Available online at www.sciencedirect.com

brought to you by 🦉 COR provided by Elsevier - Publisher Connect

J. Math. Anal. Appl. 337 (2008) 695-701

www.elsevier.com/locate/jmaa

Journal of

MATHEMATICAL

ANALYSIS AND Applications

Operator-valued measures and linear operators

Marian Nowak

Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, ul. Szafrana 4A, 65-516 Zielona Góra, Poland

Received 24 January 2007

Available online 12 April 2007

Submitted by J. Diestel

Abstract

We study operator-valued measures $m: \Sigma \to \mathcal{L}(X, Y)$, where $\mathcal{L}(X, Y)$ stands for the space of all continuous linear operators between real Banach spaces X and Y and Σ is a σ -algebra of sets. We extend the Bartle–Dunford–Schwartz theorem and the Orlicz–Pettis theorem for vector measures to the case of operator-valued measures. We generalize the classical Vitali–Hahn–Saks theorem to sets of operator-valued measures which are compact in the strong operator topology. \otimes 2007 Eleavier Leo All rights reserved

© 2007 Elsevier Inc. All rights reserved.

Keywords: Vector measures; Operator-valued measures; Mackey topologies; Radon–Nikodym property; Strong operator topology; Weak operator topology; Weak* operator topology; Linear operators

1. Introduction and preliminaries

In the theory of vector measures the classical theorems: the Bartle–Dunford–Schwartz theorem (about the range of countably additive vector measures) (see [4]), the Orlicz–Pettis theorem (see [12]), the Vitali–Hahn–Saks theorem (see [12,20]) are of importance.

The purpose of this paper is to extend these theorems to the case of operator-valued measures $m : \Sigma \to \mathcal{L}(X, Y)$, where $\mathcal{L}(X, Y)$ stands for the space of all linear continuous operators between Banach spaces X and Y and Σ is a σ -algebra of sets. We obtain these results as consequences of the properties of the corresponding operators $T_m : L^{\infty}(X) \to Y$.

We denote by $\sigma(L, K)$ and $\tau(L, K)$ the weak topology and the Mackey topology on L with respect to a dual pair $\langle L, K \rangle$. Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be real Banach spaces and let B_X and S_X stand for the closed unit ball and the unit sphere in X, respectively. Let X^* and Y^* stand for Banach duals of X and Y, respectively. Denote by $\mathcal{L}(X, Y)$ the space of all continuous linear operators between Banach spaces X and Y. Recall that the *uniform operator topology* (briefly UOT) is the topology on $\mathcal{L}(X, Y)$ defined by the usual norm $\|\cdot\|_{X \to Y}$. The *weak* operator topology* (briefly W*OT) is the topology on $\mathcal{L}(X, Y)$ defined by the family of seminorms $\{p_{y*}: y^* \in Y^*\}$, where $p_{y*}(U) := \|y^* \circ U\|_{X^*}$ for $U \in \mathcal{L}(X, Y)$. The *weak operator topology* (briefly WOT) on $\mathcal{L}(X, Y)$ is the topology defined by the family of seminorms $\{p_{x,y^*}: x \in X, y^* \in Y^*\}$, where $p_{x,y^*}(U) = |y^*(U(x))|$ for $U \in \mathcal{L}(X, Y)$ (see [14]).

The following general result will be needed (see [21, Theorem 13.10.13]).

E-mail address: m.nowak@wmie.uz.zgora.pl.

⁰⁰²²⁻²⁴⁷X/\$ – see front matter $\, @$ 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2007.04.004

Proposition 1.1. *The space* $\mathcal{L}(X, Y)$ *is* WOT-*sequentially complete.*

For terminology concerning vector lattices and function spaces we refer to [1,2,15]. Let \mathbb{N} and \mathbb{R} stand for the sets of all natural and real numbers. Throughout the paper we assume that (Ω, Σ, μ) is a complete σ -finite measure space. By $L^0(X)$ we denote the set of μ -equivalence classes of all strongly Σ -measurable functions $f : \Omega \to X$. For $f \in L^0(X)$ let us set $\tilde{f}(\omega) = \|f(\omega)\|_X$ for $\omega \in \Omega$. Let

$$L^{\infty}(X) = \left\{ f \in L^{0}(X) \colon \|f\|_{\infty} = \operatorname{ess\,sup}_{\omega \in \Omega} \tilde{f}(\omega) < \infty \right\}.$$

In case $X = \mathbb{R}$ we simply denote L^{∞} . Recall that the algebraic tensor product $L^{\infty} \otimes X$ is the subspace of $L^{\infty}(X)$ spanned by the functions of the form $u \otimes x$, $(u \otimes x)(\omega) = u(\omega)x$, where $u \in L^{\infty}$, $x \in X$.

A linear functional F on $L^{\infty}(X)$ is said to be *order continuous* whenever $\tilde{f}_{\alpha} \xrightarrow{(0)} 0$ in L^{∞} implies $F(f_{\alpha}) \to 0$. The set consisting of all order continuous linear functionals on $L^{\infty}(X)$ will be denoted by $L^{\infty}(X)_{n}^{\sim}$ and called the *order continuous* dual of $L^{\infty}(X)$.

Let $L^0(X^*, X)$ be the set of weak*-equivalence classes of all weak*-measurable functions $g : \Omega \to X^*$. Following [7,8] one can define the so-called *abstract norm* $\vartheta : L^0(X^*, X) \to L^0$ by $\vartheta(g) := \sup\{|g_X|: x \in B_X\}$, where $g_X(\omega) = g(\omega)(x)$ for $\omega \in \Omega$ and $x \in X$. Then for $f \in L^0(X)$ and $g \in L^0(X^*, X)$ the function $\langle f, g \rangle : \Omega \to \mathbb{R}$ defined by $\langle f, g \rangle(\omega) := \langle f(\omega), g(\omega) \rangle$ is measurable and $|\langle f, g \rangle| \leq \tilde{f} \vartheta(g)$. Moreover, $\vartheta(g) = \tilde{g}$ for $g \in L^0(X^*)$. Let

$$L^{1}(X^{*}, X) := \{ g \in L^{0}(X^{*}, X) : \vartheta(g) \in L^{1} \}.$$

Due to Bukhvalov (see [7, Theorem 4.1]) $L^{\infty}(X)_n^{\sim}$ can be identified with $L^1(X^*, X)$ throughout the mapping: $L^1(X^*, X) \ni g \mapsto F_g \in L^{\infty}(X)_n^{\sim}$, where

$$F_g(f) = \int_{\Omega} \langle f(\omega), g(\omega) \rangle d\mu$$
 for all $f \in L^{\infty}(X)$.

Then $L^1(X^*) \subset L^1(X^*, X)$. Moreover, the identity $L^1(X^*, X) = L^1(X^*)$ holds whenever X^* has the Radon–Nikodym property (see [8, Theorem 3.5], [12, Chapter 3.1]).

Now we recall basic terminology concerning operator-valued measures (see [3,5,6,13,16,17]). A finitely additive mapping $m : \Sigma \to \mathcal{L}(X, Y)$ is called an *operator-valued measure*. We define the *semivariation* $\tilde{m}(A)$ of m on $A \in \Sigma$ by $\tilde{m}(A) = \sup \|\Sigma m(A_i)(x_i)\|_Y$, where the supremum is taken over all finite Σ -partitions (A_i) of A and $x_i \in B_X$ for each i. For $y^* \in Y^*$, let $m_{y^*} : \Sigma \to X^*$ be a set function defined by $m_{y^*}(A)(x) := \langle m(A)(x), y^* \rangle$ for $x \in X$. Then m_{y^*} is a finite additive measure and $\tilde{m}_{y^*}(A) = |m_{y^*}|(A)$, where $|m_{y^*}|(A)$ stands for the variation of m_{y^*} on $A \in \Sigma$. It is known that $\tilde{m}(A) < \infty$ if and only if $|m_{y^*}|(A) < \infty$ for every $y^* \in Y^*$. Moreover, $\tilde{m}(A) = \sup\{|m_{y^*}|(A): y^* \in B_{Y^*}\}$ for $A \in \Sigma$ (see [3, Theorem 5]).

By fasv($\Sigma, \mathcal{L}(X, Y)$) we denote the set of all finitely additive measures $m : \Sigma \to \mathcal{L}(X, Y)$ with a finite semivariation, i.e., $\tilde{m}(\Omega) < \infty$. Recall that $m \in \text{fasv}(\Sigma, \mathcal{L}(X, Y))$ is said to be *variationally semi-regular* if $\tilde{m}(A_n) \to 0$ whenever $A_n \downarrow \emptyset, (A_n) \subset \Sigma$. $m \in \text{fasv}(\Sigma, \mathcal{L}(X, Y))$ is said to be *countably additive in* UOT if $||m(A_n)||_{X \to Y} \to 0$ whenever $A_n \downarrow \emptyset, (A_n) \subset \Sigma$. $m \in \text{fasv}(\Sigma, \mathcal{L}(X, Y))$ is said to be *countably additive in* W*OT if for every $y^* \in Y^*, ||m_{y^*}(A_n)||_{X^*} \to 0$ whenever $A_n \downarrow \emptyset, (A_n) \subset \Sigma$ (see [3, p. 921], [17, p. 382]).

From now on by $\operatorname{fasv}_{\mu}(\Sigma, \mathcal{L}(X, Y))$ we will denote the set of all $m \in \operatorname{fasv}(\Sigma, \mathcal{L}(X, Y))$ which vanish on μ -null sets, i.e., m(A) = 0 whenever $\mu(A) = 0$. It is well known that if $m \in \operatorname{fasv}_{\mu}(\Sigma, \mathcal{L}(X, Y))$, then $T_m(f) = \int_{\Omega} f(\omega) dm$ defines a continuous linear operator from $L^{\infty}(X)$ into Y, and any continuous linear operator $T : L^{\infty}(X) \to Y$ is given this way. Moreover, $\|T_m\|_{L^{\infty}(X) \to Y} = \tilde{m}(\Omega)$ (see [13, §9]).

2. Countably additive operator-valued measures

The Mackey topology $\tau(L^{\infty}, L^1)$ on L^{∞} is of importance in the theory of vector measures (see [20]). It is well known that $\tau(L^{\infty}, L^1)$ is the finest locally convex-solid topology on L^{∞} with the Lebesgue property. Schaefer and Xiao-Dong Zhang [20] provide a characterization of the countable additivity of vector measures $m : \Sigma \to Y$ in terms of continuity of the corresponding linear operators T_m from L^{∞} (provided with $\tau(L^{\infty}, L^1)$) into a Banach space Y.

In this section we characterize countable additivity of measures $m : \Sigma \to \mathcal{L}(X, Y)$ in W*OT in terms of continuity of the corresponding linear operators $T_m : L^{\infty}(X) \to Y$.

Theorem 2.1. For every $m \in \text{fasv}_{\mu}(\Sigma, \mathcal{L}(X, Y))$ the following statements are equivalent:

- (i) T_m is $(\tau(L^{\infty}(X), L^{\infty}(X)_n^{\sim}), \|\cdot\|_Y)$ -continuous.
- (ii) T_m is $(\sigma(L^{\infty}(X), L^{\infty}(X)_n^{\sim}), \sigma(Y, Y^*))$ -continuous.

(iii) *m* is countably additive in W*OT.

Proof. (i) \Leftrightarrow (ii) See [22, Corollaries 11-1-3, 11-2-6].

(ii) \Rightarrow (iii) Assume that T_m is $(\sigma(L^{\infty}(X), L^{\infty}(X)_n^{\sim}), \sigma(Y, Y^*))$ -continuous. It follows that $y^* \circ T_m \in L^{\infty}(X)_n^{\sim}$ for every $y^* \in Y^*$. To show that *m* is countably additive in W*OT, assume that $A_n \downarrow \emptyset$, $(A_n) \subset \Sigma$ and $y^* \in Y^*$. We show that $||m_{y^*}(A_n)||_{X^*} \to 0$. Indeed, for every $n \in \mathbb{N}$ there exists $x_n \in S_X$, such that

$$\|m_{y^*}(A_n)\|_{X^*} = \|y^*(m(A_n))\|_{X^*} \leq |\langle m(A_n)(x_n), y^*\rangle| + \frac{1}{n}.$$

Let $f_n = \mathbb{1}_{A_n} \otimes x_n$ for $n \in \mathbb{N}$. Then $\tilde{f}_n = \mathbb{1}_{A_n}$ and $\mathbb{1}_{A_n} \xrightarrow{(o)} 0$ in L^{∞} . Hence $(y^* \circ T_m)(f_n) \to 0$, because $y^* \circ T_m \in L^{\infty}(X)_n^{\sim}$. But for $n \in \mathbb{N}$ we have

$$(y^* \circ T_m)(f_n) = \langle T_m(\mathbb{1}_{A_n} \otimes x_n), y^* \rangle = \langle m(A_n)(x_n), y^* \rangle$$

It follows that $||m_{v^*}(A_n)||_{X^*} \to 0$, as desired.

(iii) \Rightarrow (ii) Assume that *m* is countably additive in W*OT, i.e., for every $y^* \in Y^*$, the measure $m_{y^*} \colon \Sigma \to X^*$ is countably additive and $|m_{y^*}|(\Omega) = \tilde{m}_{y^*}(\Omega) < \infty$, $m_{y^*}(A) = 0$ if $\mu(A) = 0$. For every $k \in \mathbb{N}$ let $\Sigma_k = \{A \cap \Omega_k : A \in \Sigma\}$, where (Ω_k) is a pairwise disjoint sequence in Σ such that $\Omega = \bigcup_{k=1}^{\infty} \Omega_k$ and $\mu(\Omega_k) < \infty$ for $k \in \mathbb{N}$. Let $y^* \in Y^*$ be given. Then by the Radon–Nikodym type theorem (see [10, Theorem 1.5.3]), for every $k \in \mathbb{N}$ there exists a weak*-measurable function $g_{k,y^*} \colon \Omega_k \to X^*$ which satisfies the following conditions:

- 1. the function $\Omega_k \ni \omega \mapsto \|g_{k,y^*}(\omega)\|_{X^*} \in \mathbb{R}$ is Σ_k -measurable and integrable,
- 2. for every $x \in X$ and every $A \in \Sigma$,

$$m_{y^*}(A \cap \Omega_k)(x) = \int_{A \cap \Omega_k} \langle x, g_{k,y^*}(\omega) \rangle d\mu,$$

3. for every $A \in \Sigma$

$$|m_{y^*}|(A \cap \Omega_k) = \int_{A \cap \Omega_k} \left\| g_{k,y^*}(\omega) \right\|_{X^*} d\mu$$

Define a function $g_{y^*}: \Omega \to X^*$ by setting $g_{y^*}(\omega) = g_{k,y^*}(\omega)$ for $\omega \in \Omega_k$, i.e., $\mathbb{1}_{\Omega_k} g_{y^*} = g_{k,y^*}$ for all $k \in \mathbb{N}$. Then g_{y^*} is weak*-measurable and since the measure $|m_{y^*}|: \Sigma \to [0, \infty)$ is countably additive, we have

$$|m_{y^*}|(\Omega) = |m_{y^*}|\left(\bigcup_{k=1}^{\infty} \Omega_k\right) = \sum_{k=1}^{\infty} |m_{y^*}|(\Omega_k) = \sum_{k=1}^{\infty} \int_{\Omega_k} \|g_{k,y^*}(\omega)\|_{X^*} d\mu = \int_{\Omega} \|g_{y^*}(\omega)\|_{X^*} d\mu.$$

It follows that the function $\Omega \ni \omega \mapsto \|g_{y^*}(\omega)\|_{X^*} \in \mathbb{R}$ is integrable; hence the w^* -equivalence class of g_{y^*} belongs to $L^1(X^*, X)$. Note that for every $x \in X$ and $A \in \Sigma$ we have:

$$m_{y^*}(A)(x) = \sum_{k=1}^{\infty} m_{y^*}(A \cap \Omega_k)(x) = \sum_{k=1}^{\infty} \int_{A \cap \Omega_k} \langle x, g_{k,y^*}(\omega) \rangle d\mu = \int_A \langle x, g_{y^*}(\omega) \rangle d\mu$$
$$= \int_{\Omega} \langle (\mathbb{1}_A \otimes x)(\omega), g_{y^*}(\omega) \rangle d\mu.$$

Hence for every $s = \sum_{i=1}^{n} (\mathbb{1}_{A_i} \otimes x_i) \in \mathcal{S}(\Sigma, X)$ (= the set of *X*-valued Σ -simple functions) we get

$$\int_{\Omega} s(\omega) \, dm_{y^*} = \int_{\Omega} \left\langle s(\omega), g_{y^*}(\omega) \right\rangle d\mu$$

Since $\mathcal{S}(\Sigma, X)$ is dense in $(L^{\infty}(X), \|\cdot\|_{\infty})$, one can easily show that for $f \in L^{\infty}(X)$

$$\int_{\Omega} f(\omega) dm_{y^*} = \int_{\Omega} \left\langle f(\omega), g_{y^*}(\omega) \right\rangle d\mu$$

and moreover,

$$y^*\left(\int_{\Omega} f(\omega) \, dm\right) = \int_{\Omega} f(\omega) \, dm_{y^*}$$

Now let $f_{\alpha} \to 0$ in $L^{\infty}(X)$ for $\sigma(L^{\infty}(X), L^{1}(X^{*}, X))$. Then

$$y^*(T_m(f_\alpha)) = y^*\left(\int_{\Omega} f_\alpha(\omega) \, dm\right) = \int_{\Omega} f_\alpha(\omega) \, dm_{y^*} = \int_{\Omega} \langle f_\alpha(\omega), g_{y^*}(\omega) \rangle d\mu \xrightarrow{}_{\alpha} 0.$$

This means that T_m is $(\sigma(L^{\infty}(X), L^1(X^*, X)), \sigma(Y, Y^*))$ -continuous, as desired. \Box

Now we are in position to generalize the classical Bartle–Dunford–Schwartz theorem concerning the range of countably additive vector measures (see [4]) to the case of operator-valued measures.

Theorem 2.2. Let $m \in \text{fasv}_{\mu}(\Sigma, \mathcal{L}(X, Y))$ be countably additive in W*OT. Then the range $\{m(A): A \in \Sigma\}$ of m is a relatively WOT-sequentially compact subset of $\mathcal{L}(X, Y)$.

Proof. It is well known that $\{\mathbb{1}_A: A \in \Sigma\}$ is a relatively $\sigma(L^{\infty}, L^1)$ -sequentially compact subset of L^{∞} (see [9, Corollary 5.2]).

Let $(m(A_n))$ be a sequence in $\mathcal{L}(X, Y)$. Then there exists a $\sigma(L^{\infty}, L^1)$ -Cauchy subsequence $(\mathbb{1}_{A_{k_n}})$ of $(\mathbb{1}_{A_n})$. Now, let $g \in L^1(X^*, X)$ and $x \in X$. Then $|g_x| \leq ||x||_X \vartheta(g)$, so $g_x \in L^1$. Then for $m, n \in \mathbb{N}$ we have

$$\begin{aligned} \left| F_g(\mathbb{1}_{A_{k_n}} \otimes x) - F_g(\mathbb{1}_{A_{k_m}} \otimes x) \right| &= \left| \int_{\Omega} \left\langle \mathbb{1}_{A_{k_n}}(\omega) x - \mathbb{1}_{A_{k_m}}(\omega) x, g(\omega) \right\rangle d\mu \right| \\ &= \left| \int_{\Omega} \left(\mathbb{1}_{A_{k_n}}(\omega) - \mathbb{1}_{A_{k_m}}(\omega) \right) g_x(\omega) d\mu \right| \end{aligned}$$

and this means that $(\mathbb{1}_{A_{k_n}} \otimes x)$ is a $\sigma(L^{\infty}(X), L^1(X^*, X))$ -Cauchy sequence. In view of Theorem 2.1 the operator T_m is $(\sigma(L^{\infty}(X), L^1(X^*, X)), \sigma(Y, Y^*))$ -continuous, so $(m(A_{k_n})(x)) (= (T_m(\mathbb{1}_{A_{k_n}} \otimes x)))$ is a $\sigma(Y, Y^*)$ -Cauchy sequence in Y. This means that $(m(A_{k_n}))$ is a WOT-Cauchy sequence in $\mathcal{L}(X, Y)$, and by Proposition 1.1 there exists $U \in \mathcal{L}(X, Y)$ such that $m(A_{k_n}) \to U$ for WOT. \Box

3. An Orlicz-Pettis type theorem for operator-valued measures

In this section we derive an Orlicz-Pettis type theorem for operator-valued measures.

Definition 3.1. A linear operator $T : L^{\infty}(X) \to Y$ is said to be *smooth* (respectively σ -*smooth*) if $\tilde{f}_{\alpha} \xrightarrow{(0)} 0$ in L^{∞} (respectively $\tilde{f}_n \xrightarrow{(0)} 0$ in L^{∞}) implies $||T(f_{\alpha})||_Y \to 0$ (respectively $||T(f_n)||_Y \to 0$).

Proposition 3.1. Let $m \in \text{fasv}_{\mu}(\Sigma, \mathcal{L}(X, Y))$ and assume that $T_m : L^{\infty}(X) \to Y$ is σ -smooth. Then m is variationally semi-regular.

Proof. Indeed, let $A_n \downarrow \emptyset$, $(A_n) \subset \Sigma$. Then for every *n* there exist a finite Σ -partition $(A_{n,i})_{i=1}^{k_n}$ of A_n and $x_{n,i} \in B_X$, $1 \leq i \leq k_n \in \mathbb{N}$ such that

$$\tilde{m}(A_n) \leqslant \left\| \sum_{i=1}^{k_n} m(A_{n,i})(x_{n,i}) \right\|_Y + \frac{1}{n}.$$

Let $s_n = \sum_{i=1}^{k_n} (\mathbb{1}_{A_{n,i}} \otimes x_{n,i})$ for $n \in \mathbb{N}$. Then $\tilde{s}_n \leq \mathbb{1}_{A_n} \leq \mathbb{1}_{\Omega}$ for $n \in \mathbb{N}$, so $\tilde{s}_n \to 0$ μ -a.e., i.e., $\tilde{s}_n \xrightarrow{(0)} 0$ in L^{∞} . Hence

$$\left\|T_m(s_n)\right\|_Y = \left\|\sum_{i=1}^{k_n} m(A_{n,i})(x_{n,i})\right\|_Y \xrightarrow{n} 0,$$

so $\tilde{m}(A_n) \to 0$, as desired. \Box

Now, we recall briefly some concepts and results concerning locally solid topologies on vector-valued function spaces (see [18] for more details). A subset H of $L^{\infty}(X)$ is said to be *solid* whenever $\tilde{f}_1 \leq \tilde{f}_2$ and $f_1 \in L^{\infty}(X)$ and $f_2 \in H$ imply $f_1 \in H$. A linear topology τ on $L^{\infty}(X)$ is said to be locally solid if it has a local base at zero consisting of solid sets. A locally solid topology τ on $L^{\infty}(X)$ is said to be a *Lebesgue topology* whenever $\tilde{f}_{\alpha} \xrightarrow{(0)} 0$ in L^{∞} implies $f_{\alpha} \to 0$ for τ .

Assume that ξ is a locally convex-solid topology on L^{∞} that is generated by a family $\{p_{\alpha}: \alpha \in \mathcal{A}\}$ of Riesz seminorms on L^{∞} . By putting $\overline{p}_{\alpha}(f) = p_{\alpha}(\tilde{f})$ for $f \in L^{\infty}(X)$ we obtain a family $\{\overline{p}_{\alpha}: \alpha \in \mathcal{A}\}$ of seminorms on $L^{\infty}(X)$ that generates a locally convex-solid topology $\overline{\xi}$ on $L^{\infty}(X)$ (called the *topology associated* with ξ) (see [18] for more details).

The following theorem will be of importance (see [19, Theorem 4.1]).

Theorem 3.2. Assume that X^* has the Radon–Nikodym property. Then the Mackey topology $\tau(L^{\infty}(X), L^{\infty}(X)_n^{\sim})$ is a locally convex-solid topology with the Lebesgue property. Moreover, we have:

 $\tau\left(L^{\infty}(X), L^{\infty}(X)_{n}^{\sim}\right) = \tau\left(L^{\infty}(X), L^{1}(X^{*})\right) = \overline{\tau\left(L^{\infty}, L^{1}\right)}.$

Remark. (i) One can show that if X^* has the Radon–Nikodym property then $\tau(L^{\infty}(X), L^{\infty}(X)_n^{\sim})$ coincides with the natural mixed topology $\gamma_{L^{\infty}(X)}$ on L^{∞} (see [19, Theorem 4.3] and [11,18] for more details).

(ii) In [11, Corollary 3.14] it is shown that $\gamma_{L^{\infty}(X)} = \tau(L^{\infty}(X), L^{1}(X^{*}))$ whenever μ is a positive Radon measure on a compact topological space and X is a Banach space whose dual is separable (hence X^{*} has the Radon–Nikodym property).

Now we are ready to state an Orlicz-Pettis type theorem for operator-valued measures.

Theorem 3.3. Assume that X^* has the Radon–Nikodym property. Then for $m \in \text{fasv}_{\mu}(\Sigma, \mathcal{L}(X, Y))$ the following statements are equivalent:

- (i) T_m is smooth.
- (ii) T_m is σ -smooth.
- (iii) *m* is variationally semi-regular.
- (iv) *m* is countably additive in UOT.
- (v) *m* is countably additive in W^*OT .

Proof. (i) \Rightarrow (ii) It is obvious.

- (ii) \Rightarrow (iii) See Proposition 3.1.
- (iii) \Rightarrow (iv) Clearly, because $||m(A)||_{X \to Y} \leq \tilde{m}(A)$ for $A \in \Sigma$.
- (iv) \Rightarrow (v) It is obvious because W*OT \subset UOT.

 $(v) \Rightarrow (i)$ Assume that *m* is countably additive in W*OT. Then by Theorem 2.1 T_m is $(\tau(L^{\infty}(X), L^{\infty}(X)_n^{\sim}),$

 $\|\cdot\|_{Y}$)-continuous. Hence, since $\tau(L^{\infty}(X), L^{\infty}(X)_{n}^{\sim})$ is a Lebesgue topology (see Theorem 3.2), we obtain that T_{m} is smooth. \Box

4. Vitali-Hahn-Saks type theorems for operator-valued measures

Schaefer and Xiao-Dong Zhang [20] has obtained a generalization of the classical Vitali–Hahn–Saks theorem to compact sets (in the strong operator topology) of countably additive vector measures. In this section we extend this result to the operator-valued case.

Let $\mathcal{L}_{\tau}(L^{\infty}(X), Y)$ stand for the space of all $(\tau(L^{\infty}(X), L^{\infty}(X)_{n}^{\sim}), \|\cdot\|_{Y})$ -continuous linear operators from $L^{\infty}(X)$ to Y. The strong operator topology (briefly SOT) is a locally convex topology on $\mathcal{L}_{\tau}(L^{\infty}(X), Y)$ defined by the family of seminorms $\{p_{f}: f \in L^{\infty}(X)\}$, where $p_{f}(T) = \|T(f)\|_{Y}$ for all $T \in \mathcal{L}_{\tau}(L^{\infty}(X), Y)$. The weak operator topology (briefly WOT) is a locally convex topology on $\mathcal{L}_{\tau}(L^{\infty}(X), Y)$ defined by the family of seminorms $\{p_{f,y^*}: f \in L^{\infty}(X), y^* \in Y^*\}$, where $p_{f,y^*}(T) = |\langle T(f), y^* \rangle|$ for all $T \in \mathcal{L}_{\tau}(L^{\infty}(X), Y)$.

Note that for $Y = \mathbb{R}$, both SOT and WOT coincide on $L^{\infty}(X)_n^{\sim}$ with $\sigma(L^{\infty}(X)_n^{\sim}, L^{\infty}(X))$. In view of [19, Corollary 5.3] we have:

Theorem 4.1. Assume that X^* has the Radon–Nikodym property. Then the space $\mathcal{L}_{\tau}(L^{\infty}(X), Y)$ is WOT-sequentially complete.

Moreover, by [19, Theorem 5.5] we have:

Theorem 4.2. Assume that X^* has the Radon–Nikodym property and let \mathcal{K} be a SOT-compact subset of $\mathcal{L}_{\tau}(L^{\infty}(X), Y)$. Then the set \mathcal{K} is $(\tau(L^{\infty}(X), L^1(X^*)), \|\cdot\|_Y)$ -equicontinuous.

As an application of [19, Theorem 5.6] and Theorem 3.3 we have a Vitali–Hahn–Saks type theorem for operatorvalued measures.

Theorem 4.3. Assume that X^* has the Radon–Nikodym property and let $m_n \in \text{fasv}_{\mu}(\Sigma, \mathcal{L}(X, Y))$ be countably additive in UOT for $n \in \mathbb{N}$. Assume that for every $f \in L^{\infty}(X)$,

$$T(f) := \lim T_{m_n}(f) = \lim \int_{\Omega} f(\omega) \, dm_n \quad \text{exists in } (Y, \|\cdot\|_Y).$$

Then the following statements hold:

(i) $T \in \mathcal{L}_{\tau}(L^{\infty}(X), Y)$ and the measure $m : \Sigma \to \mathcal{L}(X, Y)$, defined by

 $m(A)(x) = T(\mathbb{1}_A \otimes x) \text{ for } A \in \Sigma \text{ and } x \in X,$

belongs to fasv_{μ}(Σ , $\mathcal{L}(X, Y)$) and is also countably additive in UOT.

(ii) $\{T_{m_n}: n \in \mathbb{N}\}$ is a $(\tau(L^{\infty}(X), L^1(X^*)), \|\cdot\|_Y)$ -equicontinuous subset of $\mathcal{L}_{\tau}(L^{\infty}(X), Y)$.

Now we are ready, to state a generalization of the Vitali–Hahn–Saks theorem to SOT-compact sets of $\mathcal{L}_{\tau}(L^{\infty}(X), Y)$ (see [20, Theorem 8]).

Theorem 4.4. Assume that X^* has the Radon–Nikodym property. Let \mathcal{M} be a subset of $\operatorname{fasv}_{\mu}(\Sigma, \mathcal{L}(X, Y))$ and assume that $\{T_m: m \in \mathcal{M}\}$ is a SOT-compact subset of $\mathcal{L}_{\tau}(L^{\infty}(X), Y)$. Then the set \mathcal{M} is uniformly variationally semi-regular, i.e., $\sup_{m \in \mathcal{M}} \tilde{m}(A_n) \xrightarrow{n} 0$ as $A_n \downarrow \emptyset$. Hence \mathcal{M} is uniformly countably additive in UOT, i.e., $\sup_{m \in \mathcal{M}} \|m(A_n)\|_{X \to Y} \xrightarrow{n} 0$ as $A_n \downarrow \emptyset$.

Proof. Let C stand for the family of all absolutely convex, solid, $\sigma(L^1, L^\infty)$ -compact subsets of L^1 . In view of Theorem 3.2 the Mackey topology $\tau(L^\infty(X), L^1(X^*))$ is generated by the family $\{\overline{p}_Z : Z \in C\}$ of seminorms on $L^\infty(X)$, where $\overline{p}_Z(f) = p_Z(\tilde{f}) = \sup\{\int_\Omega \tilde{f}(\omega)|v(\omega)| d\mu: v \in Z\}$. Let $\varepsilon > 0$ be given. Then by Theorem 4.2 there exist $Z_i \in C$ for $1 \leq i \leq i_0$ for some $i_0 \in \mathbb{N}$ and $\delta > 0$ such that

$$\sup_{m \in \mathcal{M}} \|T_m(f)\|_Y \leqslant \frac{\varepsilon}{2} \quad \text{whenever} \ \max_{1 \leqslant i \leqslant i_0} \overline{p}_{Z_i}(f) = \max_{1 \leqslant i \leqslant i_0} p_{Z_i}(\tilde{f}) \leqslant \delta.$$
(1)

Let $A_n \downarrow \emptyset$, $(A_n) \subset \Sigma$. Then $\mathbb{1}_{A_n}(\omega) \to 0$ μ -a.e. and $\mathbb{1}_{A_n} \leq \mathbb{1}_{\Omega}$ for $n \in \mathbb{N}$. Since $\tau(L^{\infty}, L^1)$ is a Lebesgue topology, we get $p_Z(\mathbb{1}_{A_n}) \to 0$ for every $Z \in \mathcal{C}$. Hence there exists $n_0 \in \mathbb{N}$ such that $\max_{1 \leq i \leq i_0} p_{Z_i}(\mathbb{1}_{A_n}) \leq \delta$ for $n \geq n_0$.

Now let $n \in \mathbb{N}$ be fixed. Then for every $m \in \mathcal{M}$ there exist a finite Σ -partition $(A_{n,j}^m)_{j=1}^{k_{m,n}}$ of A_n and $x_{n,j}^m \in B_X$ for $1 \leq j \leq k_{m,n}$ such that

$$\tilde{m}(A_n) \leqslant \left\| \sum_{j=1}^{k_{m,n}} m(A_{n,j}^m) (x_{n,j}^m) \right\|_Y + \frac{\varepsilon}{2}.$$
(2)

Let $s_n^m = \sum_{j=1}^{k_{m,n}} (\mathbb{1}_{A_{n,j}^m} \otimes x_{n,j}^m)$ for $m \in \mathcal{M}$. Then $\tilde{s}_n^m \leq \mathbb{1}_{A_n}$ for every $m \in \mathcal{M}$ and $\max_{1 \leq i \leq n_0} \overline{p}_{Z_i}(s_n^m) \leq \max_{1 \leq i \leq i_0} p_{Z_i}(\mathbb{1}_{A_n})$. Hence by (1) and (2) for $n \geq n_0$ we get:

$$\sup_{m \in \mathcal{M}} \tilde{m}(A_n) \leqslant \sup_{m \in \mathcal{M}} \|T_m(s_n^m)\|_Y + \frac{\varepsilon}{2} \leqslant \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

This means that $\sup_{m \in \mathcal{M}} \tilde{m}(A_n) \xrightarrow{n} 0$, as desired.

It follows that $\sup_{m \in \mathcal{M}} \|m(A_n)\|_{X \to Y} \xrightarrow{n} 0$, because $\|m(A_n)\|_{X \to Y} \leq \tilde{m}(A_n)$ for $n \in \mathbb{N}$. \Box

Acknowledgment

The author is grateful to the referee for his useful comments.

References

- [1] C.D. Aliprantis, O. Burkinshaw, Locally Solid Riesz Spaces, Academic Press, New York, 1978.
- [2] C.D. Aliprantis, O. Burkinshaw, Positive Operators, Academic Press, New York, 1985.
- [3] J. Batt, Applications of the Orlicz–Pettis theorem to operator-valued measures and compact and weakly compact transformations on the space of continuous functions, Rev. Roumaine Math. Pures Appl. 14 (1969) 907–935.
- [4] R.G. Bartle, N. Dunford, J. Schwartz, Weak compactness and vector-measures, Canad. J. Math. 7 (1955) 289-305.
- [5] J.K. Brooks, P.W. Lewis, Linear operators and vector measures, Trans. Amer. Math. Soc. 192 (1972) 139-162.
- [6] J.K. Brooks, P.W. Lewis, Operators on functions spaces, Bull. Amer. Math. Soc. 78 (5) (1972) 697–701.
- [7] A.V. Bukhvalov, On an analytic representation of operators with abstract norm, Izv. Vyssh. Uchebn. Zaved. 11 (1975) 21-32.
- [8] A.V. Bukhvalov, On an analytic representation of linear operators by means of measurable vector-valued functions, Izv. Vyssh. Uchebn. Zaved. 7 (1977) 21–32.
- [9] O. Burkinshaw, P. Dodds, Weak sequential compactness and completeness in Riesz spaces, Canad. J. Math. 38 (6) (1976) 1332–1339.
- [10] P. Cembranos, J. Mendoza, Banach Spaces of Vector-Valued Functions, Lecture Notes in Math., vol. 1676, Springer-Verlag, Berlin, 1997.
- [11] J.B. Cooper, Saks Spaces and Applications to Functional Analysis, North-Holland, Amsterdam, 1978.
- [12] J. Diestel, J.J. Uhl, Vector Measures, Math. Surveys, vol. 15, Amer. Math. Soc., Providence, RI, 1977.
- [13] N. Dinculeanu, Vector Measures, Pergamon Press, New York, 1967.
- [14] N. Dunford, J. Schwartz, Linear Operators, Part I, Interscience, New York, 1958.
- [15] L.V. Kantorovitch, A.V. Akilov, Functional Analysis, third ed., Nauka, Moscow, 1984 (in Russian).
- [16] P.W. Lewis, Some regularity conditions on vector measures with finite semi-variation, Rev. Roumaine Math. Pures Appl. 15 (1970) 375–384.
- [17] P.W. Lewis, Vector measures and topology, Rev. Roumaine Math. Pures Appl. 16 (8) (1971) 1201–1209.
- [18] M. Nowak, Lebesgue topologies on vector-valued function spaces, Math. Japonica 52 (2) (2000) 171-182.
- [19] M. Nowak, Linear operators on vector-valued function spaces with Mackey topologies, J. Convex Anal., in press.
- [20] H. Schaefer, Xiao-Dong Zhang, On the Vitali-Hahn-Saks theorem, Oper. Theory Adv. Appl. 75 (1995) 289-297.
- [21] Tsoy-Wo Ma, Banach-Hilbert Spaces, Vector Measures and Group Representations, Word Scientific, Singapore, 2002.
- [22] A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw-Hill, 1978.