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Abstract 

A hybrid~method for solving systems of n nonlinear equations is given. The method does not use derivative information 
and is especially attractive when good starting points are not available and the given system is expensive to evaluate. It 
is shown that, after a few steps, each iteration requires (2k + 1) function evaluations where k, 1 ~< k ~< n, is chosen so 
as to have an efficient algorithm. Global convergence results are given and superlinear convergence is established. Some 
numerical results show the numerical performance of the proposed method. 
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1. Introduction 

We consider the numerical solution of systems of nonlinear equations 

F(x) = 0, (1) 

where F : ~n ___~ ~,  is a given mapping. It is known that most common algorithms for solving 
(1) show severe difficulties to converge when starting away from a solution x*. Then they are not 
very useful when a good initial guess is not available. This explains the great interest in global 
methods, i.e. iterative processes converging from a wide range of  initial points [2]. Further, many 
times derivatives are very expensive and for many applications analytic derivatives are not available. 
Therefore there is an interest in algorithms where Jacobian information is not required. 

Very recently, a globally convergent method avoiding explicit computation of  the Jacobian was 
presented by the authors in [1]. The method given in [1] is a hybrid method where a slowly 
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convergent global method is matched with a fast local one. The method was called Switching- 
Method to emphasize that at each iteration suitable tests automatically select which of  the two 
schemes is to be used. 

In this paper a modification of  the Switching-Method is proposed. This modification is obtained 
by combining a direct search method with a damped secant one in the class of  rank-k methods, 
where k is a fixed integer such that 1 ~< k ~< n. The choice k = n gives the original Switching- 
Method. 

Since each iteration of  the proposed modification involves the updating of  k columns among n 
of the iteration matrix, this new iterative method will be called PUS-Method (Partially Updated 
Switching-Method). 

It is shown that the PUS-Method is a globally convergent method yielding a finite difference 
approximation of  the Jacobian. Further, after a finite number of  iterations, the method requires 
(2k + 1) function evaluations per iteration. Therefore, compared with the original method given in 
[1], partial updating of  the iteration matrix yields a method with less computational cost of  each 
iteration. Theoretical analysis of  the asympotic properties of  the proposed methods shows that the 
convergence is superlinear with k-depending rate. Since the convergence of  the original method is 
quadratic, overall effectiveness of  both methods is compared. The result is that the proposed PUS- 
Method is preferable for nonlinear systems for which the computational cost of  the F-evaluation is 
at least of  the order O(n2). 

Numerical results confirm the effectiveness of  the PUS-Method. All nonlinear systems in the 
collections [4, 5] were used for an actual comparison between the proposed modification and the 
original method. Some selected results are given to emphasize the reliability and the high efficiency 
of  the PUS-Method in the numerical solution of  computationally expensive problems. 

2. The PUS-Method 

Let k, 1 ~< k ~< n, be a fixed integer. Each iteration of  the PUS-Method can be viewed in terms of  
two different schemes: a direct search method where k coordinate directions are used at a time and a 
damped secant method where k columns of  the iteration matrix are updated at a time. Suitable tests 
decide which of  these two schemes is to be used at each iteration. The first scheme will be denoted 
as the kCD-Method where CD means "coordinate directions". The second one will be denoted as 
the kUC-Method where UC means "updated columns". 

In order to give a formal description of  the PUS-Method we shall begin by describing the 
kCD-Method and the kUC-Method separately. The Euclidean vector norm and the spectral ma- 
trix norm will be used, both of  which will be denoted by l I" 11. Further, ej will denote the 
j th unit coordinate vector and m = In/k~ will be the smallest integer such that n/k <<. m, i.e. 
m -  l < n/k <~ m. 

The kCD-Method is a direct search method for the unconstrained minimization problem 

mian f ( x ) ,  (2) 

where f :  ~n ~ ~. Starting from a given x (°) E ~", we construct a sequence {x (0} such that 
f ( x  ~i+1)) < f ( x  ~i)) for i ~> 0 and such that each iterate x (/+1) is computed by comparing f-values  at 
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2k trial points around x (0. More precisely we define a trial set T = { j l , . . . , j k}  of  distinct integers 
such that 1 ~< js ~< n, for s = 1 , . . . ,k  and consider 2k trial points 

~j = x (~) + e(°ej and ~.+j = x (~) - e(~)ej, j E T, (3) 

where the steplength e (~) > 0 is given. If some trial point gives a lower value than x (i) of the objective 
function, the iteration is successful. Otherwise the trial set T is changed and other different 2k trial 
points are tested. In the worst case, 2n trial points are visited without obtaining decrease in f ( x ) .  
In this case, the steplength e (0 is reduced (halved) and new trial points are considered. The rule 
for defining the trial sets T is immaterial so long as all 2n trial points around x (~) are tried before 
halving e (i). 

The kUC-Method was initiated by Mukai [6] to solve nonlinear systems (1). Marking the current 
iterate x (~), the next approximation x (~+~) is given by 

X (i+1) = X(i) ~- ~(i)s(i) ' (4) 

w h e r e  s (i) solves 

H(i)s (i) = - F ( x  (i)) (5) 

and the damping factor 2 (~), ~-min ~< /~(i) ~< 1, is such that 

IIF(x(i+X))ll2 OIIF(x( ))ll 2 (6) 

with fixed 0 ~ (0, 1 ) and 2rain > 0. 
In (5) the iteration matrix H (~) differs from previous H u-~) only in k columns. More precisely, 

if K~ is the set of  k indices of  columns to be updated and e(~) is a given positive real number, the 
matrix H (i) is given by 

H(i)ej = H(i-1)ej, j CKi, (7) 

H<i)ej = ± [ F ( x  (i) - e(i)ej) -F (x ( i ) ) ] /~  (i), j E Ki, (8) 

where, only for convenience, the sign plus is taken if 

IIF(x(i) + < IIF(x( ) - d % j ) [ I ,  (9) 

otherwise the sign minus is chosen. 
We remark that from both theoretical and practical points of  view, the unit damping factor 2 (o = 1 

must be chosen whenever possible. So, at each iteration 2 (0 = 1 is tried. If for this value (6) is not 
satisfied, a bisection procedure is used to obtain an acceptable damping factor. 

To explain the basic idea of  the proposed hybrid method we remark that an iteration of  kUC- 
Method is successful if the iteration matrix H (i) is invertible and (4) produces a point x (i+~) satisfying 
(6). If the iteration of  kUC-Method fails to find x (i+1), then an iteration of  the kCD-Method is applied 
to the minimization problem (2) with 

f ( x )  = ½ IIF(x)[I 2. (10) 
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It is possible to match the kUC-Method and the kCD-Method in such a way that all information 
gained by one scheme is exploited when a switch to the alternative method occurs. In this way we 
obtain the PUS-Method. More precisely, given x (o we start with a fixed trial set T1 by updating k 
columns of  the iteration matrix according to (8) with K~ = T1 and try a kUC-iteration. If this is 
not successful, the kCD-Method is used with initial trial set T1 to check up on decrease in IlF(x)ll. 
If (10) does not decrease, new F-values must be computed. Such F-values are used to update 
the iteration matrix and try again kUC-Method. Formally each iteration step of  the PUS-Method is 
described in the following way: 

0. Given x (0, e 0), H (i-1), k 
1. Set H (~) = H (~-1) 
2. For l = 1 , . . . ,m do 

Define Tz -- { j l , . . .  ,A} 
For j = j l , . . . , j k  do 

Compute ~ / =  x (i) + e(i)ej and ~ ,+/= x (~) - e(;)e/ 

If IlF(gj)ll < [[f({,+j)J l, then 
Set { = ¢ /  a n d p = e  0) 

else 
Set ~ = ~,+/ and p = _e(i) 

endif 
Compute H(Oej = ( F (  { )  - F(x( i ) ) /p  

Try a kUC-iteration 
If kUC-iteration is successful, then 

Compute g(i+l)_~_ min{e(i), IIx(i+l) --x(i)ll ' [IF(x(i+l)[[ } 
Go to step 4 

else 
Compute ~ s.t. IIF(~)I[ = min(llF(~/)l[ ,  IIF(~n+DII, j E Tt} 
If IIF( )II < IlF(x(i))ll, then 

Set x (i+1) = ~ and e(i+l) = e(i) 
Go to step 4 

endif 
endif 

3. Set e (i) = E(~)/2 and go to step 2 
4. End of  iteration 

We remark that the updating of  e (o used in the above algorithm should be suitably adjusted for 
problems that are badly scaled [2]. Further, in order to implement the PUS-Method one has to 
specify the rule to define the trial sets Tt and the value of  the constant k. As to the trial sets, they 
can be arbitrarily chosen so long as each column of  the iteration matrix is updated at least once 
in m iterations and all coordinate directions are considered before halving e0). The choice of  the 
parameter k will be discussed in Section 4. 

We point out that if k = 1 is used, the kCD-Method is related to the local variations method 
exploited by E. Polak in [9]. The Polak's method differs from the PUS-Method with k = 1 in the 
rule to visit the trial points and to update the steplength. Therefore, the PUS-Method with k = 1 and 
Polak's method generate different sequences of  points x ~;). 
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3. Convergence results 

The convergence properties of the PUS-Method will be now stated under the following assump- 
tions: 

(i) Given a vector x(°)E~" the set C(x (°)) = {xE~n : IIF(x)ll ~< [[F(x(°))[[} is bounded and 
contained in a convex open set D. 

(ii) F(x) is twice continuously differentiable in D. 
(iii) The Jacobian J(x) of F(x) is invertible. 
(iv) X = {x*E C(x(°)): F(x*)= 0} contains a finite number of  points. 
From these assumptions it follows that for any x* E X there exist positive constants L, 7, P such 

that for all x and y in the closed ball B(x*,p) we have 

I l J (x )  - J ( y ) l l  L l l x  - yll (11) 

and 

IIF(x)l l   'llx - x* II. (12) 

Further, since V f ( x ) =  jV(x)F(x), assumption (iii) ensures that X is the set of  the critical points 
for (10). 

The convergence of  the kCD-Method and the global convergence of  the PUS-Method can be 
obtained by slight modification of the proofs of  Theorems 3.1 and 3.2 given in [1]. We state without 
proof the following results. 

Theorem 3.1. Under assumptions (i)-(iv) the sequence {x (/)} constructed by the kCD-Method 
converges to a point x* E X. 

Theorem 3.2. Under assumptions (i)-(iv) the sequence {x (o} constructed by the PUS-Method 
converges to a point x* EX. 

The next Theorem 3.3 states that it is possible that the first iterations are performed by the kCD- 
Method, but the switch over the kUC-Method occurs after a finite number of  iterations. Moreover, 
for i sufficiently large, x (~+1) is obtained by the kUC-Method with unit damping factor 2 (o and the 
iteration matrix is a difference approximation of the Jacobian. 

Theorem 3.3. Let {x (i)} be a convergent sequence generated by the PUS-Method. Then, under 
assumptions (i)-(iv), there exists an integer M1 > 0 such that for i ~ M1 

X (i+1) = X (i) __ H i -  1F(x(i) ), (13) 

where / / i  - 1  = [ g ( i ) ]  - 1 .  

Proof, Since e (i) ~ 0 and X (i) ~ X* E Y as i ~ c¢, there exists M > m - 1 such that for i > M we 
have e (i-m+1) < p/2 and x (i-~) EB(x*,p/2) for s----0, 1 . . . .  , m -  1. Let i > M. By construction, for any 
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j = 1 , 2 , . . . ,  n there exists an integer s ,  0 ~< s ~< m - 1, such that 

H(i)ej = + ~ [ F ( x  (i-s) + ~(i-S)ej) _ F(x(i-s))] 

/o' = J ( x  (i-s) ± te(i-S)ej)ej dt. 

It follows that 

fO 1 IlH(i>ej - J(x(~>)ejll <~ IlJ(x (*-s) ± te,(i-S)ej)ej -- g(x(°)eil[ at 

and then, by using (11 ), 

]]g(i)ej - J(x(i))ejl[ ~ L[llx ( i ) -  x*]] + ]Ix ( i -s>- x*ll + ½~(,-s>]. (14) 

By the properties of the norms it follows that [[H (° -J(x(0)]]  ~ 0 as i ~ cx~. At this point, the 
result follows by reasoning totally analogous to that found in the proof of  Theorem 3.3 of [1]. [] 

The order of convergence of  the PUS-method will now be investigated. To this end, we recall 
that for any integer q >/0 the algebraic equation 

t q+l - t q - 1 = 0 

has a unique positive solution Zq with the following properties: 1 < "Cq ~< 2, ~0 -- 2, Zq > Zq+l and 
• q ~ l  a s q ~  [7]. 

Theorem 3.4. The R-order o f  the P U S - m e t h o d  is at least Zm-~. 

Proof. Assume that the sequence {x (o} generated by the PUS-Method converges to a solution x* of 
F ( x ) = 0 .  Further, let M > 0 be an integer such that for i/> M, x (~-s) is obtained by the kUC-Method 
for s = 0, 1 , . . . , m -  1. Then, by construction, e (i-s) <<. ]]F(x(i-s>)]] and from (12) and (14) we obtain 
for all j = 1, . . . ,n ,  

I I g ( %  - J(x(%ejl l  ~ L[llx('~ - x* II + (1 + ½7) tl x(i-s) - x* II]- 

Hence, the properties of  the norms imply the existence of/~ > 0 such that 

m--1 
IIH (° - g(x(i))ll <~ ~ ~ II x(i-j) - x* II. 

j=0 

Then, from the mean-value theorem and (11 ) it follows that for i sufficiently large 

II x(~+l) - x* II = IIx(') - H S 1 F ( x  (i)) - x* II 

~< IIx(') - x* II [[Hi- 1 ]Jill g(i) - g(x(i))ll + L[[ x(i) - x* II3 
m--I 

~< IIHZ 1 II IIxC') - x* I1[/~ ~ IIx('-J> - x* II + LIIx"> - x* II]. 
j=0 
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Therefore, 

m-1 

II x (*+l>  - x*ll tix"  - x*ll Z  illx<*-J) - x*ll, 
j-O 

where 70,...,7m-~ are suitable positive constants. Then, by the result 9.2.9 of  [7], the R-order is at 
least Zm-1- 

As one of  the referees pointed out, our results hold with continuity of  first derivates and condition 
(11) instead of  the assumption of  the existence of  second derivatives. The convergence analysis 
under these assumptions is completely analogous to one given in [3] with some additional minor 
technical difficulties. 

In conclusion, we saw that the PUS-method preserves global convergence property of  the original 
Switching-Method. Further, the convergence is superlinear with k-depending rate and the quadratic 
convergence is obtained when k = n. 

4. Implementation 

In order to implement the PUS-Method we must decide how to choose the starting iteration matrix 
H (°) and the number k of  columns updated at each iteration. 

Concerning the choice of  H (°) we remark that the global convergence of  the PUS-Method is proved 
without any particular assumptions on H (°). In particular, H (°) is not required to be the Jacobian 
at x (°) or its approximation. Moreover, the starting matrix may be a singular matrix. In this case 
a number of  function evaluations is required to obtain an invertible iteration matrix. In particular, 
if the null matrix H (°) = 0 is used, 2n function evaluations are spent in this initial phase. On the 
other hand, if  a nonsingular H (°) is used it is entirely possible that a number of  function evaluations 
may be required to tempt the kUC-Method before any real progress is achieved. However, the PUS- 
Method recovers from a bad (singular) initial iteration matrix and automatically constructs a right 
approximation to the Jacobian. 

Concerning the choice of  the number k of  columns updated at each iteration, we remark that the 
computational cost of  each iteration depends on k. Following Ostrowsky [8], we consider as the 
measure of  the efficiency of  the method the quantity: 

E(k) = L(k)/W(k), 

where L(k )= log  Zm_ 1 and W(k) is the limit of  the amount of  work required to perform one iteration. 
In the PUS-Method the computational cost of  each iteration increases with k. On the other hand, the 
convergence rate decreases when k decreases, as it follows from Theorem 3.4. For these reasons, 
we are interested in finding a value k < n such that the PUS-Method takes less computing time to 
verify a fixed stopping criterion. From Theorem 3.3 it follows that after a finite number of  iterations 
the damping factor 2(0= 1 is used in (4). In this case, each iteration involves (2k+  1) F-  evaluations 
and the solution of  one linear algebraic system. Thus, the asymptotic amount of  work W(k) of  the 
PUS-Method is given by W(k) = (2k + 1 )CF + CA where CF is the cost of  one F-evaluation and CA 



84 S. Bellavia et al./Journal of  Computational and Applied Mathematics 76 (1996) 77-88 

the cost of  the solution of  (5). It seems reasonable to choose k = k* maximizing 

E(k) = L(k)/[(2k + 1)CF + CA]. (15) 

Concerning an estimation of CF we note that in general, it is not feasible to count all the floating 
point operations involved by each F-evaluation. However, most of  the important ones may be counted 
assuming that elementary arithmetic operations and elementary functions have each unitary cost. 
About CA, assume that matrix factorization techniques are used for linear algebraic systems. Then, 
well-known estimates of  the arithmetic cost CA are available. 

In our implementation of  the PUS-Method the QR-factorization is used. In this case the theoretical 
approach based on maximization of  (15) recommends the value k* = n for nonlinear systems with 
computational cost CF <~ n 2. In order to find a minimal CF for which the optimal k is less than 
n, we reasonably assume n/> 10. In this case, the theoretical suggestion k* ~< In/2] is obtained for 
problems with CF >i 2n 2. 

It is worth noting that approach (15) does not take into account the initial speed of  the method. 
Numerical experiments involving problems with different computational cost CF are essential to 
decide if this approach leads to a more computationally efficient algorithm than the choice k---n. 

In Table 1 we give the k*-values resulting from some pairs (CF, n) used in the numerical experi- 
ments. 

Table 1 
Theoretical k*-values when the QR-factorization is used 

C F = n  2 CF=2n 2 CF=3n 2 CF=4n 2 CF~-5n 2 

n k* k* k* k* k* 

10 10 5 5 5 2 
20 20 10 5 5 5 
40 40 20 10 10 10 
60 60 30 20 15 15 
80 80 40 27 20 16 

100 100 50 25 25 20 
200 200 100 67 50 40 
400 400 200 134 100 80 

CF= lOn 2 CF= 15n 2 CF= 20n 2 CF= 25n 2 CF= 50n 2 
n k* k* k* k* k* 

10 2 2 2 2 1 
20 4 2 2 2 2 
40 5 4 4 4 2 
60 10 6 5 5 3 
80 10 8 8 5 4 

100 10 10 10 5 5 
200 25 20 20 10 8 
400 50 40 25 25 16 
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5. Some numerical results 

In this section, we present some numerical results obtained in the solution of standard test problems 
taken from [4, 5]. All problems were solved with increasing dimension and several starting points. 
In particular, for each fixed n, we used x (°) = 10Jx~, j = 0, 1,2, 3 where x~ is the standard initial point. 
In this way we tested the robustness of  the PUS-Method, i.e. its ability to solve problems from a 
wide range of initial points. 

All computations were performed on a IBM Risc 6000 with the precision of  about 16 deci- 
mal places. The initial steplength was e (°) = 0.1f[x(°)ll and 0 = 0.975 was used in (6). Further, 
• ~-min = 0.125 was used. In all numerical experiments H (°) was chosen as the null n x n ma- 
trix. In this way the algorithm was tested without any favor. Convergence was declared when 
either IIF(xCi))ll < 10 -9 or [Ix (i+1) -x( i ) l l  < 10-9[Ix(i)[[-~- 10 -9. Failure was declared when conver- 
gence was not achieved after /max = max(2On/k, 500) iterations, when Fmax = 500n F-evaluations 
were performed, when the steplength e(i) was reduced below e.mi, = 10 -7. The QR-factorization 
was decided for numerical solution of linear algebraic systems and the theoretical approach given 

Table 2 
Some results for Problem 1 

n x (°) k Ilvll NeD Nuc NF rk/Tn 
150 xs 150 0.0 0 9 3938 1.0 

75 0.0 1 9 3217 1.2 
30 0.0 0 14 3225 2.4 
15 0.0 1 15 3147 4.1 
10 0.0 2 15 3195 5.7 
6 0.0 2 16 3475 9.1 

400 xs 

102x~ 150 0.5(-9) 0 2 603 1.0 
75 0.4(-9) 1 2 453 1.1 
30 0.4(-9) 4 2 363 1.6 
15 0.4(-9) 9 2 333 2.6 
10 0.3(-9) 14 2 323 3.6 
6 0.3(-9) 24 2 315 5.8 

400 0.6(-13) 0 2 1603 1.0 
200 0.6(-13) 1 2 1203 1.2 
100 0.6(-13) 3 2 1003 1.8 
50 0.6(-13) 7 2 903 2.9 
25 0.6(-13) 15 2 853 5.1 
10 0.6(-13) 39 2 823 11.7 

102Xs 400 0.0 0 3 2404 1.0 
200 0.1(--9) 1 3 1604 1.1 
100 0.8(--10) 3 3 1204 1.4 
50 0.6(-10) 7 3 1004 2.1 
25 0.5(-10) 15 3 904 3.6 
10 0.5(-10) 39 3 844 7.9 
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in the previous section was used to decide the number k of columns updated at each 
iteration. 

To have some measure of the overall efficiency of the PUS-Method , we considered the number 
NCD of iterations performed by the kCD-Method, the number Nuc of iterations performed by the 
kUC-Method, the total number NF of required F-evaluations and the ratio Tk/Tn, where Tk is the 
time of computation spent with the choice k < n and T, is the time of computation spent with k = n. 

The accuracy of  the PUS-Method was measured by the norm I[FII of  the function value at the 
computed solution. 

To show typical behavior of the PUS-Method we give some selected results obtained with the 
Extended Rosenbrock function, the Gheri-Mancino function and a set of problems with variable 
computational cost obtained by repeated evaluations of the extended Rosenbrock function. 

Problem 1. The extended Rosenbrock function in n variables is given by 

F 2 i _ l ( X )  10(x2i 2 z - x 2 i - 1  ) ,  
1 i =  1, . . . ,$n.  

F2i(x) = 1 - x2i-l, 

This very popular test problem was solved for n = 50, 100, 150 . . . . .  400. 
The PUS-Method converged to x=(1,  1, . . . ,  1 )-r for all used starting vectors x~°)= 10Jxs, j = 0 ,  1,2, 3 

where x, = (-1.2,  1 .0 , . . . , -1 .2 ,  1.0) v. 
The estimated computational cost of each F-evaluation is CF = 5n and the choice k = n is recom- 

mended for the PUS-Method. This is confirmed in the practice. It turned out that when k decreases 
more iterations are performed, less F-evaluations are generally computed but the minimum time of  
computation spent to reach the convergence occurs for k = n. These facts are shown in the Table 2 
for some values of n and x {°). 

Problem 2. The Gheri-Mancino function in n variables is given by 

Fi(x) = 14nxi + (i - n/2) 3 
i--I  

+ ~ ~ij(sinS( In ~i#) +cosS( In ~ij)) 
j= l  

+ ~ ~ij(sin5(ln~ij)÷cosS(ln~ij)), i =  1 , . . . ,n ,  
j i+1 

~ij = ~ + i/j. where 

We solved this problems with increasing values of  n. The used dimensions range from n = 10 to 
n = 200. 

The problem F(x)  = 0 was solved in [4] where the computed solution is given for n = 50. For 
n=50 ,  we obtained a final approximation which coincides with the result in [4] up to five significant 
digits at least. 

The used standard initial guess was x s = - [ ( c l  +c2)/2clc2]F(0) where cl = 2 0 n - 6  and c2 = 8n +6.  
The estimated computational cost of  one F-evaluation is CF = 14n 2 -- 7n. It was verified that the 

optimal values of  k are those of  Table 1 with CF = 15n 2. 
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Table 3 
Some results for the Problem 2 

x (°) n k* k IIFII NeD Nuc NF Tk/T, 

x, 10 2 10 0.3(-10) 0 3 64 
2 0.4(-11) 1 4 37 0.2 

20 2 20 0.8(--13) 0 4 165 
2 0.5(--10) 1 5 62 0.4 

30 3 30 0.5(-12) 0 4 245 
3 0 .6(-9)  1 5 90 0.4 

40 4 40 0.6(-  11 ) 0 4 325 
4 0 .5(-9)  1 5 118 0.4 

50 5 50 0.3(-9)  0 4 405 
5 0 .4(-9)  1 6 157 0.4 

10x~ 10 2 10 0.1(-13) 0 5 106 
2 0.7(-12) 2 6 47 0.6 

20 2 20 0.8(-13) 0 5 206 
2 0.2(-  11 ) 5 7 72 0.4 

30 3 30 0.7(-12) 0 5 306 
3 0.8(-9)  5 7 104 0.3 

40 4 40 0.9( - 12 ) 0 5 406 
4 0 .1(-8)  5 6 127 0.3 

50 5 50 0.2(-  11 ) 0 6 607 
5 0.4(-8)  5 6 157 0.3 

102xs 10 2 10 0.7(-14) 0 5 106 
2 0.4(-9)  2 6 47 0.5 

20 2 20 0.8(-13) 0 6 247 
2 0.5(-8)  5 6 67 0.3 

30 3 30 0.5(-12) 0 6 367 
3 0.4(-11) 5 7 104 0.3 

40 4 40 0.9(-12) 0 6 487 
4 0.1(-9)  5 7 136 0.3 

50 5 50 0.2(-  11 ) 0 6 607 
5 0.8(-9)  5 7 168 0.3 

The  o b t a i n e d  n u m e r i c a l  resul ts  show the g o o d  p e r f o r m a n c e  o f  the  p r o p o s e d  P U S - M e t h o d  . The  

n u m b e r  o f  F - e v a l u a t i o n s  is e s sen t i a l l y  r e d u c e d  w h e n  k = k* is u sed  ins t ead  o f  k = n and  the t ime  

o f  c o m p u t a t i o n  irk is a l w a y s  m o r e  than  ha lved  wi th  r e spec t  to Tn. 

In  T a b l e  3 w e  g ive  the  resul t s  o b t a i n e d  wi th  n = 1 0 , 2 0 , . . . ,  50. A n a l o g o u s  b e h a v i o r  was  o b s e r v e d  

for  all  u sed  va lue s  o f  n. 

P r o b l e m  3. A set o f  p r o b l e m s  wi th  va r i ab l e  c o m p u t a t i o n a l  cos t  was  de f ined  b y  r e p e a t e d  eva lua t i ons  

o f  the  E x t e n d e d  R o s e n b r o c k  funct ion .  

W e  used  the s ame  n and  x (°) o f  P r o b l e m  1 and  w e  gene ra t ed  p r o b l e m s  wi th  CF = pn 2 wi th  

p = 5, 10, 1 5 , . . . , 5 0 .  

The  va lues  NCD, Nuc,  NF and  IIFII are  i n d e p e n d e n t  on  the va r i a t i on  o f  CF. On the con t ra ry ,  the  

c o m p u t a t i o n a l  t ime  is v e r y  sens i t ive  to CF and  it was  ver i f i ed  that  w h e n  k = k* is u s e d  a lot  o f  
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Table 4 
Effectiveness of solving Problem 3 with k = k* 

CF n k* Tk*IT~ CF n k* Tk*lTn CF n k* Tk*lTn 

5n 2 100 20 0.7 lOn 2 100 10 0.7 15n 2 100 10 0.6 
150 30 0.7 150 19 0.7 150 15 0.6 
200 40 0.6 200 25 0.6 200 20 0.6 
250 50 0.5 250 36 0.5 250 25 0.4 
300 60 0.6 300 43 0.6 300 30 0.6 
400 80 0.5 400 50 0.4 400 40 0.4 

20n 2 100 10 0.6 25n 2 100 5 0.6 50n 2 100 5 0.6 
150 10 0.6 150 10 0.6 150 6 0.6 
200 20 0.6 200 10 0.6 200 8 0.6 
250 18 0.4 250 18 0.4 250 10 0.4 
300 25 0.6 300 20 0.6 300 12 0.5 
400 25 0.4 400 25 0.4 400 16 0.4 

t ime  is s a v e d  c o m p a r e d  wi th  the  t ime  spen t  wi th  k = n. A s  an e x a m p l e  w e  s h o w  in Tab le  4 the  

resul t s  o b t a i n e d  wi th  x (°) = 102x~. A n a l o g o u s  b e h a v i o r  was  o b s e r v e d  for  all  the  u sed  x (°) = 10ix, ,  for  

j = 1,2, 3. In  these  cases ,  the  t ime  o f  c o m p u t a t i o n  w a s  abou t  h a l v e d  w h e n  k = k* w a s  chosen .  

W i t h  the  ini t ia l  po in t  x (°) - -x~ such  impor t an t  s av ing  o f  c o m p u t a t i o n a l  t ime  was  not  o b s e r v e d  but  

different  cho ices  o f  e(0) have  been  succe s s fu l l y  u sed  to this  end.  
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