Operator-valued measures and linear operators

Marian Nowak
Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, ul. Szafrana 4A, 65-516 Zielona Góra, Poland
Received 24 January 2007
Available online 12 April 2007
Submitted by J. Diestel

Abstract

We study operator-valued measures $m: \Sigma \rightarrow \mathcal{L}(X, Y)$, where $\mathcal{L}(X, Y)$ stands for the space of all continuous linear operators between real Banach spaces X and Y and Σ is a σ-algebra of sets. We extend the Bartle-Dunford-Schwartz theorem and the Orlicz-Pettis theorem for vector measures to the case of operator-valued measures. We generalize the classical Vitali-Hahn-Saks theorem to sets of operator-valued measures which are compact in the strong operator topology. © 2007 Elsevier Inc. All rights reserved.

Keywords: Vector measures; Operator-valued measures; Mackey topologies; Radon-Nikodym property; Strong operator topology; Weak operator topology; Weak* operator topology; Linear operators

1. Introduction and preliminaries

In the theory of vector measures the classical theorems: the Bartle-Dunford-Schwartz theorem (about the range of countably additive vector measures) (see [4]), the Orlicz-Pettis theorem (see [12]), the Vitali-Hahn-Saks theorem (see [12,20]) are of importance.

The purpose of this paper is to extend these theorems to the case of operator-valued measures $m: \Sigma \rightarrow \mathcal{L}(X, Y)$, where $\mathcal{L}(X, Y)$ stands for the space of all linear continuous operators between Banach spaces X and Y and Σ is a σ-algebra of sets. We obtain these results as consequences of the properties of the corresponding operators $T_{m}: L^{\infty}(X) \rightarrow Y$.

We denote by $\sigma(L, K)$ and $\tau(L, K)$ the weak topology and the Mackey topology on L with respect to a dual pair $\langle L, K\rangle$. Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be real Banach spaces and let B_{X} and S_{X} stand for the closed unit ball and the unit sphere in X, respectively. Let X^{*} and Y^{*} stand for Banach duals of X and Y, respectively. Denote by $\mathcal{L}(X, Y)$ the space of all continuous linear operators between Banach spaces X and Y. Recall that the uniform operator topology (briefly UOT) is the topology on $\mathcal{L}(X, Y)$ defined by the usual norm $\|\cdot\|_{X \rightarrow Y}$. The weak* operator topology (briefly $\left.\mathrm{W}^{*} \mathrm{OT}\right)$ is the topology on $\mathcal{L}(X, Y)$ defined by the family of seminorms $\left\{p_{y *}: y^{*} \in Y^{*}\right\}$, where $p_{y *}(U):=\left\|y^{*} \circ U\right\|_{X^{*}}$ for $U \in \mathcal{L}(X, Y)$. The weak operator topology (briefly WOT) on $\mathcal{L}(X, Y)$ is the topology defined by the family of seminorms $\left\{p_{x, y^{*}}: x \in X, y^{*} \in Y^{*}\right\}$, where $p_{x, y^{*}}(U)=\left|y^{*}(U(x))\right|$ for $U \in \mathcal{L}(X, Y)$ (see [14]).

The following general result will be needed (see [21, Theorem 13.10.13]).

[^0]
Proposition 1.1. The space $\mathcal{L}(X, Y)$ is WOT-sequentially complete.

For terminology concerning vector lattices and function spaces we refer to [1,2,15]. Let \mathbb{N} and \mathbb{R} stand for the sets of all natural and real numbers. Throughout the paper we assume that (Ω, Σ, μ) is a complete σ-finite measure space. By $L^{0}(X)$ we denote the set of μ-equivalence classes of all strongly Σ-measurable functions $f: \Omega \rightarrow X$. For $f \in L^{0}(X)$ let us set $\tilde{f}(\omega)=\|f(\omega)\|_{X}$ for $\omega \in \Omega$. Let

$$
L^{\infty}(X)=\left\{f \in L^{0}(X):\|f\|_{\infty}=\underset{\omega \in \Omega}{\operatorname{ess} \sup } \tilde{f}(\omega)<\infty\right\}
$$

In case $X=\mathbb{R}$ we simply denote L^{∞}. Recall that the algebraic tensor product $L^{\infty} \otimes X$ is the subspace of $L^{\infty}(X)$ spanned by the functions of the form $u \otimes x,(u \otimes x)(\omega)=u(\omega) x$, where $u \in L^{\infty}, x \in X$.

A linear functional F on $L^{\infty}(X)$ is said to be order continuous whenever $\tilde{f}_{\alpha} \xrightarrow{(0)} 0$ in L^{∞} implies $F\left(f_{\alpha}\right) \rightarrow 0$. The set consisting of all order continuous linear functionals on $L^{\infty}(X)$ will be denoted by $L^{\infty}(X)_{n}^{\sim}$ and called the order continuous dual of $L^{\infty}(X)$.

Let $L^{0}\left(X^{*}, X\right)$ be the set of weak*-equivalence classes of all weak*-measurable functions $g: \Omega \rightarrow X^{*}$. Following $[7,8]$ one can define the so-called abstract norm $\vartheta: L^{0}\left(X^{*}, X\right) \rightarrow L^{0}$ by $\vartheta(g):=\sup \left\{\left|g_{x}\right|: x \in B_{X}\right\}$, where $g_{x}(\omega)=$ $g(\omega)(x)$ for $\omega \in \Omega$ and $x \in X$. Then for $f \in L^{0}(X)$ and $g \in L^{0}\left(X^{*}, X\right)$ the function $\langle f, g\rangle: \Omega \rightarrow \mathbb{R}$ defined by $\langle f, g\rangle(\omega):=\langle f(\omega), g(\omega)\rangle$ is measurable and $|\langle f, g\rangle| \leqslant \tilde{f} \vartheta(g)$. Moreover, $\vartheta(g)=\tilde{g}$ for $g \in L^{0}\left(X^{*}\right)$. Let

$$
L^{1}\left(X^{*}, X\right):=\left\{g \in L^{0}\left(X^{*}, X\right): \vartheta(g) \in L^{1}\right\} .
$$

Due to Bukhvalov (see [7, Theorem 4.1]) $L^{\infty}(X)_{n}^{\sim}$ can be identified with $L^{1}\left(X^{*}, X\right)$ throughout the mapping: $L^{1}\left(X^{*}, X\right) \ni g \mapsto F_{g} \in L^{\infty}(X)_{n}^{\sim}$, where

$$
F_{g}(f)=\int_{\Omega}\langle f(\omega), g(\omega)\rangle d \mu \quad \text { for all } f \in L^{\infty}(X)
$$

Then $L^{1}\left(X^{*}\right) \subset L^{1}\left(X^{*}, X\right)$. Moreover, the identity $L^{1}\left(X^{*}, X\right)=L^{1}\left(X^{*}\right)$ holds whenever X^{*} has the RadonNikodym property (see [8, Theorem 3.5], [12, Chapter 3.1]).

Now we recall basic terminology concerning operator-valued measures (see [3,5,6,13,16,17]). A finitely additive mapping $m: \Sigma \rightarrow \mathcal{L}(X, Y)$ is called an operator-valued measure. We define the semivariation $\tilde{m}(A)$ of m on $A \in \Sigma$ by $\tilde{m}(A)=\sup \left\|\Sigma m\left(A_{i}\right)\left(x_{i}\right)\right\|_{Y}$, where the supremum is taken over all finite Σ-partitions $\left(A_{i}\right)$ of A and $x_{i} \in B_{X}$ for each i. For $y^{*} \in Y^{*}$, let $m_{y^{*}}: \Sigma \rightarrow X^{*}$ be a set function defined by $m_{y^{*}}(A)(x):=\left\langle m(A)(x), y^{*}\right\rangle$ for $x \in X$. Then $m_{y^{*}}$ is a finite additive measure and $\tilde{m}_{y^{*}}(A)=\left|m_{y^{*}}\right|(A)$, where $\left|m_{y^{*}}\right|(A)$ stands for the variation of $m_{y^{*}}$ on $A \in \Sigma$. It is known that $\tilde{m}(A)<\infty$ if and only if $\left|m_{y^{*}}\right|(A)<\infty$ for every $y^{*} \in Y^{*}$. Moreover, $\tilde{m}(A)=\sup \left\{\left|m_{y^{*}}\right|(A): y^{*} \in B_{Y^{*}}\right\}$ for $A \in \Sigma$ (see [3, Theorem 5]).
$\operatorname{By} \operatorname{fasv}(\Sigma, \mathcal{L}(X, Y))$ we denote the set of all finitely additive measures $m: \Sigma \rightarrow \mathcal{L}(X, Y)$ with a finite semivariation, i.e., $\tilde{m}(\Omega)<\infty$. Recall that $m \in \operatorname{fasv}(\Sigma, \mathcal{L}(X, Y))$ is said to be variationally semi-regular if $\tilde{m}\left(A_{n}\right) \rightarrow 0$ whenever $A_{n} \downarrow \emptyset,\left(A_{n}\right) \subset \Sigma . m \in \operatorname{fasv}(\Sigma, \mathcal{L}(X, Y))$ is said to be countably additive in UOT if $\left\|m\left(A_{n}\right)\right\|_{X \rightarrow Y} \rightarrow 0$ whenever $A_{n} \downarrow \emptyset,\left(A_{n}\right) \subset \Sigma . m \in \operatorname{fasv}(\Sigma, \mathcal{L}(X, Y))$ is said to be countably additive in $\mathrm{W}^{*} \mathrm{OT}$ if for every $y^{*} \in Y^{*},\left\|m_{y^{*}}\left(A_{n}\right)\right\|_{X^{*}} \rightarrow 0$ whenever $A_{n} \downarrow \emptyset,\left(A_{n}\right) \subset \Sigma$ (see [3, p. 921], [17, p. 382]).

From now on by $\operatorname{fasv}_{\mu}(\Sigma, \mathcal{L}(X, Y))$ we will denote the set of all $m \in \operatorname{fasv}(\Sigma, \mathcal{L}(X, Y))$ which vanish on μ-null sets, i.e., $m(A)=0$ whenever $\mu(A)=0$. It is well known that if $m \in \operatorname{fasv}_{\mu}(\Sigma, \mathcal{L}(X, Y))$, then $T_{m}(f)=\int_{\Omega} f(\omega) d m$ defines a continuous linear operator from $L^{\infty}(X)$ into Y, and any continuous linear operator $T: L^{\infty}(X) \rightarrow Y$ is given this way. Moreover, $\left\|T_{m}\right\|_{L^{\infty}(X) \rightarrow Y}=\tilde{m}(\Omega)$ (see [13, §9]).

2. Countably additive operator-valued measures

The Mackey topology $\tau\left(L^{\infty}, L^{1}\right)$ on L^{∞} is of importance in the theory of vector measures (see [20]). It is well known that $\tau\left(L^{\infty}, L^{1}\right)$ is the finest locally convex-solid topology on L^{∞} with the Lebesgue property. Schaefer and Xiao-Dong Zhang [20] provide a characterization of the countable additivity of vector measures $m: \Sigma \rightarrow Y$ in terms of continuity of the corresponding linear operators T_{m} from L^{∞} (provided with $\tau\left(L^{\infty}, L^{1}\right)$) into a Banach space Y.

In this section we characterize countable additivity of measures $m: \Sigma \rightarrow \mathcal{L}(X, Y)$ in W*OT in terms of continuity of the corresponding linear operators $T_{m}: L^{\infty}(X) \rightarrow Y$.

Theorem 2.1. For every $m \in \operatorname{fasv}_{\mu}(\Sigma, \mathcal{L}(X, Y))$ the following statements are equivalent:
(i) T_{m} is $\left(\tau\left(L^{\infty}(X), L^{\infty}(X)_{n}^{\sim}\right),\|\cdot\|_{Y}\right)$-continuous.
(ii) T_{m} is $\left(\sigma\left(L^{\infty}(X), L^{\infty}(X)_{n}^{\sim}\right), \sigma\left(Y, Y^{*}\right)\right)$-continuous.
(iii) m is countably additive in $\mathrm{W}^{*} \mathrm{OT}$.

Proof. (i) \Leftrightarrow (ii) See [22, Corollaries 11-1-3, 11-2-6].
(ii) \Rightarrow (iii) Assume that T_{m} is $\left(\sigma\left(L^{\infty}(X), L^{\infty}(X)_{n}^{\sim}\right), \sigma\left(Y, Y^{*}\right)\right)$-continuous. It follows that $y^{*} \circ T_{m} \in L^{\infty}(X)_{n}^{\sim}$ for every $y^{*} \in Y^{*}$. To show that m is countably additive in $\mathrm{W}^{*} \mathrm{OT}$, assume that $A_{n} \downarrow \emptyset,\left(A_{n}\right) \subset \Sigma$ and $y^{*} \in Y^{*}$. We show that $\left\|m_{y^{*}}\left(A_{n}\right)\right\|_{X^{*}} \rightarrow 0$. Indeed, for every $n \in \mathbb{N}$ there exists $x_{n} \in S_{X}$, such that

$$
\left\|m_{y^{*}}\left(A_{n}\right)\right\|_{X^{*}}=\left\|y^{*}\left(m\left(A_{n}\right)\right)\right\|_{X^{*}} \leqslant\left|\left\langle m\left(A_{n}\right)\left(x_{n}\right), y^{*}\right\rangle\right|+\frac{1}{n}
$$

Let $f_{n}=\mathbb{1}_{A_{n}} \otimes x_{n}$ for $n \in \mathbb{N}$. Then $\tilde{f}_{n}=\mathbb{1}_{A_{n}}$ and $\mathbb{1}_{A_{n}} \xrightarrow{(\mathrm{o})} 0$ in L^{∞}. Hence $\left(y^{*} \circ T_{m}\right)\left(f_{n}\right) \rightarrow 0$, because $y^{*} \circ T_{m} \in$ $L^{\infty}(X)_{n}^{\sim}$. But for $n \in \mathbb{N}$ we have

$$
\left(y^{*} \circ T_{m}\right)\left(f_{n}\right)=\left\langle T_{m}\left(\mathbb{1}_{A_{n}} \otimes x_{n}\right), y^{*}\right\rangle=\left\langle m\left(A_{n}\right)\left(x_{n}\right), y^{*}\right\rangle .
$$

It follows that $\left\|m_{y^{*}}\left(A_{n}\right)\right\|_{X^{*}} \rightarrow 0$, as desired.
(iii) \Rightarrow (ii) Assume that m is countably additive in $\mathrm{W}^{*} \mathrm{OT}$, i.e., for every $y^{*} \in Y^{*}$, the measure $m_{y^{*}}: \Sigma \rightarrow X^{*}$ is countably additive and $\left|m_{y^{*}}\right|(\Omega)=\tilde{m}_{y^{*}}(\Omega)<\infty, m_{y^{*}}(A)=0$ if $\mu(A)=0$. For every $k \in \mathbb{N}$ let $\Sigma_{k}=$ $\left\{A \cap \Omega_{k}: A \in \Sigma\right\}$, where $\left(\Omega_{k}\right)$ is a pairwise disjoint sequence in Σ such that $\Omega=\bigcup_{k=1}^{\infty} \Omega_{k}$ and $\mu\left(\Omega_{k}\right)<\infty$ for $k \in \mathbb{N}$. Let $y^{*} \in Y^{*}$ be given. Then by the Radon-Nikodym type theorem (see [10, Theorem 1.5.3]), for every $k \in \mathbb{N}$ there exists a weak*-measurable function $g_{k, y^{*}}: \Omega_{k} \rightarrow X^{*}$ which satisfies the following conditions:

1. the function $\Omega_{k} \ni \omega \mapsto\left\|g_{k, y^{*}}(\omega)\right\|_{X^{*}} \in \mathbb{R}$ is Σ_{k}-measurable and integrable,
2. for every $x \in X$ and every $A \in \Sigma$,

$$
m_{y^{*}}\left(A \cap \Omega_{k}\right)(x)=\int_{A \cap \Omega_{k}}\left\langle x, g_{k, y^{*}}(\omega)\right\rangle d \mu
$$

3. for every $A \in \Sigma$

$$
\left|m_{y^{*}}\right|\left(A \cap \Omega_{k}\right)=\int_{A \cap \Omega_{k}}\left\|g_{k, y^{*}}(\omega)\right\|_{X^{*}} d \mu
$$

Define a function $g_{y^{*}}: \Omega \rightarrow X^{*}$ by setting $g_{y^{*}}(\omega)=g_{k, y^{*}}(\omega)$ for $\omega \in \Omega_{k}$, i.e., $\mathbb{1}_{\Omega_{k}} g_{y^{*}}=g_{k, y^{*}}$ for all $k \in \mathbb{N}$. Then $g_{y^{*}}$ is weak*-measurable and since the measure $\left|m_{y^{*}}\right|: \Sigma \rightarrow[0, \infty)$ is countably additive, we have

$$
\left|m_{y^{*}}\right|(\Omega)=\left|m_{y^{*}}\right|\left(\bigcup_{k=1}^{\infty} \Omega_{k}\right)=\sum_{k=1}^{\infty}\left|m_{y^{*}}\right|\left(\Omega_{k}\right)=\sum_{k=1}^{\infty} \int_{\Omega_{k}}\left\|g_{k, y^{*}}(\omega)\right\|_{X^{*}} d \mu=\int_{\Omega}\left\|g_{y^{*}}(\omega)\right\|_{X^{*}} d \mu
$$

It follows that the function $\Omega \ni \omega \mapsto\left\|g_{y^{*}}(\omega)\right\|_{X^{*}} \in \mathbb{R}$ is integrable; hence the w^{*}-equivalence class of $g_{y^{*}}$ belongs to $L^{1}\left(X^{*}, X\right)$. Note that for every $x \in X$ and $A \in \Sigma$ we have:

$$
\begin{aligned}
m_{y^{*}}(A)(x) & =\sum_{k=1}^{\infty} m_{y^{*}}\left(A \cap \Omega_{k}\right)(x)=\sum_{k=1}^{\infty} \int_{A \cap \Omega_{k}}\left\langle x, g_{k, y^{*}}(\omega)\right\rangle d \mu=\int_{A}\left\langle x, g_{y^{*}}(\omega)\right\rangle d \mu \\
& =\int_{\Omega}\left\langle\left(\mathbb{1}_{A} \otimes x\right)(\omega), g_{y^{*}}(\omega)\right\rangle d \mu
\end{aligned}
$$

Hence for every $s=\sum_{i=1}^{n}\left(\mathbb{1}_{A_{i}} \otimes x_{i}\right) \in \mathcal{S}(\Sigma, X)$ ($=$ the set of X-valued Σ-simple functions) we get

$$
\int_{\Omega} s(\omega) d m_{y^{*}}=\int_{\Omega}\left\langle s(\omega), g_{y^{*}}(\omega)\right\rangle d \mu
$$

Since $\mathcal{S}(\Sigma, X)$ is dense in $\left(L^{\infty}(X),\|\cdot\| \infty\right)$, one can easily show that for $f \in L^{\infty}(X)$

$$
\int_{\Omega} f(\omega) d m_{y^{*}}=\int_{\Omega}\left\langle f(\omega), g_{y^{*}}(\omega)\right\rangle d \mu
$$

and moreover,

$$
y^{*}\left(\int_{\Omega} f(\omega) d m\right)=\int_{\Omega} f(\omega) d m_{y^{*}}
$$

Now let $f_{\alpha} \rightarrow 0$ in $L^{\infty}(X)$ for $\sigma\left(L^{\infty}(X), L^{1}\left(X^{*}, X\right)\right)$. Then

$$
y^{*}\left(T_{m}\left(f_{\alpha}\right)\right)=y^{*}\left(\int_{\Omega} f_{\alpha}(\omega) d m\right)=\int_{\Omega} f_{\alpha}(\omega) d m_{y^{*}}=\int_{\Omega}\left\langle f_{\alpha}(\omega), g_{y^{*}}(\omega)\right\rangle d \mu \underset{\alpha}{\longrightarrow} 0
$$

This means that T_{m} is $\left(\sigma\left(L^{\infty}(X), L^{1}\left(X^{*}, X\right)\right), \sigma\left(Y, Y^{*}\right)\right)$-continuous, as desired.
Now we are in position to generalize the classical Bartle-Dunford-Schwartz theorem concerning the range of countably additive vector measures (see [4]) to the case of operator-valued measures.

Theorem 2.2. Let $m \in \operatorname{fasv}_{\mu}(\Sigma, \mathcal{L}(X, Y))$ be countably additive in W^{*} OT. Then the range $\{m(A): A \in \Sigma\}$ of m is a relatively WOT-sequentially compact subset of $\mathcal{L}(X, Y)$.

Proof. It is well known that $\left\{\mathbb{1}_{A}: A \in \Sigma\right\}$ is a relatively $\sigma\left(L^{\infty}, L^{1}\right)$-sequentially compact subset of L^{∞} (see $[9$, Corollary 5.2]).

Let $\left(m\left(A_{n}\right)\right)$ be a sequence in $\mathcal{L}(X, Y)$. Then there exists a $\sigma\left(L^{\infty}, L^{1}\right)$-Cauchy subsequence $\left(\mathbb{1}_{A_{k_{n}}}\right)$ of $\left(\mathbb{1}_{A_{n}}\right)$. Now, let $g \in L^{1}\left(X^{*}, X\right)$ and $x \in X$. Then $\left|g_{x}\right| \leqslant\|x\|_{X} \vartheta(g)$, so $g_{x} \in L^{1}$. Then for $m, n \in \mathbb{N}$ we have

$$
\begin{aligned}
\left|F_{g}\left(\mathbb{1}_{A_{k_{n}}} \otimes x\right)-F_{g}\left(\mathbb{1}_{A_{k_{m}}} \otimes x\right)\right| & =\left|\int_{\Omega}\left\langle\mathbb{1}_{A_{k_{n}}}(\omega) x-\mathbb{1}_{A_{k_{m}}}(\omega) x, g(\omega)\right\rangle d \mu\right| \\
& =\left|\int_{\Omega}\left(\mathbb{1}_{A_{k_{n}}}(\omega)-\mathbb{1}_{A_{k_{m}}}(\omega)\right) g_{x}(\omega) d \mu\right|
\end{aligned}
$$

and this means that $\left(\mathbb{1}_{A_{k_{n}}} \otimes x\right)$ is a $\sigma\left(L^{\infty}(X), L^{1}\left(X^{*}, X\right)\right.$)-Cauchy sequence. In view of Theorem 2.1 the operator T_{m} is $\left(\sigma\left(L^{\infty}(X), L^{1}\left(X^{*}, X\right)\right), \sigma\left(Y, Y^{*}\right)\right)$-continuous, so $\left(m\left(A_{k_{n}}\right)(x)\right)\left(=\left(T_{m}\left(\mathbb{1}_{A_{k_{n}}} \otimes x\right)\right)\right)$ is a $\sigma\left(Y, Y^{*}\right)$-Cauchy sequence in Y. This means that $\left(m\left(A_{k_{n}}\right)\right)$ is a WOT-Cauchy sequence in $\mathcal{L}(X, Y)$, and by Proposition 1.1 there exists $U \in \mathcal{L}(X, Y)$ such that $m\left(A_{k_{n}}\right) \rightarrow U$ for WOT.

3. An Orlicz-Pettis type theorem for operator-valued measures

In this section we derive an Orlicz-Pettis type theorem for operator-valued measures.
Definition 3.1. A linear operator $T: L^{\infty}(X) \rightarrow Y$ is said to be smooth (respectively σ-smooth) if $\tilde{f}_{\alpha} \xrightarrow{(0)} 0$ in L^{∞} (respectively $\tilde{f}_{n} \xrightarrow{(0)} 0$ in L^{∞}) implies $\left\|T\left(f_{\alpha}\right)\right\|_{Y} \rightarrow 0$ (respectively $\left\|T\left(f_{n}\right)\right\|_{Y} \rightarrow 0$).

Proposition 3.1. Let $m \in \operatorname{fasv}_{\mu}(\Sigma, \mathcal{L}(X, Y))$ and assume that $T_{m}: L^{\infty}(X) \rightarrow Y$ is σ-smooth. Then m is variationally semi-regular.

Proof. Indeed, let $A_{n} \downarrow \emptyset,\left(A_{n}\right) \subset \Sigma$. Then for every n there exist a finite Σ-partition $\left(A_{n, i}\right)_{i=1}^{k_{n}}$ of A_{n} and $x_{n, i} \in B_{X}$, $1 \leqslant i \leqslant k_{n} \in \mathbb{N}$ such that

$$
\tilde{m}\left(A_{n}\right) \leqslant\left\|\sum_{i=1}^{k_{n}} m\left(A_{n, i}\right)\left(x_{n, i}\right)\right\|_{Y}+\frac{1}{n} .
$$

Let $s_{n}=\sum_{i=1}^{k_{n}}\left(\mathbb{1}_{A_{n, i}} \otimes x_{n, i}\right)$ for $n \in \mathbb{N}$. Then $\tilde{s}_{n} \leqslant \mathbb{1}_{A_{n}} \leqslant \mathbb{1}_{\Omega}$ for $n \in \mathbb{N}$, so $\tilde{s}_{n} \rightarrow 0 \mu$-a.e., i.e., $\tilde{s}_{n} \xrightarrow{(0)} 0$ in L^{∞}. Hence

$$
\left\|T_{m}\left(s_{n}\right)\right\|_{Y}=\left\|\sum_{i=1}^{k_{n}} m\left(A_{n, i}\right)\left(x_{n, i}\right)\right\|_{Y} \xrightarrow[n]{\longrightarrow} 0
$$

so $\tilde{m}\left(A_{n}\right) \rightarrow 0$, as desired.

Now, we recall briefly some concepts and results concerning locally solid topologies on vector-valued function spaces (see [18] for more details). A subset H of $L^{\infty}(X)$ is said to be solid whenever $\tilde{f}_{1} \leqslant \tilde{f}_{2}$ and $f_{1} \in L^{\infty}(X)$ and $f_{2} \in H$ imply $f_{1} \in H$. A linear topology τ on $L^{\infty}(X)$ is said to be locally solid if it has a local base at zero consisting of solid sets. A locally solid topology τ on $L^{\infty}(X)$ is said to be a Lebesgue topology whenever $\tilde{f}_{\alpha} \xrightarrow{(0)} 0$ in L^{∞} implies $f_{\alpha} \rightarrow 0$ for τ.

Assume that ξ is a locally convex-solid topology on L^{∞} that is generated by a family $\left\{p_{\alpha}: \alpha \in \mathcal{A}\right\}$ of Riesz seminorms on L^{∞}. By putting $\bar{p}_{\alpha}(f)=p_{\alpha}(\tilde{f})$ for $f \in L^{\infty}(X)$ we obtain a family $\left\{\bar{p}_{\alpha}: \alpha \in \mathcal{A}\right\}$ of seminorms on $L^{\infty}(X)$ that generates a locally convex-solid topology $\bar{\xi}$ on $L^{\infty}(X)$ (called the topology associated with ξ) (see [18] for more details).

The following theorem will be of importance (see [19, Theorem 4.1]).
Theorem 3.2. Assume that X^{*} has the Radon-Nikodym property. Then the Mackey topology $\tau\left(L^{\infty}(X), L^{\infty}(X)_{n}^{\sim}\right)$ is a locally convex-solid topology with the Lebesgue property. Moreover, we have:

$$
\tau\left(L^{\infty}(X), L^{\infty}(X)_{n}^{\sim}\right)=\tau\left(L^{\infty}(X), L^{1}\left(X^{*}\right)\right)=\overline{\tau\left(L^{\infty}, L^{1}\right)}
$$

Remark. (i) One can show that if X^{*} has the Radon-Nikodym property then $\tau\left(L^{\infty}(X), L^{\infty}(X)_{n}^{\sim}\right)$ coincides with the natural mixed topology $\gamma_{L^{\infty}(X)}$ on L^{∞} (see [19, Theorem 4.3] and [11,18] for more details).
(ii) In [11, Corollary 3.14] it is shown that $\gamma_{L^{\infty}(X)}=\tau\left(L^{\infty}(X), L^{1}\left(X^{*}\right)\right)$ whenever μ is a positive Radon measure on a compact topological space and X is a Banach space whose dual is separable (hence X^{*} has the Radon-Nikodym property).

Now we are ready to state an Orlicz-Pettis type theorem for operator-valued measures.

Theorem 3.3. Assume that X^{*} has the Radon-Nikodym property. Then for $m \in \operatorname{fasv}_{\mu}(\Sigma, \mathcal{L}(X, Y))$ the following statements are equivalent:
(i) T_{m} is smooth.
(ii) T_{m} is σ-smooth.
(iii) m is variationally semi-regular.
(iv) m is countably additive in UOT.
(v) m is countably additive in W^{*} OT.

Proof. (i) \Rightarrow (ii) It is obvious.
(ii) \Rightarrow (iii) See Proposition 3.1.
(iii) \Rightarrow (iv) Clearly, because $\|m(A)\|_{X \rightarrow Y} \leqslant \tilde{m}(A)$ for $A \in \Sigma$.
(iv) \Rightarrow (v) It is obvious because $\mathrm{W}^{*} \mathrm{OT} \subset$ UOT.
(v) \Rightarrow (i) Assume that m is countably additive in W^{*} OT. Then by Theorem $2.1 T_{m}$ is $\left(\tau\left(L^{\infty}(X), L^{\infty}(X)_{n}^{\sim}\right)\right.$, $\|\cdot\|_{Y}$)-continuous. Hence, since $\tau\left(L^{\infty}(X), L^{\infty}(X)_{n}^{\sim}\right)$ is a Lebesgue topology (see Theorem 3.2), we obtain that T_{m} is smooth.

4. Vitali-Hahn-Saks type theorems for operator-valued measures

Schaefer and Xiao-Dong Zhang [20] has obtained a generalization of the classical Vitali-Hahn-Saks theorem to compact sets (in the strong operator topology) of countably additive vector measures. In this section we extend this result to the operator-valued case.

Let $\mathcal{L}_{\tau}\left(L^{\infty}(X), Y\right)$ stand for the space of all $\left(\tau\left(L^{\infty}(X), L^{\infty}(X)_{n}^{\sim}\right),\|\cdot\|_{Y}\right)$-continuous linear operators from $L^{\infty}(X)$ to Y. The strong operator topology (briefly SOT) is a locally convex topology on $\mathcal{L}_{\tau}\left(L^{\infty}(X), Y\right)$ defined by the family of seminorms $\left\{p_{f}: f \in L^{\infty}(X)\right\}$, where $p_{f}(T)=\|T(f)\|_{Y}$ for all $T \in \mathcal{L}_{\tau}\left(L^{\infty}(X), Y\right)$. The weak operator topology (briefly WOT) is a locally convex topology on $\mathcal{L}_{\tau}\left(L^{\infty}(X), Y\right)$ defined by the family of seminorms $\left\{p_{f, y^{*}}: f \in L^{\infty}(X), y^{*} \in Y^{*}\right\}$, where $p_{f, y^{*}}(T)=\left|\left\langle T(f), y^{*}\right\rangle\right|$ for all $T \in \mathcal{L}_{\tau}\left(L^{\infty}(X), Y\right)$.

Note that for $Y=\mathbb{R}$, both SOT and WOT coincide on $L^{\infty}(X)_{n}^{\sim}$ with $\sigma\left(L^{\infty}(X)_{n}^{\sim}, L^{\infty}(X)\right)$.
In view of [19, Corollary 5.3] we have:
Theorem 4.1. Assume that X^{*} has the Radon-Nikodym property. Then the space $\mathcal{L}_{\tau}\left(L^{\infty}(X), Y\right)$ is WOT-sequentially complete.

Moreover, by [19, Theorem 5.5] we have:
Theorem 4.2. Assume that X^{*} has the Radon-Nikodym property and let \mathcal{K} be a SOT-compact subset of $\mathcal{L}_{\tau}\left(L^{\infty}(X), Y\right)$. Then the set \mathcal{K} is $\left(\tau\left(L^{\infty}(X), L^{1}\left(X^{*}\right)\right),\|\cdot\|_{Y}\right)$-equicontinuous.

As an application of [19, Theorem 5.6] and Theorem 3.3 we have a Vitali-Hahn-Saks type theorem for operatorvalued measures.

Theorem 4.3. Assume that X^{*} has the Radon-Nikodym property and let $m_{n} \in \operatorname{fasv}_{\mu}(\Sigma, \mathcal{L}(X, Y))$ be countably additive in UOT for $n \in \mathbb{N}$. Assume that for every $f \in L^{\infty}(X)$,

$$
T(f):=\lim T_{m_{n}}(f)=\lim \int_{\Omega} f(\omega) d m_{n} \quad \text { exists in }\left(Y,\|\cdot\|_{Y}\right) .
$$

Then the following statements hold:
(i) $T \in \mathcal{L}_{\tau}\left(L^{\infty}(X), Y\right)$ and the measure $m: \Sigma \rightarrow \mathcal{L}(X, Y)$, defined by

$$
m(A)(x)=T\left(\mathbb{1}_{A} \otimes x\right) \quad \text { for } A \in \Sigma \text { and } x \in X
$$

belongs to $\operatorname{fasv}_{\mu}(\Sigma, \mathcal{L}(X, Y))$ and is also countably additive in UOT.
(ii) $\left\{T_{m_{n}}: n \in \mathbb{N}\right\}$ is a $\left(\tau\left(L^{\infty}(X), L^{1}\left(X^{*}\right)\right),\|\cdot\|_{Y}\right)$-equicontinuous subset of $\mathcal{L}_{\tau}\left(L^{\infty}(X), Y\right)$.

Now we are ready, to state a generalization of the Vitali-Hahn-Saks theorem to SOT-compact sets of $\mathcal{L}_{\tau}\left(L^{\infty}(X), Y\right)$ (see [20, Theorem 8]).

Theorem 4.4. Assume that X^{*} has the Radon-Nikodym property. Let \mathcal{M} be a subset of $\operatorname{fasv}_{\mu}(\Sigma, \mathcal{L}(X, Y))$ and assume that $\left\{T_{m}: m \in \mathcal{M}\right\}$ is a SOT-compact subset of $\mathcal{L}_{\tau}\left(L^{\infty}(X), Y\right)$. Then the set \mathcal{M} is uniformly variationally semi-regular, i.e., $\sup _{m \in \mathcal{M}} \tilde{m}\left(A_{n}\right) \longrightarrow 0$ as $A_{n} \downarrow \emptyset$. Hence \mathcal{M} is uniformly countably additive in UOT, i.e., $\sup _{m \in \mathcal{M}}\left\|m\left(A_{n}\right)\right\|_{X \rightarrow Y} \underset{n}{\longrightarrow} 0$ as $A_{n} \downarrow \emptyset$.

Proof. Let \mathcal{C} stand for the family of all absolutely convex, solid, $\sigma\left(L^{1}, L^{\infty}\right)$-compact subsets of L^{1}. In view of Theorem 3.2 the Mackey topology $\tau\left(L^{\infty}(X), L^{1}\left(X^{*}\right)\right)$ is generated by the family $\left\{\bar{p}_{Z}: Z \in \mathcal{C}\right\}$ of seminorms on $L^{\infty}(X)$, where $\bar{p}_{Z}(f)=p_{Z}(\tilde{f})=\sup \left\{\int_{\Omega} \tilde{f}(\omega)|v(\omega)| d \mu: v \in Z\right\}$. Let $\varepsilon>0$ be given. Then by Theorem 4.2 there exist $Z_{i} \in \mathcal{C}$ for $1 \leqslant i \leqslant i_{0}$ for some $i_{0} \in \mathbb{N}$ and $\delta>0$ such that

$$
\begin{equation*}
\sup _{m \in \mathcal{M}}\left\|T_{m}(f)\right\|_{Y} \leqslant \frac{\varepsilon}{2} \quad \text { whenever } \max _{1 \leqslant i \leqslant i_{0}} \bar{p}_{Z_{i}}(f)=\max _{1 \leqslant i \leqslant i_{0}} p_{Z_{i}}(\tilde{f}) \leqslant \delta \tag{1}
\end{equation*}
$$

Let $A_{n} \downarrow \emptyset,\left(A_{n}\right) \subset \Sigma$. Then $\mathbb{1}_{A_{n}}(\omega) \rightarrow 0 \mu$-a.e. and $\mathbb{1}_{A_{n}} \leqslant \mathbb{1}_{\Omega}$ for $n \in \mathbb{N}$. Since $\tau\left(L^{\infty}, L^{1}\right)$ is a Lebesgue topology, we get $p_{Z}\left(\mathbb{1}_{A_{n}}\right) \rightarrow 0$ for every $Z \in \mathcal{C}$. Hence there exists $n_{0} \in \mathbb{N}$ such that $\max _{1 \leqslant i \leqslant i_{0}} p_{Z_{i}}\left(\mathbb{1}_{A_{n}}\right) \leqslant \delta$ for $n \geqslant n_{0}$.

Now let $n \in \mathbb{N}$ be fixed. Then for every $m \in \mathcal{M}$ there exist a finite Σ-partition $\left(A_{n, j}^{m}\right)_{j=1}^{k_{m, n}}$ of A_{n} and $x_{n, j}^{m} \in B_{X}$ for $1 \leqslant j \leqslant k_{m, n}$ such that

$$
\begin{equation*}
\tilde{m}\left(A_{n}\right) \leqslant\left\|\sum_{j=1}^{k_{m, n}} m\left(A_{n, j}^{m}\right)\left(x_{n, j}^{m}\right)\right\|_{Y}+\frac{\varepsilon}{2} . \tag{2}
\end{equation*}
$$

Let $s_{n}^{m}=\sum_{j=1}^{k_{m, n}}\left(\mathbb{1}_{A_{n, j}^{m}}^{m} \otimes x_{n, j}^{m}\right)$ for $m \in \mathcal{M}$. Then $\tilde{s}_{n}^{m} \leqslant \mathbb{1}_{A_{n}}$ for every $m \in \mathcal{M}$ and $\max _{1 \leqslant i \leqslant n_{0}} \bar{p}_{Z_{i}}\left(s_{n}^{m}\right) \leqslant$ $\max _{1 \leqslant i \leqslant i_{0}} p_{Z_{i}}\left(\mathbb{1}_{A_{n}}\right)$. Hence by (1) and (2) for $n \geqslant n_{0}$ we get:

$$
\sup _{m \in \mathcal{M}} \tilde{m}\left(A_{n}\right) \leqslant \sup _{m \in \mathcal{M}}\left\|T_{m}\left(s_{n}^{m}\right)\right\|_{Y}+\frac{\varepsilon}{2} \leqslant \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
$$

This means that $\sup _{m \in \mathcal{M}} \tilde{m}\left(A_{n}\right) \xrightarrow[n]{ } 0$, as desired.
It follows that $\sup _{m \in \mathcal{M}}\left\|m\left(A_{n}\right)\right\|_{X \rightarrow Y} \underset{n}{\longrightarrow} 0$, because $\left\|m\left(A_{n}\right)\right\|_{X \rightarrow Y} \leqslant \tilde{m}\left(A_{n}\right)$ for $n \in \mathbb{N}$.

Acknowledgment

The author is grateful to the referee for his useful comments.

References

[1] C.D. Aliprantis, O. Burkinshaw, Locally Solid Riesz Spaces, Academic Press, New York, 1978.
[2] C.D. Aliprantis, O. Burkinshaw, Positive Operators, Academic Press, New York, 1985.
[3] J. Batt, Applications of the Orlicz-Pettis theorem to operator-valued measures and compact and weakly compact transformations on the space of continuous functions, Rev. Roumaine Math. Pures Appl. 14 (1969) 907-935.
[4] R.G. Bartle, N. Dunford, J. Schwartz, Weak compactness and vector-measures, Canad. J. Math. 7 (1955) 289-305.
[5] J.K. Brooks, P.W. Lewis, Linear operators and vector measures, Trans. Amer. Math. Soc. 192 (1972) 139-162.
[6] J.K. Brooks, P.W. Lewis, Operators on functions spaces, Bull. Amer. Math. Soc. 78 (5) (1972) 697-701.
[7] A.V. Bukhvalov, On an analytic representation of operators with abstract norm, Izv. Vyssh. Uchebn. Zaved. 11 (1975) 21-32.
[8] A.V. Bukhvalov, On an analytic representation of linear operators by means of measurable vector-valued functions, Izv. Vyssh. Uchebn. Zaved. 7 (1977) 21-32.
[9] O. Burkinshaw, P. Dodds, Weak sequential compactness and completeness in Riesz spaces, Canad. J. Math. 38 (6) (1976) 1332-1339.
[10] P. Cembranos, J. Mendoza, Banach Spaces of Vector-Valued Functions, Lecture Notes in Math., vol. 1676, Springer-Verlag, Berlin, 1997.
[11] J.B. Cooper, Saks Spaces and Applications to Functional Analysis, North-Holland, Amsterdam, 1978.
[12] J. Diestel, J.J. Uhl, Vector Measures, Math. Surveys, vol. 15, Amer. Math. Soc., Providence, RI, 1977.
[13] N. Dinculeanu, Vector Measures, Pergamon Press, New York, 1967.
[14] N. Dunford, J. Schwartz, Linear Operators, Part I, Interscience, New York, 1958.
[15] L.V. Kantorovitch, A.V. Akilov, Functional Analysis, third ed., Nauka, Moscow, 1984 (in Russian).
[16] P.W. Lewis, Some regularity conditions on vector measures with finite semi-variation, Rev. Roumaine Math. Pures Appl. 15 (1970) $375-384$.
[17] P.W. Lewis, Vector measures and topology, Rev. Roumaine Math. Pures Appl. 16 (8) (1971) 1201-1209.
[18] M. Nowak, Lebesgue topologies on vector-valued function spaces, Math. Japonica 52 (2) (2000) 171-182.
[19] M. Nowak, Linear operators on vector-valued function spaces with Mackey topologies, J. Convex Anal., in press.
[20] H. Schaefer, Xiao-Dong Zhang, On the Vitali-Hahn-Saks theorem, Oper. Theory Adv. Appl. 75 (1995) 289-297.
[21] Tsoy-Wo Ma, Banach-Hilbert Spaces, Vector Measures and Group Representations, Word Scientific, Singapore, 2002.
[22] A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw-Hill, 1978.

[^0]: E-mail address: m.nowak@wmie.uz.zgora.pl.

