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Abstract

We study operator-valued measures m :Σ → L(X,Y ), where L(X,Y ) stands for the space of all continuous linear operators
between real Banach spaces X and Y and Σ is a σ -algebra of sets. We extend the Bartle–Dunford–Schwartz theorem and the
Orlicz–Pettis theorem for vector measures to the case of operator-valued measures. We generalize the classical Vitali–Hahn–Saks
theorem to sets of operator-valued measures which are compact in the strong operator topology.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction and preliminaries

In the theory of vector measures the classical theorems: the Bartle–Dunford–Schwartz theorem (about the range
of countably additive vector measures) (see [4]), the Orlicz–Pettis theorem (see [12]), the Vitali–Hahn–Saks theorem
(see [12,20]) are of importance.

The purpose of this paper is to extend these theorems to the case of operator-valued measures m : Σ → L(X,Y ),
where L(X,Y ) stands for the space of all linear continuous operators between Banach spaces X and Y and Σ

is a σ -algebra of sets. We obtain these results as consequences of the properties of the corresponding operators
Tm :L∞(X) → Y .

We denote by σ(L,K) and τ(L,K) the weak topology and the Mackey topology on L with respect to a dual
pair 〈L,K〉. Let (X,‖ · ‖X) and (Y,‖ · ‖Y ) be real Banach spaces and let BX and SX stand for the closed unit ball and
the unit sphere in X, respectively. Let X∗ and Y ∗ stand for Banach duals of X and Y , respectively. Denote by L(X,Y )

the space of all continuous linear operators between Banach spaces X and Y . Recall that the uniform operator topology
(briefly UOT) is the topology on L(X,Y ) defined by the usual norm ‖ · ‖X→Y . The weak∗ operator topology (briefly
W∗OT) is the topology on L(X,Y ) defined by the family of seminorms {py∗: y∗ ∈ Y ∗}, where py∗(U) := ‖y∗ ◦U‖X∗
for U ∈ L(X,Y ). The weak operator topology (briefly WOT) on L(X,Y ) is the topology defined by the family of
seminorms {px,y∗ : x ∈ X,y∗ ∈ Y ∗}, where px,y∗(U) = |y∗(U(x))| for U ∈ L(X,Y ) (see [14]).

The following general result will be needed (see [21, Theorem 13.10.13]).
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Proposition 1.1. The space L(X,Y ) is WOT-sequentially complete.

For terminology concerning vector lattices and function spaces we refer to [1,2,15]. Let N and R stand for the
sets of all natural and real numbers. Throughout the paper we assume that (Ω,Σ,μ) is a complete σ -finite measure
space. By L0(X) we denote the set of μ-equivalence classes of all strongly Σ -measurable functions f : Ω → X. For
f ∈ L0(X) let us set f̃ (ω) = ‖f (ω)‖X for ω ∈ Ω . Let

L∞(X) =
{
f ∈ L0(X): ‖f ‖∞ = ess sup

ω∈Ω

f̃ (ω) < ∞
}
.

In case X = R we simply denote L∞. Recall that the algebraic tensor product L∞ ⊗ X is the subspace of L∞(X)

spanned by the functions of the form u ⊗ x, (u ⊗ x)(ω) = u(ω)x, where u ∈ L∞, x ∈ X.

A linear functional F on L∞(X) is said to be order continuous whenever f̃α
(o)−→ 0 in L∞ implies F(fα) → 0.

The set consisting of all order continuous linear functionals on L∞(X) will be denoted by L∞(X)∼n and called the
order continuous dual of L∞(X).

Let L0(X∗,X) be the set of weak∗-equivalence classes of all weak∗-measurable functions g : Ω → X∗. Following
[7,8] one can define the so-called abstract norm ϑ : L0(X∗,X) → L0 by ϑ(g) := sup{|gx |: x ∈ BX}, where gx(ω) =
g(ω)(x) for ω ∈ Ω and x ∈ X. Then for f ∈ L0(X) and g ∈ L0(X∗,X) the function 〈f,g〉 : Ω → R defined by
〈f,g〉(ω) := 〈f (ω), g(ω)〉 is measurable and |〈f,g〉| � f̃ ϑ(g). Moreover, ϑ(g) = g̃ for g ∈ L0(X∗). Let

L1(X∗,X) := {
g ∈ L0(X∗,X

)
: ϑ(g) ∈ L1}.

Due to Bukhvalov (see [7, Theorem 4.1]) L∞(X)∼n can be identified with L1(X∗,X) throughout the mapping:
L1(X∗,X) � g → Fg ∈ L∞(X)∼n , where

Fg(f ) =
∫
Ω

〈
f (ω), g(ω)

〉
dμ for all f ∈ L∞(X).

Then L1(X∗) ⊂ L1(X∗,X). Moreover, the identity L1(X∗,X) = L1(X∗) holds whenever X∗ has the Radon–
Nikodym property (see [8, Theorem 3.5], [12, Chapter 3.1]).

Now we recall basic terminology concerning operator-valued measures (see [3,5,6,13,16,17]). A finitely additive
mapping m : Σ → L(X,Y ) is called an operator-valued measure. We define the semivariation m̃(A) of m on A ∈ Σ

by m̃(A) = sup‖Σm(Ai)(xi)‖Y , where the supremum is taken over all finite Σ -partitions (Ai) of A and xi ∈ BX for
each i. For y∗ ∈ Y ∗, let my∗ : Σ → X∗ be a set function defined by my∗(A)(x) := 〈m(A)(x), y∗〉 for x ∈ X. Then my∗
is a finite additive measure and m̃y∗(A) = |my∗ |(A), where |my∗ |(A) stands for the variation of my∗ on A ∈ Σ . It is
known that m̃(A) < ∞ if and only if |my∗ |(A) < ∞ for every y∗ ∈ Y ∗. Moreover, m̃(A) = sup{|my∗ |(A): y∗ ∈ BY ∗}
for A ∈ Σ (see [3, Theorem 5]).

By fasv(Σ,L(X,Y )) we denote the set of all finitely additive measures m : Σ → L(X,Y ) with a finite semi-
variation, i.e., m̃(Ω) < ∞. Recall that m ∈ fasv(Σ,L(X,Y )) is said to be variationally semi-regular if m̃(An) → 0
whenever An ↓ ∅, (An) ⊂ Σ . m ∈ fasv(Σ,L(X,Y )) is said to be countably additive in UOT if ‖m(An)‖X→Y → 0
whenever An ↓ ∅, (An) ⊂ Σ . m ∈ fasv(Σ,L(X,Y )) is said to be countably additive in W∗OT if for every
y∗ ∈ Y ∗,‖my∗(An)‖X∗ → 0 whenever An ↓ ∅, (An) ⊂ Σ (see [3, p. 921], [17, p. 382]).

From now on by fasvμ(Σ,L(X,Y )) we will denote the set of all m ∈ fasv(Σ,L(X,Y )) which vanish on μ-null
sets, i.e., m(A) = 0 whenever μ(A) = 0. It is well known that if m ∈ fasvμ(Σ,L(X,Y )), then Tm(f ) = ∫

Ω
f (ω)dm

defines a continuous linear operator from L∞(X) into Y , and any continuous linear operator T : L∞(X) → Y is given
this way. Moreover, ‖Tm‖L∞(X)→Y = m̃(Ω) (see [13, §9]).

2. Countably additive operator-valued measures

The Mackey topology τ(L∞,L1) on L∞ is of importance in the theory of vector measures (see [20]). It is well
known that τ(L∞,L1) is the finest locally convex-solid topology on L∞ with the Lebesgue property. Schaefer and
Xiao-Dong Zhang [20] provide a characterization of the countable additivity of vector measures m : Σ → Y in terms
of continuity of the corresponding linear operators Tm from L∞ (provided with τ(L∞,L1)) into a Banach space Y .

In this section we characterize countable additivity of measures m : Σ → L(X,Y ) in W∗OT in terms of continuity
of the corresponding linear operators Tm : L∞(X) → Y .
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Theorem 2.1. For every m ∈ fasvμ(Σ,L(X,Y )) the following statements are equivalent:

(i) Tm is (τ (L∞(X),L∞(X)∼n ),‖ · ‖Y )-continuous.
(ii) Tm is (σ (L∞(X),L∞(X)∼n ), σ (Y,Y ∗))-continuous.

(iii) m is countably additive in W∗OT.

Proof. (i) ⇔ (ii) See [22, Corollaries 11-1-3, 11-2-6].
(ii) ⇒ (iii) Assume that Tm is (σ (L∞(X),L∞(X)∼n ), σ (Y,Y ∗))-continuous. It follows that y∗ ◦ Tm ∈ L∞(X)∼n for

every y∗ ∈ Y ∗. To show that m is countably additive in W∗OT, assume that An ↓ ∅, (An) ⊂ Σ and y∗ ∈ Y ∗. We show
that ‖my∗(An)‖X∗ → 0. Indeed, for every n ∈ N there exists xn ∈ SX , such that∥∥my∗(An)

∥∥
X∗ = ∥∥y∗(m(An)

)∥∥
X∗ �

∣∣〈m(An)(xn), y
∗〉∣∣ + 1

n
.

Let fn = 1An ⊗ xn for n ∈ N. Then f̃n = 1An and 1An

(o)−→ 0 in L∞. Hence (y∗ ◦ Tm)(fn) → 0, because y∗ ◦ Tm ∈
L∞(X)∼n . But for n ∈ N we have(

y∗ ◦ Tm

)
(fn) = 〈

Tm(1An ⊗ xn), y
∗〉 = 〈

m(An)(xn), y
∗〉.

It follows that ‖my∗(An)‖X∗ → 0, as desired.
(iii) ⇒ (ii) Assume that m is countably additive in W∗OT, i.e., for every y∗ ∈ Y ∗, the measure my∗ :Σ → X∗

is countably additive and |my∗ |(Ω) = m̃y∗(Ω) < ∞, my∗(A) = 0 if μ(A) = 0. For every k ∈ N let Σk =
{A ∩ Ωk: A ∈ Σ}, where (Ωk) is a pairwise disjoint sequence in Σ such that Ω = ⋃∞

k=1 Ωk and μ(Ωk) < ∞ for
k ∈ N. Let y∗ ∈ Y ∗ be given. Then by the Radon–Nikodym type theorem (see [10, Theorem 1.5.3]), for every k ∈ N

there exists a weak∗-measurable function gk,y∗ : Ωk → X∗ which satisfies the following conditions:

1. the function Ωk � ω → ‖gk,y∗(ω)‖X∗ ∈ R is Σk-measurable and integrable,
2. for every x ∈ X and every A ∈ Σ ,

my∗(A ∩ Ωk)(x) =
∫

A∩Ωk

〈
x,gk,y∗(ω)

〉
dμ,

3. for every A ∈ Σ

|my∗ |(A ∩ Ωk) =
∫

A∩Ωk

∥∥gk,y∗(ω)
∥∥

X∗ dμ.

Define a function gy∗ : Ω → X∗ by setting gy∗(ω) = gk,y∗(ω) for ω ∈ Ωk , i.e., 1Ωk
gy∗ = gk,y∗ for all k ∈ N. Then

gy∗ is weak∗-measurable and since the measure |my∗ | : Σ → [0,∞) is countably additive, we have

|my∗ |(Ω) = |my∗ |
( ∞⋃

k=1

Ωk

)
=

∞∑
k=1

|my∗ |(Ωk) =
∞∑

k=1

∫
Ωk

∥∥gk,y∗(ω)
∥∥

X∗ dμ =
∫
Ω

∥∥gy∗(ω)
∥∥

X∗ dμ.

It follows that the function Ω � ω → ‖gy∗(ω)‖X∗ ∈ R is integrable; hence the w∗-equivalence class of gy∗ belongs to
L1(X∗,X). Note that for every x ∈ X and A ∈ Σ we have:

my∗(A)(x) =
∞∑

k=1

my∗(A ∩ Ωk)(x) =
∞∑

k=1

∫
A∩Ωk

〈
x,gk,y∗(ω)

〉
dμ =

∫
A

〈
x,gy∗(ω)

〉
dμ

=
∫
Ω

〈
(1A ⊗ x)(ω), gy∗(ω)

〉
dμ.

Hence for every s = ∑n
i=1(1Ai

⊗ xi) ∈ S(Σ,X) (= the set of X-valued Σ -simple functions) we get∫
s(ω)dmy∗ =

∫ 〈
s(ω), gy∗(ω)

〉
dμ.
Ω Ω
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Since S(Σ,X) is dense in (L∞(X),‖ · ‖∞), one can easily show that for f ∈ L∞(X)∫
Ω

f (ω)dmy∗ =
∫
Ω

〈
f (ω), gy∗(ω)

〉
dμ

and moreover,

y∗
(∫

Ω

f (ω)dm

)
=

∫
Ω

f (ω)dmy∗ .

Now let fα → 0 in L∞(X) for σ(L∞(X),L1(X∗,X)). Then

y∗(Tm(fα)
) = y∗

(∫
Ω

fα(ω)dm

)
=

∫
Ω

fα(ω)dmy∗ =
∫
Ω

〈
fα(ω), gy∗(ω)

〉
dμ −→

α
0.

This means that Tm is (σ (L∞(X),L1(X∗,X)), σ (Y,Y ∗))-continuous, as desired. �
Now we are in position to generalize the classical Bartle–Dunford–Schwartz theorem concerning the range of

countably additive vector measures (see [4]) to the case of operator-valued measures.

Theorem 2.2. Let m ∈ fasvμ(Σ,L(X,Y )) be countably additive in W∗OT. Then the range {m(A): A ∈ Σ} of m is
a relatively WOT-sequentially compact subset of L(X,Y ).

Proof. It is well known that {1A: A ∈ Σ} is a relatively σ(L∞,L1)-sequentially compact subset of L∞ (see [9,
Corollary 5.2]).

Let (m(An)) be a sequence in L(X,Y ). Then there exists a σ(L∞,L1)-Cauchy subsequence (1Akn
) of (1An). Now,

let g ∈ L1(X∗,X) and x ∈ X. Then |gx | � ‖x‖Xϑ(g), so gx ∈ L1. Then for m,n ∈ N we have∣∣Fg(1Akn
⊗ x) − Fg(1Akm

⊗ x)
∣∣ =

∣∣∣∣
∫
Ω

〈
1Akn

(ω)x − 1Akm
(ω)x, g(ω)

〉
dμ

∣∣∣∣
=

∣∣∣∣
∫
Ω

(
1Akn

(ω) − 1Akm
(ω)

)
gx(ω)dμ

∣∣∣∣
and this means that (1Akn

⊗ x) is a σ(L∞(X),L1(X∗,X))-Cauchy sequence. In view of Theorem 2.1 the opera-
tor Tm is (σ (L∞(X),L1(X∗,X)), σ (Y,Y ∗))-continuous, so (m(Akn)(x)) (= (Tm(1Akn

⊗ x))) is a σ(Y,Y ∗)-Cauchy
sequence in Y . This means that (m(Akn)) is a WOT-Cauchy sequence in L(X,Y ), and by Proposition 1.1 there exists
U ∈ L(X,Y ) such that m(Akn) → U for WOT. �
3. An Orlicz–Pettis type theorem for operator-valued measures

In this section we derive an Orlicz–Pettis type theorem for operator-valued measures.

Definition 3.1. A linear operator T : L∞(X) → Y is said to be smooth (respectively σ -smooth) if f̃α
(o)−→ 0 in L∞

(respectively f̃n
(o)−→ 0 in L∞) implies ‖T (fα)‖Y → 0 (respectively ‖T (fn)‖Y → 0).

Proposition 3.1. Let m ∈ fasvμ(Σ,L(X,Y )) and assume that Tm : L∞(X) → Y is σ -smooth. Then m is variationally
semi-regular.

Proof. Indeed, let An ↓ ∅, (An) ⊂ Σ . Then for every n there exist a finite Σ -partition (An,i)
kn

i=1 of An and xn,i ∈ BX ,
1 � i � kn ∈ N such that

m̃(An) �
∥∥∥∥∥

kn∑
m(An,i)(xn,i)

∥∥∥∥∥ + 1

n
.

i=1 Y
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Let sn = ∑kn

i=1(1An,i
⊗ xn,i) for n ∈ N. Then s̃n � 1An � 1Ω for n ∈ N, so s̃n → 0 μ-a.e., i.e., s̃n

(o)−→ 0 in L∞.
Hence

∥∥Tm(sn)
∥∥

Y
=

∥∥∥∥∥
kn∑

i=1

m(An,i)(xn,i)

∥∥∥∥∥
Y

−→
n

0,

so m̃(An) → 0, as desired. �
Now, we recall briefly some concepts and results concerning locally solid topologies on vector-valued function

spaces (see [18] for more details). A subset H of L∞(X) is said to be solid whenever f̃1 � f̃2 and f1 ∈ L∞(X) and
f2 ∈ H imply f1 ∈ H . A linear topology τ on L∞(X) is said to be locally solid if it has a local base at zero consisting

of solid sets. A locally solid topology τ on L∞(X) is said to be a Lebesgue topology whenever f̃α
(o)−→ 0 in L∞

implies fα → 0 for τ .
Assume that ξ is a locally convex-solid topology on L∞ that is generated by a family {pα: α ∈ A} of Riesz

seminorms on L∞. By putting pα(f ) = pα(f̃ ) for f ∈ L∞(X) we obtain a family {pα: α ∈ A} of seminorms on
L∞(X) that generates a locally convex-solid topology ξ on L∞(X) (called the topology associated with ξ ) (see [18]
for more details).

The following theorem will be of importance (see [19, Theorem 4.1]).

Theorem 3.2. Assume that X∗ has the Radon–Nikodym property. Then the Mackey topology τ(L∞(X),L∞(X)∼n ) is
a locally convex-solid topology with the Lebesgue property. Moreover, we have:

τ
(
L∞(X),L∞(X)∼n

) = τ
(
L∞(X),L1(X∗)

) = τ
(
L∞,L1

)
.

Remark. (i) One can show that if X∗ has the Radon–Nikodym property then τ(L∞(X),L∞(X)∼n ) coincides with the
natural mixed topology γL∞(X) on L∞ (see [19, Theorem 4.3] and [11,18] for more details).

(ii) In [11, Corollary 3.14] it is shown that γL∞(X) = τ(L∞(X),L1(X∗)) whenever μ is a positive Radon measure
on a compact topological space and X is a Banach space whose dual is separable (hence X∗ has the Radon–Nikodym
property).

Now we are ready to state an Orlicz–Pettis type theorem for operator-valued measures.

Theorem 3.3. Assume that X∗ has the Radon–Nikodym property. Then for m ∈ fasvμ(Σ,L(X,Y )) the following
statements are equivalent:

(i) Tm is smooth.
(ii) Tm is σ -smooth.

(iii) m is variationally semi-regular.
(iv) m is countably additive in UOT.
(v) m is countably additive in W∗OT.

Proof. (i) ⇒ (ii) It is obvious.
(ii) ⇒ (iii) See Proposition 3.1.
(iii) ⇒ (iv) Clearly, because ‖m(A)‖X→Y � m̃(A) for A ∈ Σ .
(iv) ⇒ (v) It is obvious because W∗OT ⊂ UOT.
(v) ⇒ (i) Assume that m is countably additive in W∗OT. Then by Theorem 2.1 Tm is (τ (L∞(X),L∞(X)∼n ),

‖ · ‖Y )-continuous. Hence, since τ(L∞(X),L∞(X)∼n ) is a Lebesgue topology (see Theorem 3.2), we obtain that Tm

is smooth. �
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4. Vitali–Hahn–Saks type theorems for operator-valued measures

Schaefer and Xiao-Dong Zhang [20] has obtained a generalization of the classical Vitali–Hahn–Saks theorem to
compact sets (in the strong operator topology) of countably additive vector measures. In this section we extend this
result to the operator-valued case.

Let Lτ (L
∞(X),Y ) stand for the space of all (τ (L∞(X),L∞(X)∼n ), ‖ · ‖Y )-continuous linear operators from

L∞(X) to Y . The strong operator topology (briefly SOT) is a locally convex topology on Lτ (L
∞(X),Y ) defined

by the family of seminorms {pf : f ∈ L∞(X)}, where pf (T ) = ‖T (f )‖Y for all T ∈ Lτ (L
∞(X),Y ). The weak op-

erator topology (briefly WOT) is a locally convex topology on Lτ (L
∞(X),Y ) defined by the family of seminorms

{pf,y∗ : f ∈ L∞(X), y∗ ∈ Y ∗}, where pf,y∗(T ) = |〈T (f ), y∗〉| for all T ∈ Lτ (L
∞(X),Y ).

Note that for Y = R, both SOT and WOT coincide on L∞(X)∼n with σ(L∞(X)∼n ,L∞(X)).
In view of [19, Corollary 5.3] we have:

Theorem 4.1. Assume that X∗ has the Radon–Nikodym property. Then the space Lτ (L
∞(X),Y ) is WOT-sequentially

complete.

Moreover, by [19, Theorem 5.5] we have:

Theorem 4.2. Assume that X∗ has the Radon–Nikodym property and let K be a SOT-compact subset of Lτ (L
∞(X),Y ).

Then the set K is (τ (L∞(X),L1(X∗)), ‖ · ‖Y )-equicontinuous.

As an application of [19, Theorem 5.6] and Theorem 3.3 we have a Vitali–Hahn–Saks type theorem for operator-
valued measures.

Theorem 4.3. Assume that X∗ has the Radon–Nikodym property and let mn ∈ fasvμ(Σ,L(X,Y )) be countably addi-
tive in UOT for n ∈ N. Assume that for every f ∈ L∞(X),

T (f ) := limTmn(f ) = lim
∫
Ω

f (ω)dmn exists in
(
Y,‖ · ‖Y

)
.

Then the following statements hold:

(i) T ∈ Lτ (L
∞(X),Y ) and the measure m : Σ → L(X,Y ), defined by

m(A)(x) = T (1A ⊗ x) for A ∈ Σ and x ∈ X,

belongs to fasvμ(Σ,L(X,Y )) and is also countably additive in UOT.

(ii) {Tmn : n ∈ N} is a (τ (L∞(X),L1(X∗)),‖ · ‖Y )-equicontinuous subset of Lτ (L
∞(X),Y ).

Now we are ready, to state a generalization of the Vitali–Hahn–Saks theorem to SOT-compact sets of Lτ (L
∞(X),Y )

(see [20, Theorem 8]).

Theorem 4.4. Assume that X∗ has the Radon–Nikodym property. Let M be a subset of fasvμ(Σ,L(X,Y )) and
assume that {Tm: m ∈ M} is a SOT-compact subset of Lτ (L

∞(X),Y ). Then the set M is uniformly variation-
ally semi-regular, i.e., supm∈M m̃(An) −→

n
0 as An ↓ ∅. Hence M is uniformly countably additive in UOT, i.e.,

supm∈M ‖m(An)‖X→Y −→
n

0 as An ↓ ∅.

Proof. Let C stand for the family of all absolutely convex, solid, σ(L1,L∞)-compact subsets of L1. In view of
Theorem 3.2 the Mackey topology τ(L∞(X),L1(X∗)) is generated by the family {pZ: Z ∈ C} of seminorms on
L∞(X), where pZ(f ) = pZ(f̃ ) = sup{∫

Ω
f̃ (ω)|v(ω)|dμ: v ∈ Z}. Let ε > 0 be given. Then by Theorem 4.2 there

exist Zi ∈ C for 1 � i � i0 for some i0 ∈ N and δ > 0 such that
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sup
m∈M

∥∥Tm(f )
∥∥

Y
� ε

2
whenever max

1�i�i0
pZi

(f ) = max
1�i�i0

pZi
(f̃ ) � δ. (1)

Let An ↓ ∅, (An) ⊂ Σ. Then 1An(ω) → 0 μ-a.e. and 1An � 1Ω for n ∈ N. Since τ(L∞,L1) is a Lebesgue topology,
we get pZ(1An) → 0 for every Z ∈ C. Hence there exists n0 ∈ N such that max1�i�i0 pZi

(1An) � δ for n � n0.

Now let n ∈ N be fixed. Then for every m ∈ M there exist a finite Σ -partition (Am
n,j )

km,n

j=1 of An and xm
n,j ∈ BX for

1 � j � km,n such that

m̃(An) �
∥∥∥∥∥

km,n∑
j=1

m
(
Am

n,j

)(
xm
n,j

)∥∥∥∥∥
Y

+ ε

2
. (2)

Let sm
n = ∑km,n

j=1(1Am
n,j

⊗ xm
n,j ) for m ∈ M. Then s̃m

n � 1An for every m ∈ M and max1�i�n0 pZi
(sm

n ) �
max1�i�i0 pZi

(1An). Hence by (1) and (2) for n � n0 we get:

sup
m∈M

m̃(An) � sup
m∈M

∥∥Tm

(
sm
n

)∥∥
Y

+ ε

2
� ε

2
+ ε

2
= ε.

This means that supm∈M m̃(An) −→
n

0, as desired.
It follows that supm∈M ‖m(An)‖X→Y −→

n
0, because ‖m(An)‖X→Y � m̃(An) for n ∈ N. �
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