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Abstract

We study operator-valued measures m: X — L(X,Y), where £(X,Y) stands for the space of all continuous linear operators
between real Banach spaces X and Y and X is a o-algebra of sets. We extend the Bartle-Dunford—Schwartz theorem and the
Orlicz—Pettis theorem for vector measures to the case of operator-valued measures. We generalize the classical Vitali-Hahn—Saks
theorem to sets of operator-valued measures which are compact in the strong operator topology.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction and preliminaries

In the theory of vector measures the classical theorems: the Bartle-Dunford—Schwartz theorem (about the range
of countably additive vector measures) (see [4]), the Orlicz—Pettis theorem (see [12]), the Vitali-Hahn—Saks theorem
(see [12,20]) are of importance.

The purpose of this paper is to extend these theorems to the case of operator-valued measures m : ¥ — L(X,Y),
where £(X,Y) stands for the space of all linear continuous operators between Banach spaces X and Y and ¥
is a o-algebra of sets. We obtain these results as consequences of the properties of the corresponding operators
Ty:L®(X)—>Y.

We denote by o (L, K) and (L, K) the weak topology and the Mackey topology on L with respect to a dual
pair (L, K). Let (X, || - |lx) and (Y, || - ||y) be real Banach spaces and let Bx and Sy stand for the closed unit ball and
the unit sphere in X, respectively. Let X* and Y* stand for Banach duals of X and Y, respectively. Denote by £(X, Y)
the space of all continuous linear operators between Banach spaces X and Y. Recall that the uniform operator topology
(briefly UOT) is the topology on £(X, Y) defined by the usual norm || - | x—y. The weak* operator topology (briefly
W*OT) is the topology on L(X, Y) defined by the family of seminorms {py.: y* € Y*}, where py+(U) := ||[y* o U x=
for U € L(X,Y). The weak operator topology (briefly WOT) on L(X,Y) is the topology defined by the family of
seminorms {p, ,+: x € X, y* € Y*}, where p, +(U) = |y*(U(x))| for U € L(X,Y) (see [14]).

The following general result will be needed (see [21, Theorem 13.10.13]).
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Proposition 1.1. The space L(X,Y) is WOT-sequentially complete.

For terminology concerning vector lattices and function spaces we refer to [1,2,15]. Let N and R stand for the
sets of all natural and real numbers. Throughout the paper we assume that (£2, X', 1) is a complete o -finite measure
space. By L?(X) we denote the set of z-equivalence classes of all strongly X -measurable functions f : 2 — X. For
f e LO(X) let us set f(a)) = | f(w)| x forw € 2. Let

L®(X) = {f e LOCX): [ flloo = esssup Flw) < oo}.
we

In case X = R we simply denote L*°. Recall that the algebraic tensor product L>*° ® X is the subspace of L>(X)
spanned by the functions of the form u ® x, (u ® x)(w) = u(w)x, where u € L*°, x € X.

A linear functional F on L°°(X) is said to be order continuous whenever fa ﬁ) 0 in L* implies F(fy) — O.
The set consisting of all order continuous linear functionals on L°(X) will be denoted by L°°(X),” and called the
order continuous dual of L*°(X).

Let L9(X*, X) be the set of weak*-equivalence classes of all weak*-measurable functions g : £2 — X*. Following
[7,8] one can define the so-called abstract norm v : L(X*, X) — L% by 9 (g) := sup{|g.|: x € Bx}, where g, (w) =
g(w)(x) for w € £2 and x € X. Then for f € L%(X) and g € L%(X*, X) the function (f, g) : 2 — R defined by
(f, g)(@) := (f (w), g(w)) is measurable and |( f, g)| < f ¥ (g). Moreover, ¥ (g) = & for g € LO(X*). Let

L'(X* X):={ge L°(X* X): 0(g) e L'}

Due to Bukhvalov (see [7, Theorem 4.1]) L>°(X), can be identified with L'(X*, X) throughout the mapping:
LY(X*,X) > g F, € L®(X),, where

Fg(f)=/<f(a)),g(w)>dp. forall f € L®(X).
2

Then L'(X*) c L'(X*, X). Moreover, the identity L!(X*, X) = L'(X*) holds whenever X* has the Radon—
Nikodym property (see [8, Theorem 3.5], [12, Chapter 3.1]).

Now we recall basic terminology concerning operator-valued measures (see [3,5,6,13,16,17]). A finitely additive
mapping m : X — L(X,Y) is called an operator-valued measure. We define the semivariation m(A) of mon A € ¥
by m(A) =sup || Xm(A;)(x;)|ly, where the supremum is taken over all finite X -partitions (A;) of A and x; € By for
each i. For y* € Y'*,let my« : ¥ — X* be a set function defined by m +(A)(x) := (m(A)(x), y*) for x € X. Then m
is a finite additive measure and 7y« (A) = |my«|(A), where |m«|(A) stands for the variation of m+ on A € X. It is
known that /m(A) < oo if and only if |m+|(A) < oo for every y* € Y'*. Moreover, 1 (A) = sup{|m+|(A): y* € By+}
for A € X (see [3, Theorem 5]).

By fasv(X, L(X,Y)) we denote the set of all finitely additive measures m : ¥ — L£(X,Y) with a finite semi-
variation, i.e., m(§2) < co. Recall that m € fasv(X, £L(X, Y)) is said to be variationally semi-regular if m(A,) — 0
whenever A, | 0, (A,) C X. m € fasv(X, L(X,Y)) is said to be countably additive in UOT if |m(A,)||x—y — O
whenever A, | 0, (A,) C X. m € fasv(X, L(X,Y)) is said to be countably additive in W*OT if for every
y*eY*, [lmy(A,)llx+ — 0 whenever A, | ¥, (A,) C X (see [3, p. 9211, [17, p. 382]).

From now on by fasv, (¥, £(X,Y)) we will denote the set of all m € fasv(X, £(X, Y)) which vanish on p-null
sets, i.e., m(A) = 0 whenever u(A) = 0. It is well known that if m € fasv, (X, L(X, Y)), then T,,(f) = fg f(w)dm
defines a continuous linear operator from L°°(X) into Y, and any continuous linear operator 7' : L°°(X) — Y is given
this way. Moreover, || Ty, || L x)—y = m(£2) (see [13, §9]).

2. Countably additive operator-valued measures

The Mackey topology 7(L>, L') on L™ is of importance in the theory of vector measures (see [20]). It is well
known that T(L%°, L') is the finest locally convex-solid topology on L with the Lebesgue property. Schaefer and
Xiao-Dong Zhang [20] provide a characterization of the countable additivity of vector measures m : ¥ — Y in terms
of continuity of the corresponding linear operators 7}, from L> (provided with 7(L>, L')) into a Banach space Y.

In this section we characterize countable additivity of measures m : ¥ — L£(X, Y) in W*OT in terms of continuity
of the corresponding linear operators 7, : L°°(X) — Y.
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Theorem 2.1. For every m € fasv, (X, L(X, Y)) the following statements are equivalent:

(i) T is (T(L®°(X), L=(X),;)), || - ly)-continuous.
(i) T is (0 (L*®(X), L®(X);), o (Y, Y*))-continuous.
(iii) m is countably additive in W*OT.

Proof. (i) < (ii) See [22, Corollaries 11-1-3, 11-2-6].

(ii) = (iii) Assume that 7, is (o (L*°(X), L*°(X),), o (Y, Y*))-continuous. It follows that y* o T, € L*°(X);,” for
every y* € Y*. To show that m is countably additive in W*OT, assume that A, | @, (A,)) C X and y* € Y*. We show
that ||my+(Ap)|l x+ — 0. Indeed, for every n € N there exists x, € Sx, such that

1
[y A [ = [y (mCA) [ g < [fmCAD o, ) +

Let f, =14, ® x, for n € N. Then fn =14, and 14, ﬂ) 0 in L*°. Hence (y* o Tp,)(f) — 0, because y*o T,, €
L*°(X), . But for n € N we have
(v* 0 Tn) (fn) = (T (La, ® xn), y*) = {m(An) (xn), ).

It follows that [|my«(A,) || x+ — 0, as desired.

(iii) = (ii) Assume that m is countably additive in W*OT, i.e., for every y* € Y™, the measure my«: ¥ — X*
is countably additive and |my«[(£2) = m+(£2) < oo, my+(A) = 0 if u(A) = 0. For every k € N let X} =
{AN 2 Ae X}, where (£2;) is a pairwise disjoint sequence in X such that £2 = U,fil 2r and pu($2x) < oo for
k € N. Let y* € Y* be given. Then by the Radon—-Nikodym type theorem (see [10, Theorem 1.5.3]), for every k € N
there exists a weak*-measurable function gy y« : £y — X* which satisfies the following conditions:

1. the function £2; > w = ||gk,y* (@) || x+ € R is Xi-measurable and integrable,
2. forevery x € X andevery A € X,

e (AN 20)(x) = f (x, gy (@),
ANy
3. forevery Ae ¥

Imy«|(AN 2) = / | gk, v+ (@)
ANS2y

A

Define a function g+ : £2 — X* by setting g,+ (@) = g y* (@) for w € §2¢, i.e., 1o, gy* = gk, y+ for all k € N. Then
gy* is weak*-measurable and since the measure |m«| : ¥ — [0, co) is countably additive, we have

Iy |(82) = |my*|< U m) =Y Imy (R0 =) / | k.= (@)

k=1 k=1 k:19k

xedi= / | gy (@) y» dps-
2

It follows that the function £2 5 @  [|g,+(w)|| x+ € R is integrable; hence the w*-equivalence class of g+ belongs to
L! (X™*, X). Note that for every x € X and A € X we have:

my*(A)(X)=Zmy*(A09k)(x)=Z / (x’gk,y*(a)))dl/«=/<x’gy*(a)))d/vb
k=1 k=1 gng; A
= /((]lA ® x)(®), gy ())d .

Q
Hence for every s = Z?:l (14, ® x;) € S(X, X) (= the set of X-valued X'-simple functions) we get

/s(a))dmy* =/<s(a)),gy*(a)))d,u.

2 2
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Since S(X, X) is dense in (L*°(X), || - |loo), One can easily show that for f € L*°(X)

/f(w)dmy* =f(f(w),gy*(w))dlt
Q Q
and moreover,

y*( f f(w)dm) = f F@)dmy.
2 2

Now let f, — 0in L*®(X) for o (L*°(X), L' (X*, X)). Then

y*(Tm(fa)) :y*</fa(w)dm) :[fa(w)dmy* :/<fa(w)vgy*(a)))dﬂ i 0.
2 2 2

This means that T}, is (6 (L®°(X), L' (X*, X)), o (Y, Y*))-continuous, as desired. O

Now we are in position to generalize the classical Bartle-Dunford—Schwartz theorem concerning the range of
countably additive vector measures (see [4]) to the case of operator-valued measures.

Theorem 2.2. Let m € fasv,, (X, L(X,Y)) be countably additive in W*OT. Then the range {m(A): A€ X} of m is
a relatively WOT-sequentially compact subset of L(X,Y).

Proof. It is well known that {14: A € X'} is a relatively o (L°°, Ll)-sequentially compact subset of L (see [9,
Corollary 5.2]).

Let (m(A,)) be a sequence in £L(X, Y). Then there exists a o (L, L')-Cauchy subsequence (L4,,) of (14,). Now,
let g € L'(X*, X) and x € X. Then |g.| < ||x||x?(g), so gx € L'. Then for m,n € N we have

|Fe(1a,, ® x) — Fg(la, ®X)| = ‘ / (Lay, (@x —14,, (@)x, g(w))du‘
2

= ‘/(]lAk,, (@) — L4, (@) gx (@) du'
2

and this means that (14, ® x) is a o (L®(X), L' (X*, X))-Cauchy sequence. In view of Theorem 2.1 the opera-
tor T, is (o (L°(X), LY(X*, X)), o (Y, Y*))-continuous, so (m(Ag,) (%)) (= (Tn(1a,, ® x))) is a o (Y, Y*)-Cauchy
sequence in Y. This means that (m(Ayg,)) is a WOT-Cauchy sequence in £(X, Y), and by Proposition 1.1 there exists
U € L(X,Y) such that m(Ag,) — U for WOT. O

3. An Orlicz—Pettis type theorem for operator-valued measures

In this section we derive an Orlicz—Pettis type theorem for operator-valued measures.

Definition 3.1. A linear operator T : L°°(X) — Y is said to be smooth (respectively o-smooth) if fa (—0)> 0in L*®
(respectively f ~2 0 in L) implies | T(fa)lly — 0 (respectively | T(£a)lly — 0).

Proposition 3.1. Let m € fasv, (X, L(X,Y)) and assume that T, : L°°(X) — Y is o -smooth. Then m is variationally
semi-regular.

Proof. Indeed, let A, | ¥, (A,) C 2. Then for every n there exist a finite X'-partition (A,, i)f"
1 <i <k, € N such that

| of A, and x,,; € By,

- 1
m(Ay,) < + —.
n

Y

kn
> m(An i) Gon i)

i=1
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Lets, = Zf”zl(JlAm ® xp,;) for n € N. Then §, <14, <1p forn e N, so 5, — 0 u-ae, ie., s, ﬁ) 0in L®°.
Hence

ky
> m(An)Goni)

i=1

[T )y = 0,

Y

som(A,;) — 0, as desired. O

Now, we recall briefly some concepts and results concerning locally solid topologies on vector-valued function
spaces (see [18] for more details). A subset H of L°°(X) is said to be solid whenever f; < f> and f; € L*°(X) and
f> € Himply f; € H. A linear topology T on L®(X) is said to be locally solid if it has a local base at zero consisting

of solid sets. A locally solid topology v on L*°(X) is said to be a Lebesgue topology whenever fu ﬂ) 0in L™
implies f, — O for .

Assume that £ is a locally convex-solid topology on L that is generated by a family {p,: o € A} of Riesz
seminorms on L. By putting py (f) = po(f) for f € L®(X) we obtain a family {p,: « € A} of seminorms on
L% (X) that generates a locally convex-solid topology & on L™ (X) (called the topology associated with &) (see [18]
for more details).

The following theorem will be of importance (see [19, Theorem 4.1]).

Theorem 3.2. Assume that X* has the Radon—Nikodym property. Then the Mackey topology t(L*°(X), L*°(X),) is
a locally convex-solid topology with the Lebesgue property. Moreover, we have:

T(L®(X), L™ (X)) = t(L™(X), L' (X*)) = (L>, LY).

Remark. (i) One can show that if X* has the Radon—Nikodym property then v (L°°(X), L>(X);’) coincides with the
natural mixed topology yzoc(x) on L* (see [19, Theorem 4.3] and [11,18] for more details).

(ii) In [11, Corollary 3.14] it is shown that y00(x) = T(L*(X), L'(X*)) whenever p is a positive Radon measure
on a compact topological space and X is a Banach space whose dual is separable (hence X* has the Radon—Nikodym
property).

Now we are ready to state an Orlicz—Pettis type theorem for operator-valued measures.

Theorem 3.3. Assume that X* has the Radon—-Nikodym property. Then for m € fasv, (X, L(X,Y)) the following
statements are equivalent:

(1) T, is smooth.

(i) T, is o -smooth.
(iii) m is variationally semi-regular.
@iv) m is countably additive in UOT.
(v) m is countably additive in W*OT.

Proof. (i) = (ii) It is obvious.

(i) = (iii) See Proposition 3.1.

(iii) = (iv) Clearly, because ||[m(A)||x—y < m(A) for A e X.

(iv) = (v) It is obvious because W*OT c UOT.

(v) = (i) Assume that m is countably additive in W*OT. Then by Theorem 2.1 T, is (t(L*(X), L*(X);),
| - ly)-continuous. Hence, since 7(L*°(X), L*° (X)) is a Lebesgue topology (see Theorem 3.2), we obtain that 7,
is smooth. O
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4. Vitali-Hahn-Saks type theorems for operator-valued measures

Schaefer and Xiao-Dong Zhang [20] has obtained a generalization of the classical Vitali-Hahn—Saks theorem to
compact sets (in the strong operator topology) of countably additive vector measures. In this section we extend this
result to the operator-valued case.

Let £;(L°°(X),Y) stand for the space of all (t(L*°(X), L°°(X),), | - [ly)-continuous linear operators from
L*°(X) to Y. The strong operator topology (briefly SOT) is a locally convex topology on L;(L*°(X),Y) defined
by the family of seminorms {ps: f € L>(X)}, where p(T) = ||T(f)lly forall T € L;(L*°(X),Y). The weak op-
erator topology (briefly WOT) is a locally convex topology on L. (L%°(X), Y) defined by the family of seminorms
{pry: feLl®(X), y*eY*},where pr+(T) =T (f),y")| forall T € L(L°(X),Y).

Note that for ¥ = R, both SOT and WOT coincide on L*°(X),” with o (L*(X),’, L>°(X)).

In view of [19, Corollary 5.3] we have:

Theorem 4.1. Assume that X* has the Radon—Nikodym property. Then the space L. (L*°(X), Y) is WOT-sequentially
complete.

Moreover, by [19, Theorem 5.5] we have:

Theorem 4.2. Assume that X* has the Radon—Nikodym property and let K be a SOT-compact subset of L (L*°(X), Y).
Then the set K is (t(L>®(X), LY(X*)), | - |ly)-equicontinuous.

As an application of [19, Theorem 5.6] and Theorem 3.3 we have a Vitali-Hahn—Saks type theorem for operator-
valued measures.

Theorem 4.3. Assume that X* has the Radon—Nikodym property and let m,, € fasv, (X, L(X,Y)) be countably addi-
tive in UOT for n € N. Assume that for every f € L*°(X),

T(f):=limT,, (f) zlimff(w)dmn exists in (Y, I| - ||y).
2

Then the following statements hold:

(1) T € L (L®(X),Y) and the measure m : X — L(X,Y), defined by
mA)(x)=T(AsQx) forAe XY andx € X,
belongs to fasv, (X, L(X,Y)) and is also countably additive in UOT.
(ii) {Tpm,: n € N}isa (z(L>®(X), L'(X*)), || - [ly)-equicontinuous subset of L;(L*®(X), Y).

Now we are ready, to state a generalization of the Vitali-Hahn—Saks theorem to SOT-compact sets of L (L*°(X), Y)
(see [20, Theorem 8]).

Theorem 4.4. Assume that X* has the Radon—Nikodym property. Let M be a subset of tasv, (X, L(X,Y)) and
assume that {T,,: m € M} is a SOT-compact subset of L;(L°°(X),Y). Then the set M is uniformly variation-
ally semi-regular, i.e., sup,,c g1 (Ay) —> 0 as Ap | 9. Hence M is uniformly countably additive in UOT, i.e.,
suPet 1m(An) | x—y == 0.as Ay | 0.

Proof. Let C stand for the family of all absolutely convex, solid, U(L1 , L°)-compact subsets of L'. In view of
Theorem 3.2 the Mackey topology t(L>(X), L'(X*)) is generated by the family {pz: Z € C} of seminorms on
L (X), where pz(f) = pz(f) = sup{]g f(a))|v(a))|du: v € Z}. Let ¢ > 0 be given. Then by Theorem 4.2 there
exist Z; € C for 1 <i < ig for some ig € N and § > 0 such that
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sup “Tm(f)Hy < whenever max pz(f)= max pzl.(f) <. (1)
meM 1<i<

e
2 1<i<io IR0

LetA, | 9, (A,) C X.Then1,, (w) - O p-ae.and 14, < 1 forn € N. Since 7 (L, L') is a Lebesgue topology,
we get pz(14,) — 0 for every Z € C. Hence there exists ng € N such that max;;<;, pz,(1a,) <6 for n > no.

Now let n € N be fixed. Then for every m € M there exist a finite X -partition (A,’ﬁ j)’;'i’{ of A, and xr’l”, ;€ By for
1 < j < ky,,p such that

km.n

(A < | Yo m(an ) ()| +3- :

Jj=1 Y

Ko - _
Let s = Zj:‘l(]lsz_j ® x,';) for m € M. Then §;' < 14, for every m € M and maxigi<n, Pz (sy') <

max|<i<io Pz; (La,)- Hence by (1) and (2) for n > ng we get:
e € ¢

- m e .8 8
msél}\)/tm(A”)ng:}\)/l”Tm(sn)”Y—i_z<2+2 €

This means that sup,,,c pq m(An) ——~ 0, as desired.
It follows that sup,,c pq lm (Al x—y - 0, because ||m(Ay)|lx—y <m(A,) forneN. O
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