 2 takes time polynomial in n for a 7xed p.

4. Tightest and closest LMs of blocks

In this section, we discuss some techniques for generating tightest and closest LMs. Without loss of generality, we
may assume that the block B under consideration is a template (see Section 2). A full catalogue of the TLMs of all
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template block functions with up to 4 variables will be given below. Such functions have been obtained by direct
enumeration, taking into account the symmetries of the underlying graph.

Since B is a template, we can write xB = x = (x1; : : : ; xp), where p= |V (B)|. Accordingly, the block function (5) will
be denoted simply by h(x) and a TLM of it by g(x) = t0 + tx.

Let N = 2p, and let x1; : : : ; xN be the complete list of the points of Bp.
A TLM t0 + tx of the block h can be generated through the solution of the following mixed-integer linear program:

max y1 + · · · + yN ;

h(xk)6 t0 + tx
k6 h(xk)yk +M (1 − yk); k = 1; : : : ; N; (12)

(t0; t)∈Rp+1; y∈BN;
where M is a su:ciently large constant. In view of Corollary 4.3 and of Lemma 2.1 in Papadimitriou and Steiglitz [22],
one can choose M = (p + 1)(p + 1)!

(p
2

)
, since |h(x)| is bounded from above by

(p
2

)
. The binary variable yk is equal

to 1 iM xk belongs to the contact of h and t0 + tx.
Notice that, since p is a small integer (typically, p6 4), the size of the mixed-integer program (15) is small: for

example, when p=4 there are 32 constraints, 16 binary variables and 5 continuous ones. Notice also that in practice we
need to solve (15) only once and for all for each template. A full catalogue of TLMs for all the 60 templates with 3 or
4 vertices is given in Table 1,

where the following symbols are used:

Kn complete graph with n vertices,
Kq; r complete bipartite graph with q and r vertices,
Pn path with n vertices,
Dn Kn \ e, where e is an arbitrary edge, and
F4 K1;3 ∪ e, where e is any non-existing edge.
In the simplest case, p = 2, the TLMs of the block xixj are xi and xj , those of the block -xixj are the constant 0 and

xi + xj − 1. In both cases the contact consists of 3 points out of 4, and the TLMs are roofs with parameters ij = 0 or 1.
It turns out that, at least for p6 4, TLMs of blocks are related to roofs in a very simple way. We need two preliminary

de7nitions. Given an LM g(x) = c0 + cx of the (template) block h, let ( = min{g(x) − h(x) : x∈Bp}. The dried LM
g̃(x) = (c0 −() + cx is again an LM of h. If c0 − �co�6(, then the truncated LM ĝ(x) = �c0�+ cx is also an LM of h.

As a matter of fact, it turns out that all TLMs of template block functions with p6 4 variables are dried roofs. Actually,
in 33 cases out of 60 they happen to be roofs; in 24 cases out of 60 they are truncated roofs; in the remaining 3 cases
they are dried roofs with (= 1. However, for p = 5 there are blocks whose TLMs are not dried roofs. Note: the above
roofs do not have to be necessarily best ones.

A TLM of a block B is basic if it cannot be expressed as a conic combination (i.e., a linear combination with
non-negative coe:cients) of TLMs of sub-blocks of B. As indicated in Table 1, the only basic TLMs with at most 4
variables are:

• all the roofs,
• all the TLMs of K3 and K2;2 blocks that are truncated roofs,
• the TLM of the K4 block: −(x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4).

Finally, a closest LM (CLM) u0 + ux of a template h can be obtained through the solution of the following LP:
min s1 + · · · + sN ;

u0 + ux
k − sk = h(xk); k = 1; : : : ; N;

sk¿ 0; k = 1; : : : ; N;

(u0; u)∈Rp+1; s∈RN:

(13)

Again, since p is typically a small integer, in practice the size of this LP is small.

5. Finding optimal weights

Given an exhaustive family F for f, let us denote by w a non-negative |F |-vector whose components wB satisfy Eq.
(10), and let W , denote the set of all such vectors w. For each B∈F let t0 (B) + t(B)xB be a “good” LM (e.g., a TLM
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Table 1

Templates with 3 variables

P3 blocks Tightest LMs

x1x2 x2x3 const x1 x2 x3 C E

−1 −1 2 −1 −2 −1 5 4 Roof
−1 1 1 −1 −1 1 5 4 Roof
1 1 0 0 2 0 5 4 Roof

K3 blocks Tightest LMs

x1x2 x1x3 x2x3 const x1 x2 x3 C E

−1 −1 −1 1 −1 −1 −1 6 2 Trunc. roofa

−1 1 1 0 0 0 1 6 2 Trunc. roofa

−1 −1 1 2 −2 −1 0 4 6 Roof
1 1 1 0 0 1 2 4 6 Roof

Templates with 4 variables

P4 blocks Tightest LMs

x1x2 x2x3 x3x4 const x1 x2 x3 x4 C E

−1 −1 −1 3 −1 −2 −2 −1 8 12 Roof
−1 −1 1 2 −1 −2 −1 1 8 12 Roof
−1 1 −1 1 −1 −1 1 0 8 12 Roof
−1 1 1 1 −1 −1 2 0 8 12 Roof
1 −1 1 1 1 −1 −1 1 8 12 Roof
1 1 1 0 1 0 2 0 8 12 Roof

K1;3 blocks Tightest LMs

x1x2 x1x3 x1x4 const x1 x2 x3 x4 C E

−1 −1 −1 0 0 0 0 0 9 12 Roof
−1 −1 1 0 1 0 0 0 9 12 Roof
−1 1 1 0 2 0 0 0 9 12 Roof
1 1 1 0 3 0 0 0 9 12 Roof

F4 blocks Tightest LMs

x1x2 x1x3 x1x4 x2x3 const x1 x2 x3 x4 C E

−1 −1 −1 −1 1 −1 −1 −1 0 9 8 Trunc. roof
−1 −1 1 −1 1 −1 −1 −1 1 9 8 Trunc. roof
−1 1 −1 1 0 0 0 1 0 9 8 Trunc. roof
−1 1 1 1 0 0 0 1 1 9 8 Trunc. roof
1 1 −1 −1 1 0 0 0 −1 9 8 Trunc. roof
1 1 1 −1 0 1 0 0 1 9 8 Trunc. roof

−1 −1 −1 1 0 0 0 1 0 7 16 Roof
−1 −1 1 1 0 1 1 0 0 7 16 Roof
−1 1 −1 −1 0 1 0 0 0 7 16 Roof
−1 1 1 −1 1 2 −1 −1 0 7 16 Roof
1 1 −1 1 0 2 1 0 0 7 16 Roof
1 1 1 1 0 3 0 1 0 7 16 Roof
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Table 1. (continued)

K2;2 blocks Tightest LMs

x1x2 x1x4 x2x3 x3x4 const x1 x2 x3 x4 C E

−1 1 −1 −1 1 0 −1 −1 0 8 8 Trunc. roofa

−1 1 1 1 0 0 0 1 1 8 8 Trunc. roofa

−1 −1 −1 −1 4 −2 −2 −2 −2 7 16 Roof
−1 1 −1 1 2 −1 −2 −1 2 7 16 Roof
−1 1 1 −1 1 −1 −1 1 1 7 16 Roof
1 1 1 1 0 0 2 0 2 7 16 Roof

D4 blocks Tightest LMs

x1x2 x1x3 x1x4 x2x3 x3x4 const x1 x2 x3 x4 C E

−1 −1 1 −1 −1 2 0 −1 −2 −1 8 12 Trunc. roof
−1 1 1 −1 −1 2 0 −2 −1 0 8 12 Trunc. roof
−1 −1 1 1 1 1 −1 −1 1 1 8 12 Trunc. roof
−1 1 1 1 1 0 0 0 1 2 8 12 Trunc. roof
−1 −1 −1 −1 −1 3 −2 −2 −2 −1 7 12 Trunc. roof
−1 −1 1 −1 1 2 −1 −2 −1 1 7 12 Trunc. roof
−1 1 1 1 −1 0 0 0 1 1 7 12 Trunc. roof
−1 1 −1 1 1 1 −1 −1 2 0 7 12 Trunc. roof
1 −1 1 1 1 0 0 1 0 2 7 12 Trunc. roof

−1 1 −1 −1 −1 4 −2 −2 −1 −2 6 20 Roof
−1 1 1 −1 1 2 −1 −2 0 2 6 20 Roof
−1 −1 1 1 −1 2 0 1 −2 −1 6 20 Roof
−1 −1 −1 1 1 3 −3 −1 1 −1 6 20 Roof
1 1 1 1 1 0 2 0 3 0 6 20 Roof

K4 blocks Tightest LMs

x1x2 x1x3 x1x4 x2x3 x2x4 x3x4 const x1 x2 x3 x4 C E

−1 −1 −1 −1 −1 −1 1 −1 −1 −1 −1 10 8 Dried roof
−1 −1 1 −1 1 1 0 0 0 0 1 10 8 Dried roof
−1 1 1 1 1 −1 0 1 1 0 0 10 8 Dried roof
−1 −1 −1 −1 1 −1 3 −2 −2 −2 0 7 16 Trunc. roof
−1 −1 1 −1 1 −1 3 −1 −1 −3 0 7 16 Trunc. roof
−1 1 1 −1 1 −1 2 1 −1 −2 0 7 16 Trunc. roof
−1 1 1 −1 1 1 0 2 0 0 1 7 16 Trunc. roof
−1 1 1 1 1 1 0 0 0 1 3 7 16 Trunc. roof
−1 1 −1 −1 1 −1 4 −2 −2 −1 −1 5 24 Roof
−1 1 1 −1 −1 1 3 −1 −3 0 1 5 24 Roof
1 1 1 1 1 1 0 1 0 2 3 5 24 Roof

aThe TLM is not a conic combination of TLMs of sub-blocks. C is the number of contact points, E is
the excess of the TLM.

or a CLM) of the block function fB(xB). Then, for any w∈W , g(w; x) =
∑

B∈F wB(t0(B) + t(B)xB) is an LM of f.
Our aim is to choose w∗ ∈W such that g(w∗; x) is best among all LMs g(w; x), w∈W , i.e., the optimal value L(w)

of the corresponding linear relaxation (2) is as small as possible. Let Fi={B∈F : i∈V (B)}, i=1; : : : ; n, and as customary
let z+ = max{z; 0}, z ∈R. Then we have

L(w) =
∑
B∈F

wBt0(B) + max
x∈Bn

∑
B∈F

wB
∑
i∈V (B)

ti(B)xi =
∑
B∈F

wBt0(B) +
n∑
i=1

(∑
B∈Fi

wBti(B)

)+

: (14)
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Therefore, we can compute an optimal weight vector w∗ by solving the LP

min
∑
B∈F

wBt0(B) +
n∑
i=1

ui;

(L) ui¿
∑
B∈Fi

wBti(B); i = 1; : : : ; n; (15)

∑
B∈Fij

wB = |qij|; ij∈E; (16)

w¿ 0; u¿ 0:

First of all, let us consider two special cases of (L).

1. Let us choose F as the family of all edges with their appropriate sign. For each block xixj we take as LM either the
TLM xi or the TLM xj; for each block -xixj we take as LM the TLM given by the constant 0. Then the optimal value
of (L) is

∑
ij∈E+ qij , a rather weak bound.

2. Let us choose again F as above. Let

g∗(x) =
∑
ij∈E+

(∗
ijxi + (1 − ∗

ij)xj) +
∑
ij∈E−

∗
ij(1 − xi − xj)

be a best roof, let Uij = ∗
ij=|qij|, ij∈E, and let us take

Uijxi + (1 − Uij)xj as the LM of the block xixj;

Uij(1 − xi − xj) as the LM of the block − xixj:

In this case the optimal value of (L) coincides with the roof-dual optimum.

Coming back to the general version of (L), the total number of constraints is n+ m, a manageable number, while the
number of variables is n + |F |, which may be quite large. Therefore, it is quite natural to think of a column generation
approach to its solution.

We shall assume that the given family F always contains all the blocks consisting of single signed edges, and that the
LMs corresponding to these blocks are de7ned as in 2. These choices ensure that:

(i) F is exhaustive;
(ii) The optimal value of (L) is at least as good as the roof-dual optimum.

Given a feasible basis for (L), let /i and 0ij be the associated multipliers of constraints (15) and (16), respectively.
Then, the reduced cost of the variable wB; B∈F , can be written as

Uc(B) = t0(B) +
∑
i∈V (B)

ti(B)/i −
∑

ij∈E(B)
0ij: (17)

Let Bt be the template of B, and let us denote by B(i) the image in V (B) of i∈V (Bt) under the sign-isomorphism
between Bt and B. Then we can re-write (17) as

Uc(B) = t0(B
t) +

|V (B)|∑
i=1

ti(B
t)/B(i) −

∑
ij∈E(B)

0ij: (18)

In view of (18), only the LMs of block-templates need to be stored.
A formal description of the algorithm follows.
Column generation algorithm

Step 1: Let k = 0;
Let F0 be the family of blocks de7ned in 1;
For each block B in F0, get an LM t0(B) + t(B)xB from g∗(x) as explained in 2;
Solve (L) with F replaced by F0;
{This is equivalent to solving the roof-dual of (1)}
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Step 2: For each B∈F \ Fk , compute the reduced cost of the variable wB according to (18):

Uc(B) = t0(B
t) +

|V (B)|∑
i=1

ti(B
t)/kB(i) −

∑
ij∈E(B)

0kij;

compute Uc(B∗) = min{ Uc(B) :B∈F \ Fk};
Step 3: If Uc(B∗)¿ 0, then stop:

w∗
B =

{
wkB; B∈Fk ;
0; else

Step 4: is an optimal weight vector, otherwise go to
Let F ′ be a set of blocks such that Uc(B)¡ 0 for each B∈F ′. Set Fk+1 = Fk ∪ {F ′}; increase k by 1;

Step 5: At the kth iteration, let Fk ⊆ F be the current family of blocks;
Solve (L) with F replaced by Fk ;
Let (uk ;wk) be an optimal solution; let /ki and 0kij be the optimal multipliers associated with constraints (17) and
(18), respectively.
Go to Step 2.

We end up this section with a brief discussion of the worst-case complexity of our procedure. As above, n is the
number of variables in the quadratic 0–1 maximization problem, and p is the maximum number of variables in the blocks
of the chosen family F . For our procedure to be viable, p must be a small number (typically, p6 4). In our complexity
analysis, we shall assume that p is a Axed positive integer.

It is fairly obvious that the number of template functions of order p depends only on p, and since their coe:cients
are 0, 1, or −1 such number is no more than P=3(

p
2 ). For each such template function, a TLM can be obtained through

the solution of (12), an integer program involving 2p binary variables, p + 1 continuous variables, and 2p+1 constraints.
Such a program can obviously be solved in poly(2p) time (see also [20]); thus the total time for precomputing templates
and their TLMs depends only on p, and hence can be regarded as a constant for any 7xed value of p (although this
“constant” grows rapidly with p.)

We emphasize the fact that a catalogue of all templates of order at most p and their TLMs (only templates with basic
TLMs need to be considered) is computed oM-line once and for all, since it does not depend on the input function f ,
and is assumed to be available at the beginning of the execution of our procedure on any particular input f.

In the linear program (L) the number of variables (blocks) is no more than(
n

p

)
P = O(np);

(where the constant factor on the r.h.s. is a function of p, but not of n), the number of constraints is O(n2), and the
size of the coe:cients ti(B) depends only on p. Hence the input size of (L) is polynomial in n and log qmax, where
qmax = maxij∈E |qij|. Therefore, (L) can be solved in time polynomial in the size of f.

In conclusion, the overall procedure can be implemented so as to run in polynomial time, for any 7xed p.

6. Computational experiments

The sharpness of the upper bounds given by the solution of problem (L) and the performance of the column generation
procedure have been evaluated on a set of 480 test problems with a number of variables between 50 and 200. Each
experiment is de7ned as follows:

Test = (n; density; npositive);

where n∈ {50; 100; 150; 200}, density ∈ {5; 10; 25; 50} and npositive ∈ {20; 50; 80}. Here, n is the number of variables,
density is the density of G, that is, density = p means that in the test problems the number of edges of G is p% of
( n2 ) and npositive is the density of positive terms, that is, npositive = s means that the number of positive terms qij is
s% of |E|. For each 7xed Test, 10 test problems were randomly generated in which the graph G is connected and each
pair ij, for i; j∈V , has the same probability to belong to E. The absolute values of the terms |qij| are integers uniformly
distributed in the interval [1, 10], for each ij∈E.
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We do not present the results with npositive = 80, since the optimal value of (L) was almost always equal to the
roof-dual optimum (and, whenever the optimal value was known, very close to it).

In our experiments, we never took CLMs into consideration since, as mentioned in Appendix A, every TLM is also a
CLM at least for all templates of order p6 4.
We have implemented the column generation procedure using the CPLEX 7.0 callable library and the Delphi environ-

ment; the tests have been performed on a Pentium III, 1:1 GHz with 512 MB of RAM and Windows 98 SE operating
system.

The optimal value of (L) depends on the family of blocks F . Initially, the family F was formed by all the blocks of
order at most 4 having a basic TLM. When the density is large the number of the blocks of the above type is too large
(even though it is polynomial). In order to obtain a family of blocks F containing a reasonable number of blocks, we
de7ned the following procedure.

Procedure A.
(0) let dij = (degree of vertex i)∗(degree of vertex j) for each ij∈E and let 4 be a positive real number;

(1) let F = F0, where F0 is the family of signed edges of G (see 1., Section 5);
(2) repeat
(2.1) generate a set V ′ of 3 or 4 vertices of V ;
(2.2) if (V ′ induces in G a signed subgraph B �∈ F whose TLM is basic) and (each edge ij of B is contained in less

than 4dij blocks of F) and (|F |¡ 10 000) then

add B to F

until there is no block satisfying condition (2.2).

Here many aspects of the selection procedure are not fully speci7ed; for instance, there seems to be some relation
between the order in which diMerent block types are generated and the quality of the results: we obtain better results if,
when npositive=20, we generate 7rst the K4’s, then the K3’s and 7nally the C4’s; and when npositive=50, we generate
7rst the K3’s, then the K4’s and 7nally the C4’s.

For a given test problem, let RD and Opt be the roof-dual optimum and the optimum of (1), respectively, and let L∗

be the upper bound on Opt obtained through the solution of (L); also, let

EL∗ =
L∗ − Opt

Opt
;

ERD =
RD − Opt

Opt
;

ERD;L∗ =
RD − L∗
RD

:

For each experiment we computed the average values, over the 10 test problems, of the following performance indicators:

• EL∗ ; ERD; ERD;L∗ ;
• the cardinality of F \ F0;
• the number of columns at the end of the column generation procedure;
• the running times.

In a 7rst set of experiments we solved problem (L) directly, without column generation. In order to obtain reasonable
running times also for the problems with 200 variables and density = 50, we set 4 = 0:0001. With this value of 4 each
edge can be contained in at most one block of F \ F0. In Table 2 the experimental results are shown. The improvement
with respect to the roof-dual value increases as density increases and, for 7xed density and npositive, as n increases. In
fact, while for density = 5 or 10, the improvement with respect to the roof-dual value is 0 or close to 0, for problems
with density = 50 and n = 200 it becomes signi7cant, mainly if npositive = 50. On the other hand, when n and density
are very large, the running times are relatively large. For the problems with 50 variables we were able to 7nd the optimal
value of (1) by means of a branch and bound procedure reported in [4]. For the problems with lower density both the
roof-dual optimum and the bound obtained by (L) are equal or very close to the optimal value, whereas for the problems
with n=50, density=50 and npositive=20 the bound is almost twice the optimal value. This result is due to the choice
of the value 4.
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Table 2

n density npositive Running times (s) |F \ F0| EL∗ ERD ERD;L∗

50 5 20 0.02 2.1 0.0000 0.0000 0.0000
50 10 20 0.049 14.8 0.0221 0.0427 0.0182
50 25 20 0.266 71 0.3343 0.8672 0.2864
50 50 20 1.051 172.3 0.9395 2.3984 0.4277
100 5 20 0.103 19.5 — — 0.0136
100 10 20 0.407 85.3 — — 0.1906
100 25 20 3.53 274.3 — — 0.4085
100 50 20 13.666 517.2 — — 0.5050
150 5 20 0.367 66.5 — — 0.0998
150 10 20 3.422 225.4 — — 0.2917
150 25 20 22.972 625.3 — — 0.4656
150 50 20 69.253 1180.6 — — 0.5403
200 5 20 1.419 142.9 — — 0.1672
200 10 20 12.325 434.6 — — 0.3506
200 25 20 84.557 1116.3 — — 0.4976
200 50 20 374.52 2915 — — 0.5906

50 5 50 0.052 1.3 0.0000 0.0000 0.0000
50 10 50 0.078 13.5 0.0000 0.0000 0.0000
50 25 50 0.302 68.4 0.0480 0.2785 0.1788
50 50 50 0.894 170.1 0.3355 0.8306 0.2700
100 5 50 0.137 21.1 — — 0.0018
100 10 50 0.957 85.9 — — 0.1250
100 25 50 3.217 326.4 — — 0.2566
100 50 50 10.426 737.3 — — 0.2980
150 5 50 0.501 65.5 — — 0.0357
150 10 50 2.844 229.2 — — 0.1831
150 25 50 25.396 778.6 — — 0.2761
150 50 50 97.443 1711.2 — — 0.3104
200 5 50 2.008 141.7 — — 0.1009
200 10 50 7.911 443.4 — — 0.2098
200 25 50 80.745 1431.9 — — 0.2847
200 50 50 403.373 4401.5 — — 0.3455

Table 3

n density npositive Running times (s) |F \ F0| EL∗ ERD ERD;L∗

50 5 20 0 2.2 0.0000 0.0000 0.0000
50 10 20 0.093 46.6 0.0014 0.0427 0.0363
50 25 20 1.984 1340.1 0.0207 0.8672 0.4511
50 50 20 23.652 10000 0.1165 2.3984 0.6674
50 5 50 0.101 1.3 0.0000 0.0000 0.0000

50 10 50 0.465 44.2 0.0000 0.0000 0.0000
50 25 50 9.486 1475.2 0.0000 0.2785 0.2149
50 50 50 80.857 10000 0.0002 0.8306 0.4510

In order to 7nd the sharpness of the bound with a very large number of blocks, we performed a second set of experiments
only for the problems with n=50. In these experiments we generated the blocks randomly as in procedure A, but we did
not consider the bound on the number of blocks containing each edge. The results are shown in Table 3. If npositive=50,
the bound given by the optimal value of (L) is always equal or almost equal to Opt, and, if npositive = 20, the relative
error is always less than 0.12. On the other hand, the running times increased up to 100 times.
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Table 4

npositive = 50 1 iteration 2 iterations 4 iterations

n density |F \ F0| R.T. NCol ERD;L∗ R.T. NCol ERD;L∗ R.T. NCol ERD;L∗

200 5 143.4 1.26 137.6 0.1045 1.28 137.6 0.1045 1.33 137.6 0.1045
200 10 443.6 6.00 443.5 0.2098 6.06 443.6 0.2099 6.13 443.6 0.2099
200 25 4483.2 50.14 1166.4 0.2369 95.35 1862.2 0.3493 205.34 2738 0.4315
200 50 10000 10.04 1 0.0001 81.44 2068.4 0.1126 201.07 2388 0.2228

npositive = 50 8 iterations 12 iterations 16 iterations

n density |F \ F0| R.T. NCol ERD;L∗ R.T. NCol ERD;L∗ R.T. NCol ERD;L∗

200 5 143.4 1.41 137.6 0.1045 1.50 137.6 0.1045 1.59 137.6 0.10451
200 10 443.6 6.33 443.6 0.2099 6.52 443.6 0.2099 6.69 443.6 0.20985
200 25 4483.2 349.9 3096 0.4511 427.74 3202.2 0.454 479.47 3260.6 0.45499
200 50 10000 431.91 4323.2 0.3553 643.57 5188 0.4009 844.45 5693.1 0.41913

R.T. is the running times in seconds. NCol. is the number of columns corresponding to a block of |F \F0|
in the LP.

In a third set of experiments we tested a column generation procedure in which F ′ ={B∗}, that is, only one block with
minimum reduced cost is added to Fk at each iteration. The convergence turned out to be very slow. To improve on the
convergence, we took F ′ as a maximal set of blocks B∈F \ Fk such that each edge of G belongs to at most one block
of F ′, and

Uc(B)6 # Uc(B∗) + (1 − #) Uc(Bmax);

where Bmax is a block of F \ Fk with maximum negative reduced cost and 0¡#¡ 1. In the experiments we let #= 0:5.
By setting 4 = 0:0001 as in the previous experiments, all the blocks were added to F in the 7rst two iterations. Then
we set 4 = 0:001 and, in order to limit the running times, the column generation algorithm was truncated after the 16th
iteration and a time-bound of 1 min was imposed on the solution time of each iteration. In Table 4, the results of these
experiments for the problems with n = 200 and density = 50 are shown. The bounds obtained at the 16th iteration are
better than those shown in Table 2, but the running times for the larger problems are higher (for the problems with
n=200 and density=50 the running times at the 12th iteration are greater than 10 min). Moreover, the bounds obtained
at the 12th and at the 16th iteration are always very close (the diMerence between the indicators ERD;L∗ is less than 0.02).
However, when truncated column generation is used with 4= 0:001, the bounds one obtains by solving (L) to optimality
with 4 = 0:0001 are reached, in the problems with lower density, after one or two iterations; and, in the problems with
higher density, before the 8th iteration, with running times comparable to those of Table 2.

Tables 5 and 6 contain the results of the truncated column generation algorithm on the test problems with n = 50.
As before, in these experiments we did not pre-set any bound on the number of blocks containing each edge, but we set
instead a bound of 10 000 on the total number of blocks. By comparing these tables with Table 3, we observe that after
16 iterations the upper bounds are very close to the bounds obtained by the solution of problem (L) at optimality and the
average running times, when density is 50%, decrease by 68% for npositive = 20, and by 70% for npositive = 50. Even
the bounds obtained after 12 or 8 iterations are very good.

A further set of experiments has been performed on a set of DIMACS benchmarks for the maximum clique problem.
Let G = (V; E) be a graph, and let G′ = (V; E′) be its complement. We considered the following formulation of the
maximum clique problem in G as an unconstrained quadratic 0–1 maximization model:

Opt = max
x∈Bn


∑

i∈V
xi −

∑
ij �∈E′

xixj


 ; (19)

where Opt is the maximum cardinality of a clique of G. For each of the selected instances, we solved directly problem
(L) for formulation (19). Table 7 contains the results of these experiments. In the following, RD and L∗ are the optimal
values of the roof-dual and of (L), respectively, for formulation (19). Obviously, when these values are fractional one is
allowed to round them down, but we chose not to, in order to report on the actual values of these two optima. We also
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Table 5

npositive = 20 1 iteration 2 iterations 4 iterations

n density |F \ F0| R.T. NCol ERD;L∗ R.T. NCol ERD;L∗ R.T. NCol ERD;L∗

50 5 2.2 0 0 0 0 0 0 0.006 0 0
50 10 46.6 0.005 2.7 0.0281 0.016 3.4 0.035 0.032 3.8 0.0363
50 25 1340.1 0.039 4.9 0.0409 0.089 18 0.1127 0.231 62.4 0.3038
50 50 10000 0.319 43 0.175 0.671 72.1 0.2961 1.341 106.3 0.4088

npositive = 20 8 iterations 12 iterations 16 iterations

n density |F \ F0| R.T. NCol ERD;L∗ R.T. NCol ERD;L∗ R.T. NCol ERD;L∗

50 5 2.2 0.018 0 0 0.023 0 0 0.054 0 0
50 10 46.6 0.054 3.8 0.0363 0.06 3.8 0.0363 0.077 3.8 0.03629
50 25 1340.1 0.527 107.3 0.4279 0.708 125.7 0.4461 0.835 134.3 0.44948
50 50 10000 3.048 179.8 0.5317 5.383 263 0.6207 7.596 329.1 0.65852

R.T. is the running times in seconds. NCol. is the number of columns corresponding to a block of |F \F0|
in the LP.

Table 6

npositive = 50 1 iteration 2 iterations 4 iterations

n density |F \ F0| R.T. NCol ERD;L∗ R.T. NCol ERD;L∗ R.T. NCol ERD;L∗

50 5 1.3 0 0 0 0 0 0 0 0 0
50 10 44.2 0 0 0 0.006 0 0 0.006 0 0
50 25 1475.5 0.142 42.1 0.1129 0.296 83.2 0.187 0.417 107.7 0.2134
50 50 10000 0.264 13.4 0.0258 0.533 22.1 0.042 1.021 30.8 0.0539

npositive = 50 8 iterations 12 iterations 16 iterations

n density |F \ F0| R.T. NCol ERD;L∗ R.T. NCol ERD;L∗ R.T. NCol ERD;L∗

50 5 1.3 0.04 0 0 0.051 0 0 0.057 0 0
50 10 44.2 0.006 0 0 0.034 0 0 0.061 0 0
50 25 1475.5 0.511 112.1 0.2149 0.573 112.1 0.2149 0.643 112.1 0.21493
50 50 10000 3.652 267.1 0.3513 7.404 396.9 0.4299 10.292 458.8 0.44493

R.T. is the running times in seconds. NCol is the number of columns corresponding to a block of |F \F0|
in the LP.

computed the following upper bounds on the cardinality of the maximum clique:

Opt6 [3 +
√
(9 − 8(n− m))]=2

(only for connected graphs) where m is the number of edges of G [2];

Opt6 6(AG) + 1;

where 6(AG) is the maximum eigenvalue of the adjacency matrix AG of G [25];

Opt6N−1 + 1;

where N−1 is the number of eigenvalues of AG that do not exceed −1 [2];

Opt6 (n+ N ′
0)=2;

where N ′
0 is the number of zero eigenvalues of the adjacency matrix AG′ of G′ [12].

In the following U∗ will denote the minimum of these four bounds and EU∗ = (U∗ − Opt)=Opt.
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Table 7

Problem name n m′ Opt U∗ EU∗ (4 = 10−7) Running times from

R:T: RD L∗ ERD EL∗ DIMACS (s)

san200 0.9 1 200 17910 70 98 0.40 2.36 100 72.4 0.43 0.03 75.69
san200 0.9 2 200 17910 60 98 0.63 3.46 100 67.6 0.67 0.13 57
san200 0.9 3 200 17910 44 96 1.18 4.28 100 61.5 1.27 0.40 48.35
c-fat200-1 200 1534 12 17 0.42 248.42 100 50 7.33 3.17 0.03
c-fat200-2 200 3235 24 33 0.38 118.03 100 50 3.17 1.08 0.04
c-fat200-5 200 8473 58 85 0.47 90.57 100 66.7 0.72 0.15 20.35
MANN a9 45 918 16 20 0.25 0.06 22.5 18 0.41 0.13 3.96
hamming 6-2 64 1824 32 42 0.31 0.05 32 32 0.00 0.00 0.30
hamming 6-4 64 704 4 22 4.50 0.6 32 16 7.00 3.00 0.04
johnson 8-2-4 28 210 4 8 1.00 0.06 14 7 2.50 0.75 0.03
johnson 8-4-4 70 1855 14 28 1.00 0.33 35 18 1.50 0.29 0.13
johnson 16-2-4 120 5460 8 16 1.00 2.09 60 30 6.50 2.75 18.60

m′ is the number of edges in the complementary graph G′.

Table 8

Problem name n m′ Opt Formulation (19) Formulation (20)
(4 = 10−7) (4 = 10−5)

R.T. RD L∗ ERD EL∗ R.T. RD L∗ ERD EL∗

c-fat 200-1 200 1534 12 248.42 100 50 7.33 3.17 355.36 39.67 27.30 2.31 1.28
c-fat 200-2 200 3235 24 118.03 100 50 3.17 1.08 610.99 57.38 40.08 1.39 0.67
c-fat 200-5 200 8473 58 90.57 100 66.7 0.72 0.15 667.79 92.55 68.30 0.60 0.18
hamming6-4 64 704 4 0.6 32 16 7.00 3.00 5.21 27.04 15.68 5.76 2.92

m′ is the number of edges in the complementary graph G′.

The quality of the observed bounds L∗ strongly depends on the ratio k=n. As a matter of fact, we can see in Table 7
that RD is always equal to n=2 and that L∗ is always at least n=4. In particular, if the cardinality of the maximum clique
is n=4 or less, then L∗ is almost always equal to n=4. We will prove in Appendix B (Property B.1) that, when blocks
with at most four variables are used, RD and L∗ cannot be less than these values. In the cases where Opt is at least n=4,
the observed relative error of the bound L∗ is at most 0.15. Morevover the minimum of the other four bounds is better
than L∗ only in three cases in which Opt¡n=4.

It is perhaps worth mentioning that sometimes one may get smaller values of both RD and L∗ simply by changing
the objective function in formulation (1) of the maximum clique problem. Along with (19), we have considered the
formulation

max
x∈Bn


∑
ij∈E

xixj − d
∑
ij �∈E

xixj


 ; (20)

where d is the maximum vertex-degree of G. The correctness of formulation (20) follows from Property B.2, proved in
Appendix B. As shown there, the optimal value of (20) is equal to the number of edges in a clique of maximum size.
Then, if s is a bound on the number of edges in a maximum clique, the positive solution y of the quadratic equation( y
2

)
= s is a bound on the number of vertices in a maximum clique. In the Table 8, the roof-dual optimum RD and the

optimal value L∗ of (L) relative to two formulations (19) and (20) are compared for some of the DIMACS instances.
Clearly, formulation (20) yields better bounds.

Unfortunately, this is not true for the other DIMACS benchmarks and for other graphs we have tried. Furthermore, the
running times are much higher with respect to the other formulation: a simple explanation of this fact is that here density
is always equal to 100%. So, formulation (20) has not been pursued any longer.
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Table 9

n density (%) Opt U∗ EU∗ Formulation (19)
(4 = 10−9)

R.T. RD L∗ ERD EL∗

∗ 200 90 80 98.75 0.23 1.81 100 80 0.25 0.00
∗ 200 90 70 99.25 0.42 2.69 100 70 0.43 0.00
∗ 200 90 65 99.25 0.53 5.13 100 65.11 0.54 0.00
200 90 60 98.5 0.64 5.82 100 61.84 0.67 0.03
200 90 55 97.5 0.77 6.12 100 59.61 0.82 0.08
∗ 200 90 44 96.75 1.20 5.66 100 57.83 1.27 0.31
∗ 200 90 35 95.5 1.73 5.59 100 58.60 1.86 0.67
∗ 200 90 25 91.75 2.67 5.35 100 56.45 3.00 1.26
200 70 65 98.25 0.51 9.75 100 65 0.54 0.00
200 70 60 98.5 0.64 23.86 100 60 0.67 0.00
200 70 55 98.25 0.79 49.25 100 55 0.82 0.00
∗ 200 70 45 97.75 1.17 78.55 100 50 1.22 0.11
∗ 200 70 30 97.25 2.24 73.63 100 50 2.33 0.67
∗ 200 70 18 96 4.33 64.62 100 50 4.56 1.78
200 50 55 96.75 0.76 60.53 100 55 0.82 0.00
200 50 50 97.25 0.95 122.88 100 50 1.00 0.00
200 50 45 96.25 1.14 119.49 100 50 1.22 0.11
∗ 200 50 30 96.5 2.22 115.32 100 50 2.33 0.67
∗ 200 50 20 95.5 3.78 130.10 100 50 4.00 1.50
∗ 200 50 11 94.75 7.61 117.90 100 50 8.09 3.55

In order to perform other experiments on the maximum clique problem, we adapted a random graph generator proposed
by Sanchis [23]. This generator produces a random graph G′′ with a speci7ed number of vertices and edges, and known
minimum vertex cover size, so that the complement of G′′ has known maximum clique size. In the graph G′′, let n be
the number of vertices, m′′ the number of edges and k the required clique size; initially, the generator partitions the set of
n vertices into k cliques; then chooses all but one of the vertices in each clique to be in the cover. The complement G′

of G′′ has maximum clique size equal to k. Then the generator adds edges at random, but in such a way that each added
edge is adjacent to at least one vertex in the chosen cover. Sanchis points out that if the sizes of the k cliques are “as
equal as possible”, and the same is true for vertex degrees, the resulting graph instances turn out to be harder with respect
to the computation of a maximum clique. In order to obtain graphs with this property, we start from k cliques of equal,
or almost equal, sizes and iteratively add edges with probability inversely proportional to the product of the degrees of
their endpoints. We tested the sharpness of the bounds RD and L∗ on the Sanchis graphs generated as described above.
Each test is de7ned by the number of vertices n, the density of G′ and the size Opt of the maximum clique. For each
test, 4 instances were randomly generated: the variance of the results over the 4 instances turned out to be very low. In
Table 9 we show, for each test, the average values of the indicators. We show only the results obtained with formulation
(19). In Table 9, the starred tests have been already considered in [24].
Notice that in all the above tests the parameters n, density, and Opt satisfy the inequality

density¿ (Opt=n)2:

In the above-mentioned paper, Sanchis and Jagota essentially prove (Theorem 4.2) that the maximum clique problem
remains NP-hard when restricted to those graph instances whose parameters n, density, and Opt satisfy the above inequality.

The results of Table 9 con7rm the previous observations. In particular, if the maximum clique size is greater than n=4,
L∗ is almost always equal to Opt and is always less than the other four bounds described above.

Finally we considered the weighted max-2-sat problem, which can be easily transformed in a 0–1 quadratic maximization
problem. In Table 10, we compare the optimal values of 16 problems presented in [3] with the upper bounds obtained
by solving directly problem (L). In the experiments we 7xed 4 = 1. The upper bound is equal to the optimal value in
8 cases and, in the other cases, the relative error is at most 0.013. However, for the problems with lower density, the
improvement with respect to the roof dual is small. Whereas in all the previous experiments the number of K3 blocks
generated by Procedure A was much greater than the number of K2;2 blocks, in these latter experiments K2;2 blocks form
the largest group.
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Table 10

n No. of clauses density (%) Opt R.T. RD L∗ ERD EL∗

50 100 7.76 538 0.06 550.5 545 0.0232 0.0130
50 150 11.18 766 0.16 792 766 0.0339 0.0000
50 200 15.18 1034 0.39 1085 1034 0.0493 0.0000
50 250 18.94 1265 1.04 1348 1265 0.0656 0.0000
50 300 21.06 1502 1.37 1598 1502 0.0639 0.0000
50 350 24.57 1725 5.44 1896 1729 0.0991 0.0023
50 400 27.51 1993 5.27 2146 1993 0.0768 0.0000
50 450 30.53 2262 10.55 2451 2262 0.0836 0.0000
50 500 33.88 2502 35.21 2748 2502 0.0983 0.0000
100 200 3.94 1096 0.11 1097 1096 0.0009 0.0000
100 300 5.92 1567 0.44 1630 1581 0.0402 0.0089
100 400 7.90 2085 1.21 2202 2108 0.0561 0.0110
100 500 9.62 2579 3.68 2801 2606 0.0861 0.0105
100 600 11.47 3103 9.72 3342 3119 0.0770 0.0052
150 300 2.65 1610 0.22 1634 1620 0.0149 0.0062
150 450 3.92 2440 0.50 2505 2468 0.0266 0.0115

In conclusion, the present paper contributes a rather general and versatile computational machinery for the generation
of tight LMs of groups of terms, and for their use in order to 7nd “best” upper bounds—in a well-de7ned sense—on the
optimum of an unconstrained quadratic 0–1 maximization problem. The above experimental results provide clear evidence
that the proposed technique substantially improves on the bounds given by roof-duality, especially for larger and denser
instances. The column generation procedure is highly 4exible, allowing one to choose the total number of blocks, the
number of columns added to the master problem at each iteration, and the maximum number of iterations. Straight column
generation, in which one column at the time is added to the master problem, does not appear to be competitive, in terms
of running times, with the Cplex primal simplex code. On the other hand, if column generation is truncated after a few
iterations, the running times are much faster and the quality of the bound is not signi7cantly aMected. Our experiments
on graphs with known maximum clique size k show that our bounds are not only considerably sharper than the roof-dual
one, but also close to the optimum, when k lies in the interval [n=4, n=2]; however, they are weaker for instances with
small ratio k=n. Moreover, in the experiments on the weighted max-2-sat problems proposed by Borchers, our bounds are
very close to the optimum and, when the number of clauses is su:ciently large, they improve on the roof-dual values.

Certainly, further research is needed in order to select the block collection F in a more adaptive, instance-dependent, way;
to design enhanced block search routines; to speed up the column generation algorithm through a suitable stabilization
procedure [13], perhaps in the simpler form of constraint perturbation; to embed our upper bounding technique in a
branch & bound exact code for quadratic 0–1 maximization; to investigate possible connections between our bounds for
the maximum clique problem and other bounds reported in the literature (see, e.g., [11,21]; and, 7nally, to answer the
many theoretical questions that were left open.
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Appendix A. Tightest and closest LMs: properties and conjectures

In this appendix, some properties of tightest linear majorants and closest linear majorants will be presented, together
with some conjectures. The validity of each conjecture has been established for all blocks with up to 4 variables.
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We keep using the notation and de7nitions from Section 2. As in Section 4, let h be a given (template) block function
of p variables, and set N = 2p. Let us introduce the (unbounded) polyhedron

P = {(t0; t)∈Rp+1 : t0 + tx
k¿ h(xk); k = 1; : : : ; N}:

For any (t0; t)∈P, let A(t0; t) = {k : t0 + txk = h(xk)}.

Property A.1. If g∈P is a non-negative combination of gi ∈P for i=1; 2; : : :, then A(g) ⊆ A(gi) holds for all i=1; 2; : : :.

Property A.2. If g; g′ ∈P are distinct vertices of P, then A(g) �= A(g′).

Proof. Since the polyhedron P is clearly up-monotone and thus full-dimensional, the system of linear equations corre-
sponding to A(g) is of full rank, and hence g is its unique solution. Similarly, g′ is the unique solution of the full rank
system of linear equations corresponding to A(g′). Thus, A(g) �= A(g′) follows by g �= g′.

Corollary A.3. If g= t0 + tx is a TLM of h, then g is an extreme point of P, and therefore |Cont(h; g)|¿p+ 1.

Conjecture 1. If g is a TLM of h and |Cont(h; g)| = p+ 1, then g is a roof.

Property A.4. If g is a roof of h such that Cont(h; g) �= ∅, then

(i) there is a roof g′ whose coe:cients are integers and Cont(h; g′) = Cont(h; g);
(ii) there are no two points x; y∈Cont(h; g) such that:

either xi = 1; xj = 0 and yi = 0; yj = 1 for some ij∈E+;

or xi = 0; xj = 0 and yi = 1; yj = 1 for some ij∈E−:

Proof. Since the roof

g(x) =
∑
ij∈E+

(ijxi + (1 − ij)xj) +
∑
ij∈E−

ij(1 − xi − xj);

where 06 ij6 1 for all ij∈E, is obtained by termwise bounding, a point x belongs to Cont(h; g) iM

xixj = ijxi + (1 − ij)xj; ij∈E+;

− xixj = ij(1 − xi − xj); ij∈E−: (21)

Hence if ij∈E+

xi = 1; xj = 0 ⇒ ij = 0;

xi = 0; xj = 1 ⇒ ij = 1

and if ij∈E−

xi = 0; xj = 0 ⇒ ij = 0;

xi = 1; xj = 1 ⇒ ij = 1:

From these implications (ii) easily follows.
In all remaining cases equalities (21) hold for arbitrary 06 ij6 1, thus the contact does not change if one always

chooses, say, ij = 1. This proves (i).
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Corollary A.5. If some TLM of h is a roof, among the TLMs there is always a roof with integral coeBcients.

Conjecture 2. There is always a TLM of h with integral coeBcients.

Conjecture 3. For any block h, one can obtain every TLM of h by taking a suitable convex combination of TLMs of
sub-blocks of h, and then drying the resulting LM.

Conjecture 4. Every TLM of a block is a CLM.

Appendix B. Some results about the maximum clique problem

In this appendix we give the proofs of two results about the maximum clique problem, which were stated in Section 7.
We keep here the notation of that section.

Property B.1. If in the optimal weighting problem (L) of Section 5 the collection F does not contain blocks with more
than four variables, then L∗¿ n=4.

Proof. Since all the quadratic terms in (19) are negative and all the blocks in F have at most four variables, the only
basic TLMs of the templates that can be used in (L) are the following:

(1 − x1 − x2);

(1 − x1 − x2 − x3);

(1 − x1 − x2 − x3 − x4):

Hence the optimal value L∗ of (L) is given by

L∗ =min
∑
B∈F

wB +
∑
i∈V

ui

s:t: ui¿ 1 −
∑

B:B∈F ; i∈B
wB; i∈V;

∑
B:ij∈E(B)

wB = 1; ij∈E′;

u;w¿ 0;

(22)

where, for the K2 blocks, wB is the product of the weight of the block and the parameter . The equality constraints of
(22), together with the non-negativity of w, imply the inequalities∑

B : B∈F ; i∈B
wB¿ 1; i∈V: (23)

It follows that

L∗ =min
∑
B∈F

wB

s:t:
∑

B:ij∈E(B)
wB = 1; ij∈E′;

w¿ 0:

(24)

Hence L∗ is bounded below by the optimal value L′ of the relaxation of (24) obtained when the equality constraints
are replaced by inequalities (23). Adding up all such inequalities one gets∑

B∈F
|B|wB¿ n

and 7nally, since all blocks have cardinality at most 4, one obtains L∗¿ L′¿ n=4.
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The above bound is attained when G′ is partitionable into vertex-disjoint K4’s, all belonging to F ; for this to happen,
G must admit a coloration whose colors have cardinality 4. Similarly, one can show that when only blocks with at most
three variables are used then L∗¿ n=3, and that RD = n=2.

Property B.2. In any graph G = (V; E) with n vertices, maximum vertex-degree d and largest clique size k, one has(
k

2

)
= max

x∈Bn


∑
ij∈E

xixj − d
∑
ij �∈E

xixj


 : (25)

Proof. Let f be the objective function in (25), x an arbitrary point in Bn, S the subset of V whose characteristic vector
is x, and K a largest subset of S inducing a complete subgraph. For any two A; B ⊆ V , let e(A; B) be the number of
edges in G having one endpoint in A and the other one in B. Similarly for e′(A; B) w.r.t. the complement G′. If K = S,
then one has f(x) = e(K; K)6 ( k2 ) the bound being attained when K is a largest clique in G.

On the other hand, when K ⊂ S, one has

f(x) = e(K; K) + e(S − K; K) − de′(S − K; K) + e(S − K; S − K) − de′(S − K; S − K): (26)

But

e(K; K)6

(
k

2

)
;

e′(S − K; K)¿ |S − K |, since each vertex of S − K is non-adjacent to some vertex of K ;
e(S−K; K)+ e(S−K; S−K)6

∑
i∈S−K (d(i)− 1)¡d|S−K |, where d(i) is the degree of vertex i in G, for the same

reason.
From the above inequalities and (26), one gets f(x)¡ ( k2 ). Thus (25) is proved.
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