-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com

ch ScienceDirect Procedia

Computer Science

ﬁi
ELSEVIER Procedia Computer Science 47 (2015) 247 — 254

Analysis for Maximal Optimized penalty for the Scheduling of Jobs
with Specific Due Date on a Single Machine with Idle Time

D.Jagan®, A.N. Senthilvel®, R.Prabhakar®, S. Uma Maheswari®

PG Scholar, Department of Computer Science and Engineering, Coimbatore Institute of Technology, Coimbatore - 641014, India.
? Assistant Professor(SG), Department of Computer Science and Engineering, Coimbatore Institute of Technology, Coimbatore - 641014, India.
© Emeritus Professor, Department of Computer Science and Engineering, Coimbatore Institute of Technology, Coimbatore - 641014, India.
dssociate Professor, Department of Electronics and Communication Engineering, Coimbatore Institute of Technology, Coimbatore,641014, India.

Abstract

In the real world the Scheduling of Jobs in industries is provided without any idle time which is very tedious. Practically it becomes
difficult when any of the spare part has started to malfunction and has to be changed in the machine then some idle time is needed in
order to undergo the change. In this proposed work some amount of idle time is allotted to schedule the jobs in a single machine
which includes three stages namely scheduling strategy, inserting idle time and optimizing the net penalty value of all the jobs.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of organizing committee of the Graph Algorithms, High Performance Implementations
and Applications (ICGHIA2014)

Keywords: Single machine scheduling, Early/Tardy scheduling, optimization techniques;

*D Jagan Email:;jssjagan@gmail.com

1877-0509 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of organizing committee of the Graph Algorithms, High Performance Implementations and Applications ICGHIA2014)
doi:10.1016/j.procs.2015.03.204

https://core.ac.uk/display/82168229?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.03.204&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.03.204&domain=pdf

248

D. Jagan et al. / Procedia Computer Science 47 (2015) 247 — 254

1. Introduction

Scheduling problem is a common happening. It persists based on which the choice of order is
numbered and should be performed accordingly. Generally, a Scheduling Problem involves: Jobs in
manufacturing plants, aircraft waiting for landing lane clearance or a bank customers at in a queue of teller
window. The basic unit of Job Shop Process is the operation where one can say operation as an elemental
task to be performed, but as far as the Theory of Scheduling is concerned the operation need not be defined
and the theory is concerned only with what the operations really are.

Primary attributes of each operation are:
e A symbol identifying the operation with a particular job.
e A symbol identifying the operation with a particular machine.

e Areal number representing the processing time of the operation.

Each job has a partial ordering of operations which is comprised of job. The partial ordering between
operations is given by a binary relationship known as precedence. If x and y are two operations of the same
job, if x wants to get processed first before y, then it is said that x precede y. Then it is denoted as x>y. The
precedence relationship is transitive if x>y and y>z and implies that x>z.

Scheduling in industries involves generally a single machine scheduling problem. In this work a
single machine is considered in which n independent jobs have to be scheduled. Each job has attributes
such as Job id, Processing time, early penalty, late penalty and due date. Each job Ji has a processing time
pi. That job has to be completed before the due date di. If the job Ji completes execution before the due date
means then the early penalty ai of the job will be used for calculation and if the job Ji has completed after
the due date means then the late penalty Bi of the job is used.

The earliness Ei of the job Ji can be calculated as Ei=max(0,di-Ci) and lateness Li can be calculated as
Li=max(Ci-di,0). The objective function of this scheduling is to minimize the net cost penalty of the jobs.

Net _ penalty = Z ((di-Ci) *a i) + Z (Ci-dy*g) e 1

In order optimize the net penalty first the jobs are scheduled using the scheduling strategies and
passed into the machine and the penalty value is calculated. Then to further optimize the net penalty the
optimization techniques such as Genetic Algorithm, Bee Colony Optimization, Ant Colony Optimization,
Branch and Bound and other evolutionary techniques may be used.

So far the work made consideration of the early/tardy scheduling. For ETSP there are many
procedures proposed in the recent years. Among the different procedures Shyam Sundar and Alok Singh[2]
proposed the procedure based on an Artificial bee colony algorithm which considers the new swarm
intelligence approach for scheduling a jobs in a single machine. J.M.S Valente et al[1] proposed a solution
for ETSP based on a hybrid genetic algorithm, they compared the results of scheduling jobs on various
versions of genetic algorithm. Pei Chan Chang[4]proposed the solution for ETSP based on Branch and
bound approach for a single machine, in this approach the Just-In-Time schedule were eliminated and
overlapped. J.M.S Valente et al[6] proposed a method for ETSP with no idle time using the lower bounds
such as Lagrangean relaxation and multiplier adjustment method. All the above works consider scheduling
of jobs in the single machine with no idle time

However, when the scheduling in a industry is taken into consideration then there is some amount
of idle time has to be inserted .The idle time may be needed for changing the spare parts of the machine or
if the employee is new to operate the machine then he need some time to get acknowledged with the new
machine.

2. Proposed work
Many existing works in scheduling of jobs in single machine were considered with no idle time in

between each jobs. The reason behind the scenario was authors focused on ETSP. According to the ETSP
the machine should be idle only when no job is in ready state, ie., the jobs which are ready to process has to

D. Jagan et al. / Procedia Computer Science 47 (2015) 247 — 254

be scheduled without any idle time. The job should to be made continuously available for the machine to
process. However when we consider the scheduling of jobs on a single machine in industry, then there may
exist some idle time in between the jobs because some amount of time may be needed to change the spars
of the machine or the employee may be new to the machine and may lag to work efficiently with the
machine.

To meet the objective function, the scheduling process is classified into three major stages. To
minimize the penalty, the first stage is scheduled the jobs so that they get executed as per the criteria.
Second stage is carried out to insert idle time either in between the jobs or before starting the jobs. Third
stage follows any optimization techniques to optimize the net penalty.

T e)

noeOfTobsInt /— Job \\
noOfSets Miany

alphaPenalty 1 jobs* Jjobld

betaPenalty processTime

sarlvPenalty

getChoice() latePenalty

process() sadline
\ _/ printTobTotalPenalty()

\wrjte}'ina, OutputAllTobs(j/

JobProcessingTimeComparator JobLongProcessingTimeComparator

Compare() Compare()

N e N
Fig 1: Class Diagram

Fig 1 Illustrates classes such as Readfile, Job, JobProcessingTimeComparator and
JobLongProcessingTimeComparator. In the Readfile class the input file is read with the job details and an
individual objects for each and every jobs is created based on the job class. The Parameters used in Job
class are considered as the major attributes of the job for scheduling.

First Stage:

The First stage is to schedule the jobs for the machine. This can be done either by Considering
only the processing time or Considering both the processing time and the penalty values (ai and Bi).
Method 1:

The Scheduling Strategy used are First Come First Serve, Longest Processing Time, and Shortest
Processing Time. By using these strategies the jobs are scheduled based on their processing time.

Method 2:

The method 2 considers both the processing time and penalty values (ai and Bi) for scheduling.
The major difference between method 1 and method 2 is the consideration of processing time. For each job
to present in the early list the first criteria is oi > i and the second criteria is SPT.
D= ai — Bi; /D — difference between early and late penalty.
IfiD>0)
{

Move the job into early list;

}
Else

{

Move the job into late list;

H

After the jobs get split into two lists such as early list and late list, then on both jobs the list scheduling
strategy FCFS, SPT (or) LPT is followed for scheduling.

249

250

D. Jagan et al. / Procedia Computer Science 47 (2015) 247 — 254

Penalty Calculation:

For calculating the early/tardy penalty consider the completion time Ci of the job Ji , due date di, early
penalty ai and late penalty i

If(Ci<di)

Penalty=(di-Ci)* ai,
//this shows the early penalty, here the completion time of the job is less than the due date;

}
Else

{
Penalty=(Ci-di)*pi
//this shows the late penalty,the completion time of the job is greater than the due date;

}

Second Stage:

For initializing the idle time we have three methods, that is by inserting the idle time in between
the jobs or by inserting some amount of idle time after the jobs in early list that had been executed already
or by inserting some amount of idle time before starting the first job in the early list.

Third Stage:

After scheduling the jobs and calculating the net penalty of all the jobs in a set the penalty value
needs to be further optimized , for optimizing the penalty either Genetic Algorithm, Bee Colony
Optimization, Particle Swarm Optimization, can be used. From the above techniques we need to identify
which techniques gives less penalty value for the same set of problem.

3. Performance Analysis

In this section, some of the computational results and comparisons on the performance of several
scheduling strategies are discussed. The strategies are tested for set of values ranging 15, 50, 75 and 100
jobs. With which only the first process of the proposed system has been implemented and the remaining
process are in the development stage.

4 151 - Notepad = =

File Edit Format View Help

1
15
7,9,2,78
4,1,5,69
10,2,3,87
6,9,6,85

,79

,86

,79
,79

Fig 2: Sample Input File

Fig 2 Illustrates a sample file of a set with 15 jobs. In the above file the first line shows the number of sets
in the file, second line shows the number of jobs in the first set and the third line shows the jobs attributes
such as processing time, early penalty, late penalty and due date.Test instances are borrowed from Jorge
M.S. Valente et al

D. Jagan et al. / Procedia Computer Science 47 (2015) 247 — 254 251

: Qutput - Readfileear (run)

P
P

Calculating penalty time

Calculating time penalty for job - 3

£ The deadline is : [87] Completion time :z [10] alpha =z [2]
%& penalty = (deadline - jobCompletionTime) * alpha = [154]
Calculating time penalty for job - 2
The deadline is : [&%9] Completion time :z [14] alpha -z [1]
penalty = (deadline - jobCompletionTime) * alpha = [55]
Calculating time penalty for job - &
The deadline is : [81] Completion time :z [23] alpha =z [7]
penalty = (deadline - jobCompletionTime) * alpha = [40]

Calculating time penalty for job - 9
The deadline is : [8&] Completion time : [31] alpha =
penalty = (deadline - jobCompletionTime) * alpha = [165]

Calculating time penalty for job :- 12
The deadline is : [85] Completion time : [40] alpha =
penalty = (deadline - jobCompletionTime) * alpha = [Z70]

Fig 3: Penalty calculation
Fig 3 Illustrates the output for calculating penalty of the jobs based on the scheduling strategies.

: Qutput - Readfileear (run)

b

Calculating total penalty :

DD> The job is ——> JobId -z [3] ProcessTime [10 1 job penalty: [154]
The job is --» JobId [2] ProcessTime [4] job penalty: [Z20%]

5 The job is --» JobId [€ 1 ProcessTime - [5] job penalty: [€15]

%& The job is --» JobId [81 ProcessTime [B8] job penalty: [780]
The job is --» JobId [12] ProcessTime z [8] job penalty: [1050]
The job is ——> JobId [14] ProcessTime - [8] job penalty: [1137]
The job is —-» JobId - [12] ProcessTime - [8] job penalty: [1275]
The job is --» JobId - [10] ProcessTime - [3] job penalty: [1347]
The job is ——» JobId [5] ProcessTime - [8] job penalty: [1527 1]
The job is --» JobId [11] ProcessTime :z [4] job penalty: [1567]
The job is --» JobId [1 1 ProcessTime z [7] job penalty: [15&%]
The job is --» JobId [4 1 ProcessTime z [&€] job penalty: [15&%]
The job is --» JobId [7 1 ProcessTime :z [&€] job penalty: [1553]
The job is ——> JobId [15] ProcessTime - [&€] job penalty: [18035]
The job is --» JobId [81 ProcessTime z [2] job penalty: [1553]

Fig 4: Total Penalty

Fig 4 Illustrates the calculation part for total penalty of jobs along with their job id and processing
time of that job.

252 D. Jagan et al. / Procedia Computer Science 47 (2015) 247 — 254

Table 1: Shortest Processing Time

50 50-02- | 50-02- | 50-04- | 50-04- | 50-06- | 50-06- | 50-08- | 50-08- | 50-10- | 50-10-
JOBS 02 04 02 04 02 04 02 04 02 04

K=1 | 29143 | 25388 | 31168 | 26288 | 42324 | 21460 | 29546 | 25156 | 35705 | 32122
K=2 | 44380 | 25489 | 31171 | 29431 | 40121 | 23821 | 36719 | 30611 | 38233 | 22697
K=3 | 30199 | 22646 | 32045 | 28186 | 40213 | 30041 | 38280 | 30673 | 40122 | 21202

K=4 | 36786 | 21967 | 30379 | 29364 | 36158 | 25864 | 28156 | 25089 | 44715 | 30314

K=5 | 29923 | 25518 | 37265 | 21522 | 37152 | 23867 | 32270 | 35608 | 45301 | 29872
K=6 | 37688 | 27934 | 34148 | 27753 | 37606 | 24620 | 34774 | 29281 | 33988 | 29025

K=7 | 34759 | 29236 | 29052 | 20033 | 40367 | 29433 | 31159 | 25920 | 34664 | 28115

K=8 | 37030 | 26098 | 34083 | 27753 | 41988 | 28236 | 43252 | 31984 | 38385 | 27891

K=9 | 34800 | 20116 | 31179 | 26532 | 37032 | 31591 | 29855 | 28079 | 36392 | 29320

K=10 | 36034 | 31401 | 41797 | 25097 | 33419 | 31430 | 37815 | 33042 | 40704 | 35869

In Table 1, the value K represents the set number in the file, and the first row represents the file name. The
table above shows the penalty for the set of 50 jobs in ten different files. Here the job with shortest
processing time gets executed first, and the remaining other jobs are scheduled in the increasing order of
processing time.

Table 2: Longest Processing Time First

K 50-02- | 50-02- | 50-04- | 50-04- | 50-06- | 50-06- | 50-08- | 50-08- | 50-10- | 50-10-
02 04 02 04 02 04 02 04 02 04
K=1 | 13980 | 19883 | 17926 | 22327 | 21727 | 25375 | 17305 | 20738 | 22650 | 16874

K=2 | 27941 | 18560 | 16611 | 21963 | 23347 | 22046 | 24673 | 25468 | 28927 | 23732
K=3 | 17839 | 18902 | 17593 | 26955 | 21909 | 20282 | 30815 | 23586 | 24607 | 20027
K=4 | 24399 | 18368 | 18157 | 21623 | 24539 | 23196 | 25364 | 19645 | 24196 | 19590

K=5 | 18356 | 18951 | 19512 | 20798 | 22027 | 22885 | 22744 | 27293 | 34453 | 26858
K=6 | 19417 | 19078 | 19642 | 22449 | 24745 | 24260 | 20595 | 25077 | 23460 | 26189
K=7 | 20765 | 23773 | 22889 | 18988 | 22065 | 23219 | 30362 | 26214 | 22991 | 15465
K=8 | 24642 | 21919 | 19557 | 17715 | 23380 | 17143 | 32067 | 24998 | 23767 | 29486

K=9 | 18375 | 17929 | 15320 | 23347 | 21348 | 21802 | 19810 | 21759 | 28055 | 22965
K=10 | 20399 | 22335 | 17247 | 16064 | 21670 | 20862 | 24070 | 20467 | 28686 | 33351

In Table 2, the value K represents the set number in the file, and the first row represents the file name. This
table shows the penalty for the set of 50jobs in ten different files. Here the job with Longest processing
time gets executed first and the remaining other jobs are scheduled in the increasing order of processing
time.

D. Jagan et al. / Procedia Computer Science 47 (2015) 247 — 254

Table 3: First Come First Serve

K 50-02- | 50-02- | 50-04- | 50-04- | 50-06- | 50-06- | 50-08- | 50-08- | 50-10- | 50-10-
02 04 02 04 02 04 02 04 02 04

K=1 | 21124 | 20565 | 23558 | 24859 | 30890 | 21070 | 21104 | 17889 | 34643 | 19707

K=2 | 32183 | 18484 | 21468 | 23920 | 30251 | 24822 | 32063 | 30108 | 28321 | 26585

K=3 | 21067 | 17763 | 24453 | 27825 | 31163 | 27025 | 31174 | 24426 | 33476 | 19481

K=4 | 30007 | 17110 | 23045 | 23311 | 25902 | 21253 | 24451 | 21761 | 33562 | 23274

K=5 | 26554 | 19983 | 28407 | 21131 | 26628 | 25190 | 25002 | 30372 | 41901 | 29919

K=6 | 26782 | 22691 | 25369 | 24894 | 27601 | 20815 | 25033 | 22704 | 24131 | 26237

K=7 | 27123 | 22720 | 23280 | 17260 | 30996 | 23567 | 28634 | 23184 | 22546 | 18886

K=8 | 26963 | 23192 | 24211 | 23019 | 27452 | 20015 | 33165 | 25341 | 29756 | 27610

K=9 | 29367 | 15907 | 22713 | 20379 | 30879 | 23286 | 24199 | 24257 | 29152 | 22865

K=10 | 28355 | 27510 | 31684 | 16672 | 26444 | 27908 | 29253 | 25223 | 30658 | 31754

In Table 3, the value K represents the set number in the file, and the first row represents the file name. The
table above table shows the penalty for the set of 50jobs in ten different files. Here the jobs get executed in

which order it arrives.

From the tables above it is clearly shown that the Longest Processing time strategy gives less net

penalty value.

4. Discussion
if(jobCompletionTime < deadline)

int alpha = job.earlyPenalty;
int penalty = (deadline - jobCompletionTime) * alpha;

system.out.println("The deadline is : [" + deadline + "] " +
“Completion time : [" + jobCompletionTime + " | " +
“alpha ¢ [" + alpha + " |");

system.out.println("penalty = (deadline - jobCompletionTime) * alpha "
+ "= [" t+penalty+ " 1");

job.penalty = penalty;
job.isEarlyPenalty=true;

}
else
{
int beta = job.latePenalty;
int penalty = (jobCompletionTime - deadline) * beta;
system.out.println("The deadline is : [" + deadline + "] " +
“Completion time : [" + jobCompletionTime + " | " +
"beta ¢ [" + beta + " 17);
system.out.println("penalty = (jobCompletionTime - deadline) * beta "
+ "= [" +penalty+ " 1");
job.penalty = penalty;
job.iskarlyPenalty=false;
}

Fig 5: Algorithm for calculating penalty

Fig 5: Tllustrates the algorithm used for calculating penalty of the jobs based on the completion time and
deadline. The complexity for the proposed algorithm when one job is given is o(1). When the number of
jobs is n then the time complexity will be o(n).

253

254 D. Jagan et al. / Procedia Computer Science 47 (2015) 247 — 254

5. Conclusion and Future work

As a conclusion that the different scheduling strategies were implemented and from the result was
obtained that the Longest Processing time first gives lesser penalty value. The Results were analyzed with
the set of 15, 50, 75 and 100 jobs. So far the first process of the proposed work had been implemented. The
time complexity for the proposed algorithm is o(n). The penalty value obtained from the work needs to be
further optimized using optimization techniques such as Genetic Algorithm, Bee Colony Optimization and
Particle Swarm Optimization. From these three techniques the technique which gives a maximized
optimized penalty is taken into consideration.

References

[1]. Jorge M.S. Valente, Jose Fernando Goncalves and Rui A.F.S. Alves,” A Hybrid Genetic Algorithm for
the Early/Tardy Scheduling Problem”, Asia Pacific Journal of Operational Research, vol.23, No.3(20006),
393-405.

[2]. Shyam Sundar and A. Singh, “A Swarm Intelligence Approach to the Early/Tardy Scheduling
Problem”, Swarm and Evolutionary Computation 4(2012),25-32.

[3]. Richard W.Conway, “Theory of Scheduling”, 1967.

[4]. Pei Chann Chang, “A Branch and Bound Approach for Single Machine Scheduling with Earliness and
Tardiness Penalties”, Computers and Mathematics with Applications 27(1999), 133-144.

[5]. James C.Bean, ““ Genetic Algorithms and Random Keys for Sequencing and Optimization”, ORSA
Journal on Computing, vol.6, No.2,Spring 1994,154- 160.

[6]. Jorge M.S. Valente and Rui A.F.S. Alves, “Improved Lower Bounds for the Early/Tardy Scheduling
Problem with No Idle Time”, April 2003.

