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ABSTRACT 

Under the general Gauss-Markov model {Y,Xb, a2V}, two new characterizations 
of BLUE(X$) are derived involving the L&vner and rank-subtractivity partial order- 
ings between the dispersion matrix of BLUE(Xfi) and the dispersion matrix of Y. As 
particular cases of these characterizations, three new criteria for the equality between 
OLSE(X6) and BLUE(X0) are given. 

1. INTRODUCTION AND PRELIMINARIES 

Consider the general Gauss-Markov model, denoted by 

M = {Y,Xf3, a2V}, (14 

in which Y is an n x 1 observable random vector with expectation E(Y) = Xfj 
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and with dispersion matrix D(Y) = a2V, where X is an n x p nonnull known 
matrix, p is a p X 1 vector of unknown parameters, V is an n X n known 
symmetric nonnegative definite matrix, and u2 is an unknown positive scalar. 
The matrices X and V are both allowed to be of arbitrary rank. Moreover, it is 
assumed throughout the note that the model (1.1) is consistent [cf. Rao (1971, 
p. 378; 1973a, p. 297)], or, in other words, that the inference base is not 
self-contradictory [cf. Feuerverger and Fraser (1980, p. 44)], i.e., 

YE s%?(X:V), (1.2) 

where %‘(X:V) denotes the range of the partitioned matrix (X:V). 
As is well known, a statistic FY is said to be the best linear unbiased 

estimator (BLUE) of Xp if E(FY) = Xp and D(FY) GAD for every GY 
such that E(GY) = Xp. Here A <L B means that A is below B with respect to 
the Lowner partial ordering [cf. Marshall and Olkin (1979, p. 462)], i.e., that 
the difference B - A is a symmetric nonnegative definite matrix. Since 
E(Y) = Xp, an obvious consequence of the definition is that a necessary 
condition for a statistic FY to represent BLUE(XP) is the Lowner ordering 

D(N) q D(Y). 0.3) 

The second matrix partial ordering utilized in this paper is rank subtrac- 
tivity, defined as 

A <rs B whenever rank(B - A) = rank(B) - rank(A). 

It was originally introduced by Hartwig (1980) and now is referred to in the 
literature also as the minus partial ordering; cf. Baksalary (1986) Baksalary, 
Pukelsheim, and Styan (1989), Carlson (1987), Hartwig and Styan (1986), 
Mitra (1986). From Marsaglia and Styan (1974, p. 288) and Cline and 
Funderlic (1979, p. 195) it follows that 

A&B = .%?(A) c g(B), %?(A’) c %‘(B’), and ABA = A, (1.4) 

where B’ and B- denote the transpose and a generalized inverse of B, 
respectively. It is known [cf. Baksalary and Hauke (1984, p. 35)], that if A,B 
are both symmetric nonnegative definite matrices, then 

A qsB =j A,<,B. (1.5) 
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See also a strengthened version of this result in Hartwig and Styan (1987, 
Theorem 2.1). 

Perhaps the most widely known general characterization of BLUE(XB) is 
that given in Drygas (1970, p. 55) and Rao (1973b, p. 282): 

m=BLUE(XB) under M e F(X:VZ) =(X:0), (1.6) 

where Z is any matrix such that .9(Z) = x(X’), the null space of X’. 
According to Rao (1974), the equation on the right-hand side of (1.6) means 
that F is a projector onto a(X) along 9(VZ), such a projector being unique 
only when _C%(X : VZ) = R “. See also Rao (1978, Theorem 1) for representa- 
tions of the general solution to the matrix equation involved. 

Notice that the condition for unbiasedness of FY is stated in (1.6) in the 
form FX = X, which actually corresponds to considering f3 as free to vary 
over Iw p or at least over g(X’), or, equivalently, to neglecting restrictions on 
B that arise from singularity of V when .%(X) g B(V) but are not completely 
specified prior to an observation of Y; cf. comments in Rao (1979, p. 1354) 
and Seely and Zyskind (1971, p. 693). In this context it should be emphasized 
that, as originally pointed out by Rao (1973a, pp. 297-298; 1976, p. 1033; 
1985, p. 20), there is no loss in generality in adopting the stronger unbiased- 
ness condition, for if FY is an unbiased estimator of XB not satisfying 
FX = X, then there exists GY such that GX = X and GY = FY with probabil- 
ity one. 

The purpose of this paper is to derive characterizations of BLUE(XB) 
with the use of the Lijwner ordering (1.3) and the rank-subtractivity ordering 

These characterizations appear to be quite interesting. It turns out that in 
certain cases it is just sufficient to combine (1.3) or (1.7) with unbiasedness of 
FY to force FY to be a representation of BLUE(XB). In particular, this leads 
to new criteria for the equality between BLUE(XB) and the ordinary 
least-squares estimator of XB, the latter being defined as 

OLSE(XB) = P,Y, (1.8) 

where Px denotes the orthogonal projector onto a(X). 
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2. RESULTS 

In the sequel, we will utilize Lemma 2.1 of Rao (1974) indicating the 
possibility of decomposing 9(X : V) as 

%(X:V) = a(x)fm(vz>, (2.1) 

where 9(Z) = x(X’). See also Nordstrom (1985) for a survey of various 
decompositions of linear subspaces related to the model (1.1). 

THEOREM. Under the general Gauss-Markov model M = {Y,XB, u 2V}, 

FY = BLUE(XB) for all Y E ?Z’(X:V) 

if and only if the conditions 

(a) FY is unbia.sed,i.e., FX = X, 

(b) .%(FV) c a(X), i.e., FV = XK foT some K, 

hold along with any one of the following three conditions: 

(q) FV = VF’, 

(cz) D(FY) <L D(Y), i.e., V - FVF’ is nonnegative definite, 

(cg) D(FY) <rs D(Y), i.e., rank(V - FVF’) = rank(V) - rank(FVF’). 

Proof. Combining (cr) with (b) yields %‘(VF’) 5 W(X), which is clearly 
equivalent to FVZ = 0. In view of (1.6), this establishes the sufficiency of the 
triplet (a), (b), (ci). Conversely, the necessity of (a) and (cs) is obvious. 
Moreover, the equation on the right-hand side of (1.6) implies that 

Z’F(X : VZ) = Z’(X : 0) = (0 : 0). 

Hence, in view of (2.1), 

Z’F(X:V) = (o:O), 

thus leading to (b). It is easily seen that (a) and (b) entail F2V = FV. 
Corollary 1 of Baksalary, Kala, and Klaczyfrski (1983), which generalizes 
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Proposition 2 of Taylor (1976) asserts that if F2V = FV, then the Lijwner 
ordering (c2) is equivalent to condition (ci). Further, (ci) implies that 

a(FVF’) c W(V), (2.2) 

and (ci) with F2V = FV implies that 

FVF’V- FVF’ = F2V(F2)’ = FVF’. (2.3) 

In view of (1.4), the conditions (2.2) and (2.3) are equivalent to (cs). 
Consequently, since always (cs) * (c2) [cf. (1.5)], it follows that if F2V = FV, 
then conditions (ci), (c,), and (cs) are all equivalent, which concludes the 
proof. n 

The characterization consisting of conditions (a), (b), and (ci) is a minor 
generalization of Theorem 5.1 in Rao (1971) which asserts that, under the 
assumption rank(F) < rank(X), the equality FY = BLUE(XB) holds if and 
only if FX = X, F2 = F, FV = VF’, and F = XD, where D’ is a minimum 
V-seminorm generalized inverse of X’. The remaining two characterizations, 
consisting of conditions (a),(b), (c2) and (a),(b), (cs), reveal new appearances 
of matrix partial orderings in problems of mathematical statistics. This seems 
to be particularly noteworthy with reference to the rank-subtractivity order- 
ing, whose statistical applications have hitherto been discussed only in the 
context of the distribution theory of quadratic forms in normal variables; cf. 
Baksalary and Hauke (1984, Section 3) and Hartwig and Styan (1986, Section 
3F). 

The theorem above will now be applied to derive criteria for the equality 
between OLSE(XB) and BLUE(XB), the former being defined in (1.8). 

COROLLARY. Under the general Gauss-Markov model M = {Y,Xp, 02V}, 
the following statements are equivalent: 

(a) OLSE(Xfi) = BLUE(XB) for all Y E g(X:V), 

(b) PxV = VP,, 

(c) PxVPx <,V, i.e., V - PxVPx is nonnegative definite, 

(d) PxVPx <r,V, i.e., rank(V - PxVPx) = rank(V) - rank(VX), 

(e) rank(V - PxVPx) = dim x(X’) n W(V). 

Proof. Since F = Px obviously satisfies conditions (a) and (b) of the 
Theorem, its immediate consequence is that (a) a (b) ti (c) w (d). The equiv- 
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alence of (d) to (e) follows from the equalities 

rank(Z : V) = rank(Z) + rank(PxV) = rank(Z) + rank(VX) 

and 

rank(Z : V) = rank(Z) + rank(V) - dim N(X’) n g(V); 

cf., e.g., Marsaglia and Styan (1974, p. 274). q 

Exhaustive discussions of the problem of the equality between OLSE(XJ3) 
and BLUE(XB) have recently been given by Alalouf and Styan (1984), 
Puntanen (1987), and Puntanen and Styan (1989). This problem originated 
from the paper of Anderson (1948), and the first complete solution in the 
general case when both X and V may be deficient in rank was derived by Rao 
(1967, p. 364) in the form X’VZ = 0. The equivalence of this condition to (b) 
in the Corollary, as well as to seven other conditions, was established by 
Zyskind (1967, Theorem 2). 

Criteria (c), (d), and (e) are new. The first of them asserts that OLSE(XB) 
coincides with BLUE(XB) if and only if it is not worse than Y, the rough 
estimator of XB, with respect to the dispersion-matrix criterion or, since both 
PxY and Y are unbiased, with respect to the mean-square-error-matrix crite- 
rion. The necessity of this condition is obvious, but its sufficiency we find 
somewhat unexpected. Criteria (d) and (e) seem to be the first conditions 
expressed in terms of the ranks of the matrices X and V without referring to 
the spectral decomposition of V, as does the rank criterion originally given by 
Anderson (1971, 1972) and then extended to the general Gauss-Markov 
model by Styan (1973) and Baksalary and Kala (1977). 
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