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Abstract

One of the questions which comes up when using embedded domain specific languages is to what extent
we can analyze and transform embedded programs, as normally done in more conventional compilers.
Special problems arise when the host language is strongly typed, and this host type system is used to
type the embedded language. In this paper we describe how we can use a library, which was designed
for constructing transformations of typed abstract syntax, in the removal of left recursion from a typed
grammar description. The algorithm we describe is the Left-Corner Transform, which is small enough to
be fully explained, involved enough to be interesting, and complete enough to serve as a tutorial on how
to proceed in similar cases. The described transformation has been successfully used in constructing a
compositional and efficient alternative to the standard Haskell read function.

Keywords: GADT, Left-Corner Transform, Meta Programming, Type Systems, Typed Abstract Syntax,
Typed Transformations

1 Introduction

In Haskell one can describe how values of a specific data type are to be serialised (i.e.
written) and deserialised (i.e. read or parsed). Since data types can be passed as
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parameter to data type constructors, and definitions can be spread over several mod-
ules, the question arises how to dynamically combine separately generated pieces
of “reading code” into a function read for a composite data type. The standard
solution in Haskell, based on a straightforward combination of top-down parsers,
has turned out to exhibit exponential reading times. Furthermore, in order to avoid
the dynamic construction of left recursive top-down parsers at run-time the input
is required to contain many more parentheses than one would expect.

In a recent paper [12] we have presented a solution to this problem; instead of
generating code which reads a value of some data type a, the compiler constructs
a value of type Grammar a which represents the piece of grammar that describes
external representations of values of that data type. The striking feature of this
grammar type is that it reflects the type of values represented. This is necessary,
since from such a value eventually a read function of type String → a has to be
constructed by Haskell library code.

Our purpose is to split the parsing process in two parts, when dealing with
possibly left-recursive grammars at run-time. Instead of using left-corner parsers,
having to analyze the grammar every time we parse, the grammar is transformed
once to remove left-recursion and then conventional efficient parsing techniques can
be used. The solution builds upon three, more or less independent, layers (from top
to bottom):

(i) A template Haskell library which generates the values of type Grammar a and
library code which combines such values at run-time to form a complete gram-
mar. Out of this combined value the desired read function for the composed
data type is constructed, again by library Haskell code. This whole process is
described in the aforementioned paper [12].

(ii) This code calls a library function which removes potential left-recursion from
the composed grammar. For this we use the Left-Corner Transform (LCT)
[7]. This code, which produces a function of type Grammar a → Grammar a,
is a fine example of how to express transformations of typed abstract syntax
containing references; in the Grammar a case these stem from occurrences of
non-terminal symbols in the right hand sides of the productions.

(iii) The LCT and the left-factoring code make use of an intricate Haskell library,
which exploits every corner of the Haskell type system and its extensions, such
as Generalised Algebraic Data Types, existential and polymorphic types, and
lazy evaluation at the type level. The design alternatives and the final design
of the library, as it has been made available to the Haskell world, deserved a
paper of its own [1].

In this paper we focus on the middle of the above three layers; we start out
by presenting an elegant formulation of the LCT in combination with an untyped
Haskell implementation, next we introduce the API as implemented by the bottom
layer, and we finish by reformulating the untyped version into a typed one using
this API.

The LCT [6] is more involved than the direct left recursion removal given in
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[2], but is also more efficient (O(n2), where n is the number of terminals and non-
terminals in the grammar). Here we will start from an improved version formulated
by Robert C. Moore [7], which we present in a more intuitive form. Both his tests,
using several large grammars for natural language processing, and our tests [12],
using several very large data type descriptions, show that the algorithm performs
very well in practice.

What makes this transformation interesting from the typed abstract syntax point
of view is that a grammar consists of a collection of grammar rules (one for each non-
terminal) containing references to other definitions; we are thus not transforming
a tree but a complete binding structure. During this transformation we introduce
many new definitions. In the right hand side of these definitions we again use
references to such newly introduced symbols. In our setting a transformation must
be type preserving and we thus have to ensure that the types of the environment
and the references remain consistent, while being modified. Previous work on typeful
program transformations [3,8,2] cannot handle such introductions of new definitions
and binders.

We present the algorithm in terms of Haskell code, and thus require Haskell
knowledge from the reader. Please keep in mind however that Haskell currently is
one of the few general purpose languages in which the problem we describe can be
solved at all.

2 Left-Corner Transform

In this section we introduce the LCT [6] as a set of construction rules and sub-
sequently give an untyped implementation in Haskell98. Note that, despite being
called a transformation, the process is actually constructing a new grammar while
inspecting the input grammar. We assume that only the start symbol may derive
ε.

We say that a symbol X is a direct left-corner of a non-terminal A, if there exists
a production for A which has the symbol X as its left-most symbol in the right-hand
side of that production. We define the left-corner relation as the transitive closure
of the direct left-corner relation. Note that a non-terminal being left-recursive is
equivalent to being a left-corner of itself.

The LCT is defined as the application of three surprisingly simple rules. We use
lower-case letters to denote terminal symbols, low-order upper-case letters (A, B ,
etc.) to denote non-terminals from the grammar and high-order upper-case letters
(X , Y , Z ) to denote symbols that can either be terminals or non-terminals. Greek
symbols denote sequences of terminals and non-terminals.

For a non-terminal A of the original grammar the algorithm constructs new
productions for A, and a set of new definitions for non-terminals of the form A X .
A new non-terminal A X represents that part of A which is still to be recognised
after having seen an X . The following rules are applied for each non-terminal until
no further results are obtained:

Rule 1 For each production A → X β of the original grammar add A X → β to
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the transformed grammar, and add X to the left-corners of A.

Rule 2 For each newly found left-corner X of A:
a If X is a terminal symbol add A → X A X to the new grammar.
b If X is a non-terminal then for each original production X → X ′ β add the

production A X ′ → β A X to the new grammar and add X ′ to the left-corners
of A.

As an example consider the grammar:
A → a A | B
B → A b | c

Applying rule 1 for the productions of A results in two new productions and two
newly encountered left-corners:

A a → A
A B → ε leftcorners = [a,B ]

rule 2a with X bound to the left-corner a ⇒
A → a A a leftcorners = [a,B ]

rule 2b with X bound to the left-corner B ⇒
A A → b A B
A c → A B leftcorners = [a,B ,A, c ]

rule 2b with X bound to the left-corner A ⇒
A a → A A A
A B → A A leftcorners = [a,B ,A, c ]

rule 2a with X bound to the left-corner c ⇒
A → c A c leftcorners = [a,B ,A, c ]

Since now all left-corners of A have been processed we are done with A. For the
non-terminal B the process yields the following new productions:

B A → b -- rule 1
B c → ε -- rule 1
B a → A B A -- rule 2b, A
B B → B A -- rule 2b, A
B → c B c -- rule 2a, c
B → a B a -- rule 2a, a
B A → b B B -- rule 2b, B
B c → B B -- rule 2b, B

Note that by construction this new grammar is not left-recursive.

2.1 The Untyped Left-Corner Transform

Before presenting our typed LCT, we present an untyped implementation. Gram-
mars are represented by the types:

type Grammar = Map NT [Prod ]
type NT = String
type Prod = [Symbol ]
type Symbol = String
isNonterminal = isUpper . head
isTerminal = isLower . head

Thus a Grammar is a mapping which associates each non-terminal name with its set
of productions. Each production (Prod) consists of a sequence of symbols (Symbol).
So our example grammar can be encoded as:

grammar = Map.fromList [("A", [ ["a", "A" ], ["B" ] ])
, ("B", [ ["A", "b" ], ["c" ]])]

In the transformation process we use the Control .Monad .State-monad to store the
thus far constructed new grammar. For each non-terminal we traverse the transitive
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left-corner relation as induced by the productions in depth-first order, while caching
the set of thus far encountered left-corner symbols in a list:

type LeftCorner = Symbol
type Step State = (Grammar , [LeftCorner ])
type Trafo a = State Step State a

The function leftcorner takes a grammar and returns a transformed grammar by
running the transformation rules1 , which yields a value of the monadic type Trafo.
The state is initialized with an empty grammar and an empty list of encountered
left-corner symbols. The final state contains the newly constructed grammar:

leftcorner :: Grammar → Grammar
leftcorner g = fst . snd . runState (rules1 g g) $ (Map.empty, [ ])

For each (mapM ) non-terminal (A) the function rules1 visits each (mapM ) of its
productions; each visit results in new productions using rule2a and rule2b. They are
added to the transformed grammar by the function insert . The productions result-
ing from rule2a are returned (ps), and together (concat) from the new productions
for the original non-terminal A. The left-corners cache is reset when starting with
the next non-terminal:

rules1 :: Grammar → Grammar → Trafo ()
rules1 gram nts = mapM nt (Map.toList nts)

where nt (a, prods) =
do ps ← mapM (rule1 gram a) prods

modify (λ(g, ) → (Map.insert a (concat ps) g, [ ]))

For each of the rules given we define a function: rule2b generates new productions for
non-terminals of the original grammar, and rule1 and rule2b generate productions
for non-terminals of the form A X :

rule1 :: Grammar → NT → Prod → Trafo [Prod ]
rule1 grammar a (x : beta) = insert grammar a x beta

rule2a :: NT → Symbol → Prod
rule2a a b b = [b, a b ]

rule2b :: Grammar → NT → NT → Prod → Trafo [Prod ]
rule2b grammar a a b (y : beta) = insert grammar a y (beta ++ [a b ])

The function insert adds a new production for a non-terminal A X to the grammar:
if we have met A X before, the already existing entry is extended and otherwise
a new entry for A X is added. In the latter case we apply rule2 in order to find
further left-corner symbols:

insert :: Grammar → NT → Symbol → Prod → Trafo [Prod ]
insert grammar a x p =

do let a x = a ++ "_" ++ x
(gram, lcs) ← get
if x ∈ lcs then do put (Map.adjust (p:) a x gram, lcs)

return [ ]
else do put (Map.insert a x [p ] gram, x : lcs)

rule2 grammar a x

In rule2 new productions resulting from applications of rule2b are directly inserted
into the transformed grammar, whereas the productions resulting from rule2a are
collected and returned as the result of the Trafo-monad. When the newly found
left-corner symbol is a terminal rule2a is applied, and the resulting new production
rule is simply returned. If it is a non-terminal, its corresponding productions are
located in the original grammar and rule2b is applied to each of them:

rule2 :: Grammar → NT → Symbol → Trafo [Prod ]
rule2 grammar a b

| isTerminal b = return [rule2a a b b ]
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| otherwise = do let Just prods = Map.lookup b grammar
rs ← mapM (rule2b grammar a a b) prods
return (concat rs)

where a b = a ++ "_" ++ b

Note that the functions rule2 and insert are mutually recursive. They apply the
rules 2a and 2b until no new left-corner symbols are found. The structure of the
typed implementation we present in section 4 closely resembles the untyped solution
above.

3 Typed Transformations

The typed version of the LC transform is implemented by using a library (TTTAS 4 )
we described in a companion paper [1] to perform typed transformations of typed
abstract syntax (in our case typed grammars). In the following subsections we
introduce the basic constructs for representing typed abstract syntax and the library
interface for manipulating it.

3.1 Typed References and Environments

Pasalic and Linger [8] introduced an encoding Ref of typed references pointing into
an environment containing values of different type. A Ref is actually an index
labeled with both the type of the referenced value and the type of the environment
(a nested Cartesian product, growing to the right) the value lives in:

data Ref a env where
Zero :: Ref a (env ′, a)
Suc :: Ref a env ′ → Ref a (env ′, b)

The type Ref is a generalized algebraic data type [10]. The constructor Zero ex-
presses that the first element of the environment has to be of type a. The construc-
tor Suc does not care about the type of the first element in the environment (it is
polymorphic in b), and remembers a position in the rest of the environment.

We extend this idea such that environments do not contain values of mixed
type but terms (expressions) describing such values instead; these terms take an
extra type parameter describing the environment into which references to other
terms occurring in the term may point. In this way we can describe typed terms
containing typed references to other terms. As a consequence, an Env may be used
to represent an environment, consisting of a collection of possibly mutually recursive
definitions. The environment stores a heterogeneous list of terms of type t a use,
which are the right-hand expressions of the definitions. References to elements are
represented by indices in the list.

data Env term use def where
Empty :: Env t use ()
Ext :: Env t use def ′ → t a use → Env t use (def ′, a)

The type parameter def contains all the type labels a of the terms of type t a use
occurring in the environment. When a term is added to the environment using Ext ,
its type label is included as the first component of def . The type use describes the

4 http://hackage.haskell.org/cgi-bin/hackage-scripts/package/TTTAS.
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types that may be referenced from within terms of type t a use using Ref a use
values. When the types def and use coincide the type system ensures that the
references in the terms do not point to values outside the environment.

The function lookupEnv takes a reference and an environment into which the
reference points. The occurrence of the two env ’s in the type of lookupEnv guaran-
tees that the lookup will succeed, and that the value found is indeed labeled with
the type with which the Ref argument was labeled, which is encoded by the two
occurrences of a:

lookupEnv :: Ref a env → Env t s env → t a s
lookupEnv Zero (Ext t) = t
lookupEnv (Suc r) (Ext ts ) = lookupEnv r ts

3.2 Transformation Library

The library is based on the type Trafo, which represents typed transformation steps.
Each transformation step (possibly) extends an implicitly maintained environment
Env .

data Trafo m t s a b = Trafo (∀env1 . m env1 → TrafoE m t s env1 a b)

The argument m stands for the type of the observable state of the transformation.
A Trafo takes such a state value, which depends on the environment constructed
thus far, as input and yields a new state corresponding to the (possibly extended)
environment. The type t is the type of the terms stored in the environment. The
type variable s represents the type of the final result, which is passed as the use
argument in the embedded references. We compose transformations in an arrow
style. The arguments a and b are the Arrow ’s input and output, respectively. The
Arrow library [5] contains a set of functions for constructing and combining values
that are instance of the Arrow class. Furthermore there is a convenient notation [9]
for programming with Arrows. This notation is inspired by the do-notation for
Monads. The class ArrowLoop is instantiated to be able to construct feedback loops.
The TTTAS library includes a combinator, analogous to the sequence combinator
for Monads, which combines a sequence of transformations into one single large
transformation:

sequenceA :: [Trafo m t s a b ] → Trafo m t s a [b ]

Each individual transformation maps the input a onto a value b. The combined
results b resulting from applying the individual transformations in sequence, are
returned as a list [b ].

The constructor Trafo contains a function which maps a state in the current
environment to the actual transformation, represented by the type TrafoE . Because
the internal details of the type TrafoE are of no relevance here, we do not give its
definition; we only present its constructors:

extEnv :: m (e, a) → TrafoE m t s e (t a s) (Ref a s)
castSRef :: m e → Ref a e → TrafoE m t s e i (Ref a s)
updateSRef :: m e → Ref a e → (i → t a s → t a s)

→ TrafoE m t s e i (Ref a s)

The function extEnv builds a TrafoE which takes a typed term (of type t a s) as
input, adds it to the environment and yields a reference pointing to this value in
the final environment (s). The argument of extEnv is a state that depends on the
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extended environment (e, a). Thus, for example, a transformation that extends the
environment without keeping any internal state can be implemented:

data Unit env = Unit

newSRef :: Trafo Unit t s (t a s) (Ref a s)
newSRef = Trafo (λ → extEnv Unit)

The function castSRef builds a TrafoE that returns the reference passed as param-
eter (in the current environment e) casted to the final environment. The function
updateSRef builds a TrafoE that updates the value pointed by the passed reference.
Note that the update function (of type i → t a s → t a s) can use the input of
the Arrow . The type (TrafoE m t s e a) is an instance of the class Functor , so the
function

fmap :: (b → c) → TrafoE m t s e a b → TrafoE m t s e a c

lifts a function with type (b → c) and applies it to the output of the Arrow .
When we run a transformation we start with an empty environment and an

initial value. Since this argument type is labeled with the final environment, which
we do not know yet, is has to be a polymorphic value.

runTrafo :: (∀s . Trafo m t s a (b s)) → m () → a → Result m t b

The Result contains the final state (m s), the output value (b s) and the final
environment (Env t s s). Since in general we do not know how many new definitions
and of which types are introduced by the transformation the result is existential in
the final environment s. Despite this existentially, we can enforce the environment
to be closed:

data Result m t b = ∀s . Result (m s) (b s) (Env t s s)

4 The Typed Left-Corner Transform

For a typed version of the LCT we need a typed representation of grammars. A
grammar consists of a start symbol, represented as a reference labeled with the type
that serves as the witness value of a successful parse, and an Env , containing for
each non-terminal its list of productions. The actual type env , describing the types
associated with the non-terminals, is hidden using existential quantification:

data Grammar a = ∀env . Grammar (Ref a env)
(Env Productions env env)

newtype Productions a env = PS{unPS :: [Prod a env ]}
Since in our LCT we want to have easy access to the first symbol of a production we
have chosen a representation which facilitates this. Hence the types of the elements
in a sequential composition have been chosen a bit different from the usual one
[11], such that Seq can be chosen to be right associative. The types have been
chosen in such a way that if we close the right hand side sequence of symbols
with an End f element, then this f is a function that accepts the results of the
earlier elements (parsing results of the right hand side) as arguments, and builds
the parsing result for the left-hand side non-terminal. In our case a production is a
sequence of symbols, and a symbol is either a terminal with a String as its witness
or a non-terminal (reference):

data Symbol :: ∗ → ∗ → ∗where
Nont :: Ref a env → Symbol a env
Term :: String → Symbol String env
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data Prod :: ∗ → ∗ → ∗where
Seq :: Symbol b env → Prod (b → a) env → Prod a env
End :: a → Prod a env

In order to make our grammars resemble normal grammars we introduce some extra
operators:

infixr 5 ‘cons‘, . ∗ .

cons prods g = Ext g (PS prods)
(. ∗ .) = Seq

We now have the machinery at hand to encode our example grammar:
A = Nont Zero
B = Nont (Suc Zero)
a = Term "a"
b = Term "b"
c = Term "c"

Assume we want the witness type for non-terminal A to be a String and for non-
terminal B an Int :

grammar :: Grammar String
grammar = Grammar Zero productions

type Types nts = (((), Int),String)

productions :: Env Productions Types nts Types nts
productions = [ a . ∗ . A . ∗ . End (++)

, B . ∗ . End show ] ‘cons‘
[ A . ∗ . b . ∗ . End (λy x → length x + length y)
, c . ∗ . End (const 1)] ‘cons‘ Empty

Before delving into the LCT itself we introduce some grammar related functions we
will need:

append :: (a → b → c) → Prod a env → Symbol b env → Prod c env
matchSym :: Symbol a env → Symbol b env → Maybe (Equal a b)
mapProd :: T env1 env2 → Prod a env1 → Prod a env2

The function append is used in the LCT to build productions of the form β X A.
Basically it corresponds to the snoc operation on lists; we only have to make sure
that all the types match. The function matchSym compares two symbols and, if they
are equal, returns a witness (Equal) of the proof that the types a and b are equal.
The function mapProd systematically changes all the references to non-terminals
occurring in a production. It takes a Ref -transformer (T env1 env2 ) to transform
references in the environment env1 to references in the environment env2 .

newtype T env1 env2 = T{unT :: ∀x . Ref x env1 → Ref x env2 }

4.1 The Typed Transformation

The LCT is applied in turn to each non-terminal (A) of the original grammar. The
algorithm performs a depth first search for left-corner symbols. For each left-corner
X a new non-terminal A X is introduced. Additionally a new definition for A itself
is added to the transformed grammar.

In the untyped implementation we simply used strings to represent non-terminals.
In the typed solution non-terminals are, however, represented as typed references.
The first time a production for a non-terminal A X is generated, we must create
a new entry for this non-terminal and remember its position. When the next pro-
duction for such an A X is generated we must add it to the already generated
productions for this A X : hence we maintain a finite map from encountered left-
corner symbols (X ) to references corresponding to the non-terminals (A X ). This
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finite map again caches the already encountered left-corner symbols:
newtype MapA X env a env2

= MapA X (∀x . Symbol x env → Maybe (Ref (x → a) env2 ))

The type variable env comes from the original grammar, and env2 is the type of
the new grammar constructed thus far. The type variable a is the type of the
current non-terminal. A left-corner symbol labelled with type x is mapped to a
reference to the definitions of the non-terminal A X in the new grammar, provided
it was inserted earlier. The type associated with a non-terminal of the form A X
is (x → a), i.e. a function that returns the semantics of A, when it is passed the
semantics of the symbol X . The empty mapping is defined as:

emptyMap :: MapA X env a env2
emptyMap = MapA X (const Nothing)

We introduce the type-synonym LCTrafo, which is the type of the transforma-
tion step of the LCT. The type of our terms is Productions, and the internal state
is a table of type MapA X , containing the encountered left-corner symbols.

type LCTrafo env a = Trafo (MapA X env a) Productions

Next we define the function newNontR which is a special version of the function
newSRef , using MapA X as internal state instead of Unit . It takes a left-corner
symbol X as argument and yields a LCTrafo that introduces a new non-terminal
A X . The input of the LCTrafo is the first production (Productions) for A X , and
the output is the reference to this newly added non-terminal:

newNontR :: ∀x env s a . Symbol x env
→ LCTrafo env a s (Productions (x → a) s) (Ref (x → a) s)

newNontR x = Trafo $ λm → extEnv (extendMap x m)

The symbol X is added to the map of encountered left-corners of A by the function
extendMap, which records the fact that the newly founded left-corner is the first
element of the environment (Zero) and the previously added ones have to be shifted
one place (Suc).

extendMap :: Symbol x env → MapA X env a env ′
→ MapA X env a (env ′, x → a)

extendMap x (MapA X m) = MapA X (λs → case matchSym s x of
Just Eq → Just Zero
Nothing → fmap Suc (m s))

The index at which the new definition for A is stored is usually different from the
index of A in the original grammar. This is a problem as we need to copy parts
(the βs in the rules) of the original grammar into the new grammar. The non-
terminal references in these parts must be adjusted to the new indexes. To achieve
this we first collect all the new references for the non-terminals of the original
grammar into a finite map, and then use this map to compute a Ref -transformer
that is subsequently passed around and used to convert references from the original
grammar to corresponding references in the new grammar. The type of this finite
map is:

newtype Mapping o n = Mapping (Env Ref n o)

The mapping is represented as an Env , and contains for each non-terminal of the
old grammar, the corresponding reference in the new grammar. The mapping can
easily be converted into a Ref -transformer:

map2trans :: Mapping env s → T env s
map2trans (Mapping env) = T (λr → (lookupEnv r env))
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Now all that is left to do is to glue all the pieces defined above together. Each
of the following functions corresponds to the untyped version with the same name.
We start with the function insert :

insert :: ∀env s a x . Env Productions env env → Symbol x env
→ LCTrafo env a s (T env s,Prod (x → a) s) (Productions a s)

insert old gram x =
Trafo (λ(MapA X m) →

case m x of
Just r → extendA X (MapA X m) r
Nothing → insNewA X (MapA X m))

where
Trafo insNewA X = proc (tenv s, p) → do

r ← newNontR x ≺ PS [p ]
rule2 old gram x ≺ (tenv s, r)

This function takes the original grammar and a left-corner symbol x as input. It
yields a transformation that takes as input a Ref -transformer from the original to
the new (transformed) grammar and a production for the non-terminal A X , and
stores this production in the transformed grammar. If the symbol x is new (m x
returns Nothing), the production is stored at a new index (using newNontR) and
the function rule2 is applied, to continue the depth-first search for left-corners.
If we already know that x is a left-corner of a then we obtain an index r to the
previously added to the non-terminal A X , and add the new production at this
position. The function extendA X returns the TrafoE that performs this update
into the environment:

extendA X :: m env1 → Ref (x → a) env1
→ TrafoE m Productions s env1 (T env s,Prod (x → a) s)

(Productions a s)
extendA X m r = fmap (const $ PS [ ]) $ updateSRef m r addProd

where addProd ( , p) (PS ps) = PS (p : ps)

If in the function rule2 the left-corner is a terminal symbol then rule2a is ap-
plied, and the new production rule is returned as Arrow -output. In case the left-
corner is a non-terminal the corresponding productions are looked up in the original
grammar, and rule2b is applied to all of them, thus extending the grammar under
construction:

rule2 :: Env Productions env env → Symbol x env
→ LCTrafo env a s (T env s,Ref (x → a) s) (Productions a s)

rule2 (Term a) = proc ( , a x) → returnA ≺ PS [rule2a a a x ]
rule2 old gram (Nont b) = case lookupEnv b old gram of

PS ps → proc (tenv s, a x) → do
pss ← sequenceA (map (rule2b old gram) ps) ≺ (tenv s, a x)
returnA ≺ PS (concatMap unPS pss)

We now define the functions rule2a, and rule2b that implement the corresponding
rules of the LCT. Firstly, rule2a, which does not introduce a new non-terminal,
but simply provides new productions for the non-terminal (A) under consideration.
The implementation of rule 2a is as follows:

rule2a :: String → Ref (String → a) s → Prod a s
rule2a a refA a = Term a . ∗ . Nont refA a . ∗ . End ($)

The function rule2b takes the original grammar and a production from the orig-
inal grammar as arguments, and yields a transformation that takes as input a
Ref -transformer and a reference for the non-terminal A B , and constructs a new
production which is subsequently inserted. Note that the Ref -transformer tenv s
is applied to the non-terminal references in beta to map them on the corresponding
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references in the new grammar.
rule2b :: Env Productions env env → Prod b env

→ LCTrafo env a s (T env s,Ref (b → a) s) (Productions a s)
rule2b old gram (Seq x beta)

= proc (tenv s, a b) →
insert old gram x ≺ (tenv s

, append (flip (.)) (mapProd tenv s beta) (Nont a b)
)

The function rule1 is almost identical to rule2b; the only difference is that it
deals with direct left-corners and hence does not involve a “parent” non-terminal
A B .

rule1 :: Env Productions env env → Prod a env
→ LCTrafo env a s (T env s) (Productions a s)

rule1 old gram (Seq x beta)
= proc tenv s →

insert old gram x ≺ (tenv s,mapProd tenv s beta)

The function rules1 is defined by induction over the original grammar (i.e. it iterates
over the non-terminals) with the second parameter as the induction parameter. It is
polymorphically recursive: the type variable env ′ changes during induction, starting
with the type of the original grammar (i.e. env) and ending with the type of the
empty grammar (). The first argument is a copy of the original grammar which is
needed for looking up the productions of the original non-terminals:

rules1 :: Env Productions env env → Env Productions env env ′
→ Trafo Unit Productions s (T env s) (Mapping env ′ s)

rules1 Empty = proc → returnA ≺ Mapping Empty

rules1 old gram (Ext ps (PS prods)) = proc tenv s → do
p ← initMap nt ≺ tenv s
r ← newSRef ≺ p
Mapping e ← rules1 old gram ps ≺ tenv s
returnA ≺ Mapping (Ext e r)

where
nt = proc tenv s → do

pss ← sequenceA (map (rule1 old gram) prods) ≺ tenv s
returnA ≺ PS (concatMap unPS pss)

The result of rules1 is the complete transformation represented as a value of
type Trafo. At the top-level the transformation does not use any state, hence
the type Unit . When dealing with one non-terminal (nt), rule1 is applied for
each of its productions and the new productions are collected to be inserted in
the new grammar. The function initMap initialises the state information of the
transformation nt with an empty table of encountered left-corners.

initMap :: LCTrafo env a s c d → Trafo Unit Productions s c d
initMap (Trafo st) = Trafo (λ → case st emptyMap of

TrafoE f → TrafoE Unit f )

As input the transformation returned by rules1 needs a Ref -transformer to
remap non-terminals of the old grammar to the new grammar. During the trans-
formation rules1 inserts the new definitions for non-terminals of the original gram-
mar, and remembers the new locations for these non-terminals in a Mapping . This
Mapping can be converted into the required Ref -transformer, which must be fed-
back as the Arrow -input. This feed-back loop is made in the function leftcorner
using mdo-notation:

leftcorner :: ∀a . Grammar a → Grammar a
leftcorner (Grammar start productions)

= case runTrafo lctrafo Unit ⊥ of
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Result (T tt) gram → Grammar (tt start) gram
where

lctrafo = proc → mdo
let tenv s = map2trans menv s
menv s ← (rules1 productions productions) ≺ tenv s
returnA ≺ tenv s

The resulting transformation is run using ⊥ as input; this is perfectly safe as it
does not use the input at all: the result is a new start symbol and the transformed
production rules, which are combined to form the new grammar.

5 Conclusions

We have shown how complicated transformations can be done at run-time, while
having been partially verified statically by the type system. Doing so we have used a
wide variety of type system concepts, like GADTs and existential and polymorphic
types, which cannot be found together in other general purpose languages than
Haskell. This allows us to use techniques which are typical of dependently typed
systems while maintaining a complete separation between types and values. Besides
this we make use of lazy evaluation in order to get computed information to the
right places to be used.

Implementing transformations like the left-corner transform implies the intro-
duction of new references to a collection of possibly mutually recursive definitions.
Previous work on typeful transformations of embedded DSLs represented as typed
abstract syntax [3,2,4] does not deal with such complexity. Thus, as far as we
know, this is the first description of run-time typed transformations which modify
references into an abstract syntax represented as a graph instead of a tree.

We have shown how the untyped version of a transformation can be transformed
into a typed version; after studying this example the implementation of similar
transformations, using the TTTAS library, should be relatively straightforward.
Despite the fact that this transformation is rather systematic, it remains a subject
of future research to see how such transformations can be done automatically.
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