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We study spaces with sharp bases and bases of countable order. A characterization of
spaces with external bases of countable order is established (Theorem 2.7). Some necessary
and sufficient conditions for a space X × S , where S is the convergent sequence, to have a
sharp base are given (Theorem 3.2). It follows that a pseudocompact space X is metrizable
iff X × S has a sharp base (Corollary 3.3). It is proved that a sharp base of finite rank is
a uniform base (Theorem 4.4). Some other new results are also obtained, and some open
questions are formulated.
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1. Introduction

One of the important problems in general topology is to establish concrete connections between various classes of spaces
in terms of continuous mappings satisfying certain additional conditions. There is a long and fruitful tradition in general
topology to use natural restrictions on bases and to characterize or to introduce various important classes of spaces. In
particular, this was done by J. Nagata [25], R. Bing [14] and Ju. Smirnov [28] (see [16]). The work in this direction has lead
to discovery of important kinds of bases (like uniform bases, point-countable bases, bases of countable order, ortho-bases,
bases of finite and sub-infinite rank and others). Some new properties of spaces with bases of countable order and of spaces
with sharp bases are studied. In particular, we introduce some new kinds of sharp bases and of bases of countable order.
Some open questions are formulated.

We use the terminology from [16]. Any space we consider is assumed to be a T1-space, ω = {0,1,2, . . .}, the closure of
a set A in a space X is denoted by clX A or cl A.

2. Bases of countable order

A monotonic collection of sets is a family such that for every two of its elements one is a subset of the other. An indexed
family of sets is perfectly monotonic if for every two of its elements one is a proper subset of the other.

A base B of a space X is called:
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– a base of countable order if for any infinite perfectly decreasing sequence {Un ∈ B: n ∈ ω} and any point x ∈ ⋂{Un: n ∈
ω} the sequence {Un: n ∈ ω} is a base for X at x (see [5,9]);

– a strong base of countable order if for any infinite perfectly monotonic sequence {Un ∈ B: n ∈ ω} and a point x ∈⋂{Un: n ∈ ω} the sequence {Un: n ∈ ω} is a base for X at the point x.

Now we introduce a relative version of the concept of a base of countable order and a corresponding to it concept of
co-embedding.

Let X be a topological space and Y a subspace of X . Recall that an external base of Y in X is a family B of open subsets of
X such that for each y ∈ Y and each open neighbourhood U of y in X there exists V ∈ B satisfying the condition y ∈ V ⊂ U
(see [3]). If an external base B of Y in X has the property that every strictly decreasing sequence η of elements of B such
that

⋂
η contains a point y of Y is a base of the space X at y, then we call B an external base of countable order of Y in X .

If there exists an external base of countable order of Y in X , then we say that Y is co-embedded in X .
Let B be a strong base of countable order of the space X . If {Ui ∈ B: i ∈ ω} is an increasing sequence of sets, i.e.

Ui ⊆ Ui+1 for any i ∈ ω, then there exists m ∈ ω such that Ui = Um for each i � m.
Let X be a subspace of a space Z , {γn = {Uα: α ∈ An}: n ∈ ω} be a sequence of families of open subsets of a space Z ,

and let {πn : An+1 → An: n ∈ ω} be a sequence of mappings. A sequence α = {αn: n ∈ ω} is a c-sequence if αn ∈ An and
πn(αn+1) = αn for every n.

Consider the following conditions:

(B1) X ⊆ ⋃{Uα: α ∈ A0}.
(B2) X ∩ Uα ⊆ ⋃{Uβ : β ∈ π−1

n (α)} ⊆ Uα for all α ∈ An and n ∈ ω.
(B3) For any c-sequence α = {αn ∈ An: n ∈ ω} and any point x ∈ ⋂{X ∩ Uαn : n ∈ ω}, the sequence {Uαn ;n ∈ ω} is a base

for Z at the point x.

If the sequences {γn: n ∈ ω} and {πn: n ∈ ω} have Properties (B1), (B2) and (B3), then they form a sieve-base of X in
the space Z (see [15]). If X = Z , then the sequences {γn: n ∈ ω} and {πn: n ∈ ω} form a sieve-base on X .

Remark 2.1. If a space X has a sieve-base in a T3-space Z , then there exists a sieve-base {γn = {Uα: α ∈ An}: n ∈ ω},
{pn : An+1 → An: n ∈ ω} on X in the space Z with the next property:

(B4)
⋃{clZ Uβ : β ∈ π−1

n (α)} ⊆ Uα for all α ∈ An and n ∈ ω.

Proposition 2.2. Let X be a subspace of a space Z . Then the following conditions are equivalent:

1. X has a base of countable order in Z , i.e. X is co-embedded in Z ;
2. X has a sieve-base in Z .

Proof. 1 → 2. Let B be an external base of countable order of X in Z . Assume that U ∩ X �= ∅ for any U ∈ B.
Fix U ∈ B. If U is a singleton, then A(U ) is a singleton, Uβ = U for any β ∈ A(U ), and γ (U ) = {Uβ : β ∈ A(U )}. If U is

not a singleton, then γ (U ) = {Uβ : β ∈ A(U )} is the family {V ∈ B: V ⊆ U , V �= U }.
Now we assume that A(U ) ∩ A(V ) = ∅ for any distinct U and V .
Let γ1 = B = {Uα: α ∈ A1}. If the family γn = {Uα: α ∈ An} is constructed and γn ⊆ B, then An+1 = ⋃{A(Uα): α ∈ An},

γn+1 = {Uβ : β ∈ An+1} = ⋃{γ (U ): U ∈ γn}, and π−1
n (α) = A(Uα) for any α ∈ An . Clearly, the sequences {γn: n ∈ ω} and

{πn: n ∈ ω} form a sieve-base of X in the space Z .
2 → 1. Let {γn = {Uα: α ∈ An}: n ∈ ω} and {pn : An+1 → An: n ∈ ω} be a sieve-base of X in the space Z . There exist

some well-orderings on the sets {An: n ∈ ω} such that pn(α) � pn(β) provided α,β ∈ An+1, n ∈ ω and α � β . We assume
that if α ∈ An , n ∈ ω, and Uα is not a singleton, then Uβ is a proper subset of Uα for any β ∈ p−1

n (α).
Put Bn = {α ∈ An: (X ∩ Uα) \ ⋃{Uβ : β ∈ An, β < α} �= ∅} and B = {Uα: α ∈ Bn,n ∈ ω}.
Let x ∈ X . Denote by αn(x) the first element of An such that x ∈ Uαn(x) . Clearly, αn(x) ∈ Bn and pn(αn+1(x)) = αn(x) for

each n ∈ ω. Therefore {Uαn(x): n ∈ ω} is a base of Z at the point x and B is an external base for the space X in the space Z .
Let m > n and p(m,n) = pn ◦ pn−1 ◦ · · · ◦ pm−1 : Am → An . In this case p(m,n)(Bm) = Bn . Assume that p(n,n) : An → An is

the identical mapping.

Claim 1. If n ∈ ω, α,β ∈ Bn and Uα ⊆ Uβ , then α � β .

Really, if α > β , then Uα \ Uβ �= ∅.

Claim 2. If n ∈ ω and {Uαm : αm ∈ Bn,m ∈ ω} is a decreasing sequence of sets, then there exists k ∈ ω such that αm = αk for any
m � k.
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This statement follows from Claim 1.

Claim 3. If n,m ∈ ω, m � n, α ∈ Bn, β ∈ Bm, and Uα ⊆ Uβ , then p(n,m)(α) � β .

Really, if μ = p(m,n)(α) > β , then Uα \ Uβ ⊇ Uμ \ Uβ �= ∅.
Fix a perfectly decreasing sequence {Vm ∈ B: m ∈ ω} and a point b ∈ ⋂{X ∩ Vm: m ∈ ω}. Then Vn = Uαv(n)

for some
v(n) ∈ ω and αv(n) ∈ B v(n) .

It follows from Claim 2 that the set {m: αm ∈ Bn} is finite for each n ∈ ω. Thus, without less of generality, we can assume
that |{m: αm ∈ Bn}| � 1 and v(n + 1) > v(n) for each n ∈ ω. We put N = {v(n): n ∈ ω}.

Claim 4. There exist a c-sequence {βn ∈ Bn: n ∈ ω} and a sequence {c(n) ∈ N: n ∈ N} such that:

(i) n < c(n) and βn � αn for each n ∈ N;
(ii) p(m,n)(αm) = p(c(n),n)(αc(n)) for each m � c(n) and m ∈ N;

(iii) b ∈ Uαc(n)
⊆ Uβn ∩ Uαn for each n ∈ N.

Fix n ∈ N . By Claim 3, the sequence {μ(n,m) = p(m,n)(αm): m ∈ N,n � m} is decreasing and there exist βn ∈ Bn and
c(n) ∈ N such that n < c(n) and βn = p(m,n)(αm) for each m � c(n), and m ∈ N . Moreover, we assume that c(n) is the first
element of N with such properties. In this case, c(n) � c(m) and p(m,n)(βm) = p(k,n)(αk) = βn for all n,m,k ∈ N and c(n) � k,
n < m. Clearly, {βn ∈ Bn: n ∈ N} is a subsequence of some c-sequence {βn ∈ Bn: n ∈ ω}, where βn = p(m,n)(βm) for all n ∈ ω,
m ∈ N and m > n.

Clearly, the sequence {Uβn : n ∈ N} is a base for Z at the point b. Statement (ii) of Claim 4 implies that the sequence
{Uαn : n ∈ N} = {Vm: m ∈ ω} is a base for Z at b too. Hence, B is an external base of countable order for X in Z . �
Remark 2.3. The concept of a sieve-base provides an effective tool for constructing bases of countable order. Moreover, from
Proposition 2.2 it follows that the class of spaces with a base of countable order has the following properties:

– it is countable multiplicative;
– it contains any subspace of an arbitrary space with a base of countable order;
– it contains any space that has a base of countable order locally.

This was established in [19,30].

Remark 2.4. Let X be a subspace of a space Z , {Wn: n ∈ ω} be a sequence of non-empty pairwise disjoint open subsets of
Z , {Vn: n ∈ ω} be a sequence of open subsets of Z , V be an open subset of X , b ∈ ⋂{V ∩ Vn: n ∈ ω} ⊆ X , {X ∩ Vn: n ∈ ω}
be a perfectly decreasing sequence, B be a base of countable order of the space Z , V 1 ∩ Wn = ∅ and (X ∩ Vn) \ V �= ∅

for all n ∈ ω (i.e. {X ∩ Vn: n ∈ ω} is not a base for X at the point b). Put B′ = B ∪ {Vn ∪ Wn: n ∈ ω}. Then B′ is a base
of countable order of the space Z , is an external base of countable order of X in Z , and {U ∩ X: U ∈ B′} is not a base of
countable order of the space X . Thus, bases of countable order, in general, are not stable with respect to subspaces. On the
contrary, sieve-bases are stable in this sense.

Corollary 2.5. Suppose that X is a co-embedded subspace of a space Z . Then the space X has a base of countable order.

Proof. Let {γn = {Uα: α ∈ An}: n ∈ ω} and {pn : An+1 → An: n ∈ ω} be a sieve-base on X in the space Z . Then {ηn = {Vα =
X ∩ Uα: α ∈ An}: n ∈ ω} and {pn : An+1 → An: n ∈ ω} is a sieve-base of X . Proposition 2.2 implies that X has a base of
countable order. �
Corollary 2.6. A subspace of a space with a base of countable order has a base of countable order.

A mapping f : X −→ Y is open at a point b ∈ X if for any open subset U 
 b there exists an open subset V of Y such
that f (b) ∈ V ⊆ f (U ). The mapping f is uniformly complete if on X there exists a metric d which generates the topology
of X , and the fibers f −1(y), y ∈ Y , are complete subspaces of the metric space (X,d) [15,31].

The external characterization of spaces with bases of countable order from [31] admits a similar characterization of
co-embedded subspaces.

Theorem 2.7. Let Y be a subspace of a space Z . The following statements are equivalent:

1. Y has a base of countable order in Z , i.e. Y is co-embedded in Z .
2. There exist a metric space (X,d), a subspace M of X and a continuous mapping f : X −→ Z of X onto Z such that M = f −1(Y ),

f is open at every point of M, and the fibers f −1(y), y ∈ Y , are complete subspaces of the metric space (X,d).
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3. There exist a metric space (X,d), a subspace M of X and a continuous mapping f : X −→ Z of X onto Z such that f (M) = Y ,
f is open at every point of M, the mapping g = f |M : M −→ Y is open and (M ∩ f −1(y),d), y ∈ Y , are complete subspaces of
the metric space (X,d).

Proof. 1 → 2. Assume that B is an external base of countable order of Y in Z . Let L = B ∪ {{z}: z ∈ Z \ Y }. Denote by Z1
the set Z with the topology generated by the open base L. Then the identity mapping θ : Z1 −→ Z is continuous and open
at the points of the subspace Y . Moreover, θ |Y is the identical homeomorphism of Y onto Y .

On L we introduce the discrete topology, and on Lω we introduce the Baire metric d((Un: n ∈ ω), (Vn: n ∈ ω)) =
Σ{2−n: Un �= Vn}. A point (Un: n ∈ ω) ∈ Lω will be called correct if the following conditions are satisfied:

– Un+1 ⊆ Un for any n ∈ ω;
– f (Un: n ∈ ω) = ⋂{Un: n ∈ ω} is a singleton, and {Un: n ∈ ω} is a base of the space Z1 at the point f (Un: n ∈ ω);
– if n ∈ ω and Un is not a singleton, then Un+1 is a proper subset of Un .

Denote by (X,d) the subspace consisting of all correct points of the metric space (Lω,d). Then f : X −→ Z1 is a single-
valued mapping of X onto Z1.

Let x = (Un: n ∈ ω) ∈ X . For any n ∈ ω we put O (x,n) = {(Vn: n ∈ ω) ∈ X: V i = Ui for any i � n}. Then:

– {O (x,n): n ∈ ω} is a base for X at the point x;
– f (O (x,n)) = Un for each n ∈ ω.

Therefore, f is an open continuous mapping of X onto Z1.
Fix y ∈ Y . If U ∈ L and y ∈ U , then U ∈ B. Put h(U ) = {U } if U is a singleton, and h(U ) = {V ∈ B: y ∈ V ⊆ U , V �= U } if U

is not a singleton. Let h(U ) = {Uα: α ∈ A(U )}. Assume that A(U )∩ A(V ) = ∅ for U �= V . Let {Uα: α ∈ A0} = {U ∈ L: y ∈ U }.
If {Uα: α ∈ An} is constructed, then An+1 = ⋃{A(Uα): α ∈ An}. The sequence (αn ∈ An: n ∈ ω) we identify with the point
(Uαn : n ∈ ω) from (Lω,d). Consider the mapping pn : An+1 −→ An , where p−1

n (α) = A(Uα). A point (αn ∈ An: n ∈ ω) is
y-marked if p(αn+1) = αn for all n ∈ ω. Then f −1(y) is the set of all y-marked points, and this set is closed in (Lω,d), i.e.
( f −1(y),d) is a complete metric subspace.

Since θ is the identity mapping, we can assume that f = θ ◦ f . Clearly, the mapping f = θ ◦ f : X −→ Z is open at the
points of the subspace M = f −1(Y ). The implication 1 → 2 is proved.

The implication 2 → 3 is obvious.
3 → 1. Let (X,d) be a metric space, M be a subspace of X , and f : X −→ Z be a continuous mapping of X onto Z such

that f (M) = Y , f is open at every point of M , the mapping g = f |M : M −→ Y is open and (g−1(y),d) = (M ∩ f −1(y),d),
y ∈ Y , are complete metric subspaces of the metric space (X,d). If U is an open set of X , then we put f ∗(U ) = Z \ clZ (Z \
f (U )). Obviously, f ∗(U ) ⊆ f (U ) and f (M ∩ U ) ⊆ Y ∩ f ∗(U ).

We fix two sequences {ηn = {Uα: α ∈ An}: n ∈ ω} and {pn : An+1 → An: n ∈ ω} with the following properties:

– ηn is a family of open subsets of X , M ∩ Uα �= ∅ and diam(Uα) � 2−n for any n ∈ ω and α ∈ An;
– M ⊆ ⋃

γ0 and M ∩ Uα ⊆ ⋃{Uβ : β ∈ p−1
n (α)} ⊆ ⋃{clX Uβ : β ∈ p−1

n (α)} ⊆ Uα for any n ∈ ω and α ∈ An .

Let γn = {Vα = f ∗(Uα): α ∈ An}. Assume that α = {αn ∈ An: n ∈ ω}, y ∈ Y , pn(αn+1) = αn for any n ∈ ω and y ∈⋂{Vαn : n ∈ ω}. Then y ∈ Vαn+1 ⊆ Vαn , clX Uαn+1 ⊆ Uαn and M ∩ f −1(y) ∩ Uαn �= ∅ for any n ∈ ω. Since the metric space
(M ∩ f −1(y),d) is complete, there exists a unique point x ∈ ⋂{Uαn : n ∈ ω}. Clearly, x ∈ M and f (x) = y. Thus {Uαn : n ∈ ω}
is a base of X at the point x, and {Vαn : n ∈ ω} is a base of Z at the point y = f (x). Therefore, {γn: n ∈ ω} and {pn: n ∈ ω}
is a sieve-base on Y in the space Z . Proposition 2.2 completes the proof of the implication 3 → 1. �
Remark 2.8. The assumption in condition 3 of Theorem 2.7 that the mapping g = f |M −→ Y is open is essential. Assume
that f : X −→ Y is an open continuous mapping of a metric space (X,d) onto a space Z = Y . For any y ∈ Y fix a point
x(y) ∈ f −1(y). Let M = {x(y): y ∈ Y }. Then f (M) = Y , f is open at every point of M , M ∩ f −1(y) is a singleton, and
(M ∩ f −1(y),d) is a complete subspace of the metric space (X,d) for any y ∈ Y . If Y does not have a base of countable
order, then the mapping g = f |M is not open.

In [4] an open base B of the space X = ωω of the space of irrational numbers was constructed such that if γ ⊆ B is
an open cover of X by elements of B, then γ contains some infinite perfectly increasing sequence {Vn ∈ γ : n ∈ ω}. Thus
the base B does not contain any strong base of countable order of X . The situation with bases of countable order is quite
different. We have the following remarkable result.

Theorem 2.9. Let X be a subspace with an external base of countable order in the space Z . Then for each open external base B of the
subspace X in Z there exists a sieve-base {γn = {Uα: α ∈ An}: n ∈ ω}, {pn : An+1 → An: n ∈ ω} of the subspace X in Z with the
following properties:
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1. B′ = {Uα: α ∈ An,n ∈ ω} ⊆ B.
2. B′ is an external base of countable order of the subspace X in Z .

Proof. In the proof of Proposition 2.2 we have established the following two statements:

Statement 1. If {ηn = {Vα: α ∈ An}: n ∈ ω}, {pn : An+1 → An: n ∈ ω} is a sieve-base of the subspace X in Z , then there
exists an external base of countable order B ⊆ {Vα: α ∈ An,n ∈ ω} of X in Z .

Statement 2. If B is an external base of countable order of X in Z , then there exists a sieve-base {ηn = {Vα: α ∈ An}: n ∈ ω},
{pn : An+1 → An: n ∈ ω} of X in Z such that B = {Vα: α ∈ An,n ∈ ω}.

Assume that X is a subspace with an external base of countable order in Z . Fix some sieve-base {ηn = {Vα: α ∈ An}: n ∈
ω}, {pn : An+1 → An: n ∈ ω} of X in Z .

Let B be a given open external base of the subspace X in Z . For any open subset U of Z fix a family γ (U ) = {Vβ : β ∈
B(U )} ⊆ B such that U ∩ X ⊆ ⋃{Vβ : β ∈ B(U )} ⊆ U and each Vβ is a proper subset of U provided U is not a singleton. We
assume that B(V ) ∩ B(W ) = ∅ for V �= W .

Now we construct the open families {γn = {Uβ : β ∈ Bn}: n ∈ ω} of the space Z , the sequence of mappings {qn : Bn+1 −→
Bn: n ∈ ω} and the sequence of mappings {hn : Bn −→ An: n ∈ ω} such that:

– X ⊆ ⋃{Uβ : β ∈ B0};
– γn ⊆ B for any n ∈ ω;
– hn ◦ qn = pn ◦ hn+1 for any n ∈ ω;
– if n ∈ ω and β ∈ Bn , then Uβ ⊆ Vhn(β) and Uβ ∩ X ⊆ ⋃{Uμ: μ ∈ q−1

n (β)} ⊆ Uβ for all n ∈ ω and β ∈ Bn .

We put B0 = ⋃{B(Vα): α ∈ A0}, γ0 = ⋃{γ (Vα): α ∈ A0} and h−1
0 (α) = B(Vα) for any α ∈ A0. The objects γ0, h0 are

constructed. Assume that n � 0 and the objects γn = {Uβ : β ∈ Bn} and hn : Bn −→ An are constructed. Fix β ∈ Bn and put
α = hn(β). Then Uβ ⊆ Vα . We put Bβ = ⋃{B(Uβ ∩ Vμ): μ ∈ p−1

n (α)}, γ (β) = ⋃{γ (Uβ ∩ Vμ): μ ∈ p−1
n (α)} = {Uλ: λ ∈ Bβ},

Bn+1 = ⋃{Bβ : β ∈ Bn} and γn+1 = {Uλ: λ ∈ Bn+1}. If μ ∈ p−1
n (α), then hn+1(μ) = B(Uβ ∩ Vμ). Let q−1

n (β) = Bβ . Thus, the
objects γn+1, qn , hn+1 are constructed.

Fix a sequence {βn ∈ Bn: n ∈ ω} for which qn(βn+1) = βn for any n ∈ ω. Put αn = hn(βn). Then Uβn ⊆ Vαn and pn(αn+1) =
αn for any n ∈ ω. If x ∈ X and x ∈ ⋂{Uβn : n ∈ ω}, then x ∈ ⋂{Vαn : n ∈ ω} and {Vαn : n ∈ ω} is a base of Z at the point x.
Therefore, {Uβn : n ∈ ω} is a base for Z at the point x too.

Therefore {γn: n ∈ ω}, {qn: n ∈ ω} is a sieve-base of X in Z . Statements 1 and 2 complete the proof. �
3. Sharp bases

A base B for a space X is said to be a sharp base [1] if, whenever x ∈ X , {Un: n ∈ ω} is a sequence of distinct elements
of B and x ∈ ⋂{Un: n ∈ ω}, then {⋂{Ui: i � n}: n ∈ ω} is a base for X at the point x.

If γ is a family of subsets of a space X , and L ⊆ X , then St(L, γ ) = ⋃{H ∈ γ : L ∩ H �= ∅} is the star of L with respect
to γ . We put St(x, γ ) = St({x}, γ ).

Let X ⊆ Z , where Z is an arbitrary space. A countable family F of families of open subsets of Z is said to be a plumage
of X in Z if X ⊂ ⋃

γ for each γ ∈ F and x ∈ ⋂{St(x, γ ): γ ∈ F } ⊆ X for each point x ∈ X .
A space with a plumage in some compact space is called a p-space or a feathered space (this concept was introduced in

[7], see also [12] where a plumage is called a feathering).
Each Tychonoff space with a sharp base is a hereditarily p-space with a Gδ-diagonal [1]. Distinct properties of spaces

with sharp bases are established in [1,11,13,20,23].
A base B for a space X is said to be a strong sharp base if it is a σ -point-finite sharp base for X .
A base B for a space X is said to be a uniform base [2] if whenever x ∈ X , {Un: n ∈ ω} is a sequence of distinct elements

of B and x ∈ ⋂{Un: n ∈ ω}, then {Un: n ∈ ω} is a base for X at x. Any space with a uniform base is perfect, i.e. each closed
subset of it is a Gδ-subset.

Each uniform base is a strong sharp base.
Given a space X , we denote by X ′ the subspace of X consisting of all non-isolated points of X . If X is a space with

a sharp base, then X has a point-countable sharp base which is point-finite on the set X \ X ′ of isolated points ([13],
Theorem 3.1) (in particular, X ′ is a Gδ-subset of the space X ). Obviously, any sharp base is point-countable on the set X ′ of
non-isolated points.

A base B of a space X is said to be a fibering base if there exists a sequence {n(B) = {n(U ): U ∈ B}: n ∈ ω} of point-finite
families of open subsets of X such that the following conditions are satisfied:

– U ∩ X ′ ⊆ ⋃{n(U ): n ∈ ω} ⊆ U for each U ∈ B;
– if U , V ∈ B, n,m ∈ ω, n � m and U ⊆ V , then n(U ) ∩ X ′ ⊆ m(V );
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– if x ∈ X ′ , μ = {Un ∈ B: n ∈ ω} is a sequence of distinct elements and x ∈ ⋂{Un: n ∈ ω}, then for any n ∈ ω, there exists
m = m(μ) ∈ ω such that

⋂{n(Ui): i � m} = ∅.

We say that the sequence {n(B) = {n(U ): U ∈ B}: n ∈ ω} is the fibering of the family B.
If a space has a fibering base, then it has a σ -point-finite open base.
We need the following property of spaces with fibering sharp bases.

Lemma 3.1. If X is a space with a fibering sharp base B, then X has a point-countable fibering sharp base L which is point-finite on
the set F of isolated points. Moreover, if the base B is σ -point-finite, then the base L is σ -point-finite too.

Proof. Assume that B is a fibering sharp base of the space X with the fibering {n(B) = {n(U ): U ∈ B}: n ∈ ω}.
Since the set F = X \ X ′ is an Fσ -subset of X ([13], Theorem 3.1), we can fix a sequence {Fn: n ∈ ω} of closed subsets

of X such that F = ⋃{Fn: n ∈ ω} and Fn ⊆ Fn+1 for any n ∈ ω.
We put B′ = {U ∈ B: U ∩ X ′ �= ∅}.
If n ∈ ω and x ∈ Fn , then Ux = {x}, m(Ux) = ∅ for m > n and m(Ux) = Ux for m � n.
If U ∈ B′ , then we put n(s(U )) = n(U ) \ Fn for each n ∈ N and s(U ) = ⋃{n(s(U )): n ∈ N}.
Clearly, L = {s(U ): U ∈ B′} ∪ {{x}: x ∈ F } is a fibering sharp base of X . If n ∈ N, U ∈ B′ and x ∈ Fn ∩ s(U ), then x ∈ m(U )

for some m < n. Hence, since the families m(B) are point-finite, the point x is contained in finitely many elements of the
family L. If γ ⊆ B′ is point-finite, then the family s(γ ) = {s(U ): U ∈ γ } is point-finite too. �

In the proof of Lemma 3.1, a procedure for modifying any base B of a space X , in which the isolated points form an
Fσ -subset, is described. This procedure eliminates from the family B each non-singleton set U ⊆ X \ X ′ and reduces the
isolated part of other infinite sets U ∈ B. As a result, we obtain a new base L which is point-finite at any isolated point.
This procedure is applicable to fibering bases and to σ -pint-finite bases, and it preserves these properties.

It is important to observe that the base B, to which the procedure is applied, need not be point-countable or point-finite.
Indeed, let X be an infinite space with a sharp base B, and let X �= X ′ . Fix an infinite disjoint family γ ⊆ B and a point

z ∈ X \ X ′ . Now put B1 = B ∪ {U ∪ {z}: U ∈ γ }. Then:

– B1 is a sharp base which is not point-finite at the point z;
– if the set γ is uncountable, then B1 is a sharp base which is not point-countable at the point z;
– if γ is countable, and B is σ -point-finite, then B1 is σ -point-finite too;
– if B is a fibering base, then B1 is a fibering base too. It is sufficient to put n(U ∪ {z}) = n(U ) for all U ∈ γ and n ∈ ω.

Let S = {0} ∪ {2−n: n ∈ ω} be a subspace of the space of real numbers, and Sn = {0} ∪ {2−m: m ∈ ω,m � n}.

Theorem 3.2. For any space X, the following statements are equivalent:

1. X has a strong sharp base which is point-finite at any isolated point x ∈ X \ X ′ .
2. X has a sharp base and a σ -point finite base.
3. X has a fibering sharp base.
4. X × S has a sharp base.
5. X × S has a strong sharp base.
6. Y × X has a strong sharp base, for any space Y with a uniform base.
7. X × Y has a sharp base for some non-discrete space Y .

Proof. Implications 6 → 5 → 4, 3 → 2, 6 → 7 and 1 → 2 are obvious.
7 → 4. If Y is a non-discrete space, and the space X × Y has a sharp base, then X × S can be embedded in X × Y as a

subspace, and consequently, X × S has a sharp base.
4 → 1. Consider the projection p : X × S −→ X .
Assume that B is a sharp base for the space X × S .
Let Xω = X × {0} and Xn = X × {2−n} for any n ∈ ω.
Since the set F = X \ X ′ is an Fσ -subset of X ([13], Theorem 3.1), we can fix a sequence {Fn: n ∈ ω} of closed subsets

of X such that F = ⋃{Fn: n ∈ ω} and Fn ⊆ Fn+1, for any n ∈ ω.
If n ∈ ω and x ∈ Fn , then Ux = {x}, m(Ux) = ∅ for m > 0 and 0(Ux) = Ux .
If U is an open subset of the space X × S , and n ∈ ω, then n(U ) = ⋃{V ⊆ X \ Fn: V × Sn ⊆ U , V is open in X}, d(U ) = ω,

if U ∩ Xω = ∅, and d(U ) = min{n: n(U ) �= ∅}, if U ∩ Xω �= ∅. The number d(U ) is called the depth of the set U .
Put B′ = {U ∈ B: U ∩ Xω �= ∅} and Bn = {U ∈ B′: d(U ) = n} for any n ∈ ω.
Let γn = {l(U ) = p(U ∩ Xω) \ Fn: U ∈ Bn} ∪ ({Ux: x ∈ Fn}), γ ′

n = {l(U ) = p(U ∩ Xω) \ Fn: U ∈ Bn} and L = ⋃{γn: n ∈ N}.

Claim 1. The family γn is point-finite for any n ∈ ω.
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If x ∈ Fn and x ∈ V ∈ γn , then V = Ux . If x ∈ X \ Fn and x ∈ l(U ) ∈ γn , then d(U ) = n and {x} × Sn ⊆ U .
Let n ∈ ω, x ∈ X \ Fn , {l(Um) ∈ γn: m ∈ ω} be a sequence of distinct elements and x ∈ ⋂{l(Um): m ∈ ω}. Then, clearly,

{x}× Sn ⊆ ⋂{Um: m ∈ ω}. The sharpness of B implies that
⋂{Um: m ∈ ω} is at most a singleton and {⋂{Ui: i � m}: m ∈ ω}

is a base of X × S at each point of the set {x} × Sn , a contradiction. Therefore the family γn is point-finite.

Claim 2. The family L is point-finite at any isolated point x ∈ X \ X ′ .

There exists m ∈ ω such that x ∈ Fm . Then x /∈ ⋃
γ ′

n , for each n > m. A reference to Claim 1 completes the proof.

Claim 3. The family L is a strong sharp base for the space X.

Assume that x ∈ X , M is an infinite subset of ω, Vn = l(Un) ∈ γn for any n ∈ M , and that x ∈ ⋂{Vn: n ∈ M}. Then x ∈ X ′ ,
μ = {Un ∈ B: n ∈ ω} is a sequence of distinct elements and (x,0) ∈ ⋂{Un ∈ B: n ∈ ω}.

If V is an open subset of X and x ∈ V , then (x,0) ∈ V × S and there exists n ∈ M such that (x,0) ∈ ⋂{Um: m ∈ M,m �
n} ⊆ V × S . Clearly, x ∈ ⋂{Vm: m ∈ M,m � n} ⊆ V . Claim 3 and implication 4 → 1 are proved.

2 → 1,3. Suppose that B is a sharp base of the space X , F = X \ X ′ , {Fn: n ∈ ω} is a sequence of closed subsets of X
such that F = ⋃{Fn: n ∈ ω} and Fn ⊆ Fn+1 for any n ∈ ω. By Theorem 3.1 from [13], we can assume that the base B is
point-finite at the points of the set F .

Since X is a space with a σ -point-finite base, there exists a sequence {γn: n ∈ ω} of point-finite systems of open sets in
the space X such that the next two conditions are satisfied:

– if n ∈ ω and V ∈ γn , then V ∩ X ′ �= ∅ and V ∩ Fn = ∅;
– γ = ⋃{γn: n ∈ ω} is a base for X at the points of the set X ′ .

If x ∈ F , then Ux = {x} and n(Ux) = ∅ for any n ∈ ω.
Let B′ = {U ∈ B: U ∩ X ′ �= ∅}. For any U ∈ B′ and n ∈ ω put n(U ) = ⋃{V \ Fn: V ∈ ⋃{γi: i � n}, V ⊆ U }, μ(U ) =⋃{n(U ): n ∈ ω} and n(μ(U )) = n(U ). Since U ∩ X ′ = μ(U ) ∩ X ′ , the family M′ = {μ(U ): U ∈ B′} is a base for X at the

points of the set X ′ . Hence M = M′ ∪ {Ux: x ∈ F } is a sharp base for the space X which is point-finite at the points of the
set F .

Now let n(M) = {n(μ(U )): U ∈ B′}.

Claim 4. Let {Un ∈ B′: n ∈ ω} be a sequence of distinct elements, and let x ∈ ⋂{μ(Un): n ∈ ω}. Then:

1) {⋂{μ(Ui): i � n}: n ∈ ω} is a base for X at the point x;
2) for any n ∈ ω there exists m ∈ ω such that

⋂{n(μ(Ui)): i � m} = ∅.

Since B is a sharp base which is point-finite at any isolated point, x ∈ X ′ and {⋂{μ(Ui): i � n}: n ∈ ω} is a base for X
at the point x.

Fix n ∈ ω. Assume that
⋂{n(μ(Ui)): i ∈ ω} �= ∅. Then x ∈ ⋂{n(μ(Ui)): i ∈ ω}. Since any γi is point-finite, the set

{V ∈ ⋃{γi: i � n}: x ∈ V } is finite. Let {V ∈ ⋃{γi: i � n}: x ∈ V } = {V 1, V 2, . . . , Vk}. There exists an open subset W of X
such that x ∈ W and W is a proper subset of the set

⋂{V i \ Fn: i � k}.
Since x ∈ n(μ(Um)), there exists i(m) � k such that V i(m) ⊆ Um . We put Ni = {m ∈ ω: i(m) = i}. Since

⋃{Ni: i � k} = ω,
there exists i � k for which the set Ni is infinite. Since B is a sharp base, there exists m ∈ Ni such that V i ⊆ ⋂{U j: j ∈
Ni, j � m} ⊆ W , a contradiction. Claim 4 is proved.

Claim 5. The family n(M) is point-finite for any n ∈ ω.

This follows from assertion 2 of Claim 4.

Claim 6. The family M is a fibering sharp base for the space X.

Since B is a sharp base, M is a sharp base too. Claims 4 and 5 imply that {n(M): n ∈ ω} is a fibration of the base M.
Claim 6 is proved.

Let n ∈ ω and Mn = {W ∈ M: n(W ) �= ∅}.

Claim 7. The family Mn is point-finite for any n ∈ ω.

The proof is similar to the proof of Claim 4.
From Claim 7 it follows that the family M is σ -point-finite. The implications 2 → 1,3 are proved.
1 → 6. Fix a sequence of open point-finite covers {γn = {Uα: α ∈ An}: n ∈ ω} of the space Y such that:
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– B1 = ⋃{γn: n ∈ ω} is a uniform base of Y which is point-finite at all isolated points;
– if n,m ∈ ω, n �= m and U ∈ γn ∩ γm , then U is a singleton;
– {{y}: y ∈ Y \ Y ′} ⊆ γn for each n ∈ ω;
– if U ∈ B1 and V ∩ Y ′ = ∅, then U is a singleton;
– if n,m ∈ ω and m � n, then γn is a refinement of γm .

Since X has a strong sharp base, it follows from Theorem 3.1 in [13] and Lemma 3.1 that there exist a sequence {Fn: n ∈
ω} of open-and-closed subsets of X and a sequence of point-finite families {ξn = {Vβ : β ∈ Bn}: n ∈ ω} of open subsets of
the space X such that:

– B2 = ⋃{ξn: n ∈ ω} is a sharp base of X which is point-finite at all isolated points;
– if V ∈ B2 and V ∩ X ′ = ∅, then V is a singleton;
– F = ⋃{Fn: n ∈ ω} is the set of all isolated points of X and Fn ⊆ Fn+1 for each n ∈ ω;
– if n,m ∈ ω, n �= m, then ξn ∩ ξm = ∅;
– ξ0 = {{x}: x ∈ F };
–

⋃{Vβ : β ∈ Bn} ⊆ X \ Fn for each n ∈ ω} and n � 1.

We put ηn = {W (α,β) = Uα × Vβ : (α,β) ∈ Cn = An × Bn} and μn = {W (α,x) = Uα × {x}: (α, x) ∈ Dn = An × F } for each
n ∈ ω.

Let B′ = ⋃{ηn: n ∈ ω}, B′′ = ⋃{μn: n ∈ ω} and B = B′ ∪ B′′ .
For every n ∈ ω, x ∈ X and y ∈ Y , the sets An(y) = {α ∈ An: y ∈ Uα} and Bn(x) = {β ∈ Bn: x ∈ Vβ} are finite. Moreover,

if x ∈ Fn , then
⋃{{Bi: i ∈ ω, i � n} = ∅}. We put N(x) = {n ∈ ω: Bn(x) �= ∅}.

Clearly, B is σ -point-finite and point-finite at any point of the set Y ′ × F . Moreover, the family B′ is point-finite at any
point of the set Y × F .

Claim 8. The family B is a σ -point-finite base for Y × X.

Fix a point z = (y, x) ∈ Y × X .
For each n ∈ ω fix Un ∈ γn such that y ∈ Un and {Un: n ∈ M} is a base for Y at the point y for any infinite subset M ⊆ ω.

We can assume that Un+1 ⊆ Un for any n and U0 = {y} if y is an isolated point of the space Y .
If x ∈ F , then Un × {x} ∈ B′′ and {Un × {x}: n ∈ ω} is a base for Y × X at the point z. Let x /∈ F . In this case the set N(x)

is infinite and the sequence {Un: n ∈ N(x)} is a base for Y at y. Then the subfamily {Un × Vβ : n ∈ N(x), β ∈ Bn(x)} ⊆ B′ is
a base for Y × X at z. Thus B is a σ -point-finite base for Y × X .

Claim 9. The family B is a sharp base for Y × X.

Fix a sequence {Wn ∈ B: n ∈ ω} of pairwise distinct elements. Let z = (y, x) ∈ ⋂{Wn: n ∈ ω}.
For every n ∈ ω there exist i(n) ∈ ω, Un ∈ γi(n) ⊆ B1, and Vn ∈ ξi(n) ⊆ B2 such that Wn = Un × Vn ∈ ηi(n) .
Since the families ηn are point-finite, we can assume that i(n) �= i(m) for n �= m. Hence the set M(z) = {i(n): n ∈ ω} is

infinite.

Case 1. Let x ∈ F .

In this case, the set {n ∈ ω: Wn ∈ B′} is finite, and therefore, we can assume that this set is empty. Hence, we can
assume that Wn = Un × {x} for some Un ∈ B1. Since B1 is a uniform base, {Wn: n ∈ ω} is a base for Y × X at z.

Case 2. x ∈ X ′ and y is an isolated point of Y .

Since x /∈ F , the set M(z) = {i(n): n ∈ ω} is infinite and the elements {Vn: n ∈ ω} are distinct. Thus the sequence
{⋂{V j: j � n}: n ∈ ω} is a base for X at x.

Since y is isolated in Y and the base B1 is a uniform base for the space Y which is point-finite at all isolated points,
there exists m ∈ ω such that U = {y} provided y ∈ U ∈ γn and n � m. Since the set M(z) is infinite, we can suppose that
Un = {y} for each n ∈ ω.

Hence, {⋂{Wm: m � n}: n ∈ ω} is a base for Y × X at the point z.

Case 3. x ∈ X ′ and y ∈ Y ′ .

Since x /∈ F , the set M(z) = {i(n): n ∈ ω} is infinite, and the elements {Vn: n ∈ ω} are distinct. Thus, the sequence
{⋂{Vm: m � n}: n ∈ ω} is a base for X at x.
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Since y is not isolated in X and the set M(z) = {i(n): n ∈ ω} is infinite, the elements {Un: n ∈ ω} are distinct. Since B1
is a uniform base, the sequence {Un: n ∈ ω} is a base for Y at y.

Hence, {⋂{Wm: m � n}: n ∈ ω} is a base for Y × X at z.
Therefore B is a sharp base for the space Y × X .
The implication 1 → 6 is proved. The proof of the theorem is complete. �
Theorem 3.2 contains a positive answer to Question 6 from [23]: If X × [0,1] has a sharp base, does X have a σ -point-

finite sharp base?
In [29] V.V. Uspenskii has proved that a pseudocompact space with a σ -point-finite base is metrizable. Thus from

Theorem 3.2 the next statement follows.

Corollary 3.3. Let X be a pseudocompact space. Then the space X is metrizable if and only if X × S is a space with a sharp base.

We mention that a regular locally countably compact space with a sharp base is metrizable [1].
The following theorem improves Proposition 8 from [23].

Theorem 3.4. For any space X, the following conditions are equivalent:

1. X has a uniform base;
2. X is countably metacompact and has a strong sharp base;
3. X is a perfect space with a σ -point-finite base;
4. There exist a sharp base B of X and a sequence γn = {Uα: α ∈ An}, n ∈ ω, of point-finite open covers of X such that

⋃{γn: n ∈
ω} ⊆ B and U ∈ γn ∩ γm for n �= m and n,m ∈ ω if and only if U is a singleton.

Proof. Implications 1 → 2,3,4 are obvious.
4 → 1. We put An(x) = {αn ∈ An: x ∈ Uαn }. Consider A = Π{An: n ∈ ω} as a metric space with the Baire distance

d((αn: n ∈ ω), (βn: n ∈ ω)) = Σ{2−n: αn �= βn}. For any α = (αn: n ∈ ω) ∈ A we put g(α) = ⋂{Uαn : n ∈ ω}. If Z = {α ∈
A: g(α) �= ∅}, then g : Z −→ X is a single-valued mapping. Let α = (αn: n ∈ ω) ∈ Z , m ∈ ω and m[α] = {(βn: n ∈ ω) ∈
Z : βi = αi for any i � m}. Clearly, g(m[α]) = ⋂{Uαi : i � m} and g−1(x) = Π{An(x): n ∈ ω}. Hence, g is an open continuous
mapping with compact fibers of the metric space Z onto X . By the theorem from [8], X is a space with a uniform base.

3 → 1. Let ηn = {Uα: α ∈ Cn} be a sequence of point-finite families of open subsets of the perfect space X such that⋃{ηn: n ∈ ω} is a base of X .
Fix n ∈ ω. For each m � 1 we put Cnm = {H ⊆ Cn: |H| = m}. If α = (α1, . . . ,αm) ∈ Cnm , then Uα = ⋂{Uαi : i � m}. There

exists a sequence {Fnmk: k ∈ ω} of closed subsets of X such that
⋃{Fnmk: k ∈ ω} = ⋃{Uα: α ∈ Cnm} and Fnmi ⊆ Fmnj for

i < j. Let Unmk = X \ Fnmk and Cnmk = {(nmk)}∪Cnm . Now assume that a sequence {γn = {Uα: α ∈ An}: n ∈ ω} of point-finite
open covers of X is the sequence {ηnmk = {Uα: α ∈ Cnmk}: n,m,k ∈ ω,m � 1}. As in the case 4 → 1, we construct an open
continuous mapping g with compact fibers of a metric space Z onto X .

2 → 1. A countably metacompact space with a σ -point-finite base is metacompact, and a metacompact space with a
base of countable order is a space with a uniform base [15,30]. �
Corollary 3.5. For any space X, the following conditions are equivalent:

1. X has a uniform base;
2. X is a countably metacompact space with a strong sharp base;
3. X is countably metacompact, and X × S has a sharp base;
4. X × Y is a space with a uniform base for any space Y with a uniform base.

The next statement practically was proved in [20], Lemma 1. Our proof is simpler than the argument in [20].

Proposition 3.6. Let X = Y ∪ Z be a pseudocompact non-compact space, and B be a sharp base for X such that B = B1 ∪ B2 and the
following conditions are satisfied:

(a) B1 is a σ -point-finite base for X at the points of the set Y .
(b) For each x ∈ L there exists a local base B(x) = {Un(x): n ∈ ω} so that:

– n < m implies Um(x) ⊆ Un(x);
– if x, y ∈ L and x �= y, then Un(x) �= Um(y) for all n,m ∈ ω;
– B2 = {Un(x): x ∈ L,n ∈ ω}.

Suppose further that Z is any non-discrete first-countable space. Then X × Z does not have a sharp base.
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Proof. It is enough to prove that X × S does not have a sharp base. Assume, by way of contradiction, that W is a sharp
base for X × S . Then by Theorem 3.2, X is a pseudocompact non-metrizable space with a σ -point-finite base. However, any
pseudocompact space with a σ -point-finite base is metrizable [29]. This contradiction completes the proof. �
Example 3.7. Let X be the pseudocompact space with a sharp base constructed in [20]. Then, by Proposition 3.6, the space
X × S does not have a sharp base. Moreover, for any non-discrete first-countable space Z , the space X × Z does not have
a sharp base. In particular, the square X × X does not have a sharp base. On the other hand, the space X × S has a strong
base of countable order.

4. On bases of finite rank

In his talk at the First International Prague Symposium on General Topology and its Applications in Algebra and Analysis,
in 1961, J. Nagata introduced the concept of the rank of a family of sets. The general idea was to use bases of finite rank to
study and characterize the dimension of spaces (see [6,26]).

A family γ of subsets of the set X is called independent if U \ V �= ∅ and V \ U �= ∅ for any two distinct elements
U , V ∈ γ . Otherwise, it is called dependent. The number r(γ , x) = sup{|ξ |: ξ ⊆ γ , x ∈ ⋂

ξ, ξ is independent}, if it is defined,
is called the rank of the family γ at the point x ∈ X . the number r(γ ) = sup{r(γ , x): x ∈ X}, if it is defined, is called the
rank of the family γ . The family γ is of point-finite rank if r(γ , x) is finite for any point x ∈ X . The family γ is of sub-infinite
rank if any independent subfamily η ⊆ γ with a non-empty intersection is finite.

A family γ of sets is Noetherian, if for any infinite increasing sequence {Hn ∈ γ : n ∈ ω} there exists m ∈ ω such that
Hn = Hm for each n � m.

Any uniform base is a Noetherian family of sub-infinite rank.
Spaces with a Noetherian base have been considered by O. Förrster, G. Grabner, G. Gruenhage, W.F. Lindgren, V.I. Ma-

lykhin, P.J. Nyikos, S.A. Peregudov (see [17,18,21,22,24,27]).
Some interesting properties of spaces with a Noetherian base of sub-infinite rank are presented in the next three state-

ments. In particular, the next statement and its proof is similar to some results and arguments in [6,10].

Proposition 4.1. Let γ be a Noetherian family of sub-infinite rank of subsets of a space X. Then there exists a point-finite subfamily
ξ ⊆ γ such that

⋃
ξ = ⋃

γ .

Proof. An element H ∈ γ is called maximal in γ if H is not a proper subset of any other element of γ . Since the family γ
is bounded, for any x ∈ ⋃

γ there exists a maximal element Hx ∈ γ such that x ∈ Hx . Let ξ be the family of all maximal
elements of γ . Then x ∈ Hx ⊆ ⋃

ξ ⊆ ⋃
γ , for any x ∈ ⋃

γ . In particular,
⋃

ξ = ⋃
γ . The maximal elements always form an

independent family of sets. Therefore, the families μ ⊆ ξ are independent. If μ ⊆ ξ and x ∈ ⋂
μ, then |μ| � r(γ , x). Hence

the family ξ is point-finite. �
Corollary 4.2. (O. Förrster and G. Grabner [17], W.F. Lindgren and P.J. Nyikos [22]) A space X with a Noetherian base of sub-infinite
rank is hereditarily metacompact.

Corollary 4.3. (W.F. Lindgren and P.J. Nyikos [22]) A space X with a Noetherian base B1 of sub-infinite rank and a base B2 of countable
order has a uniform base B.

Proof. Indeed, any metacompact space with a base of countable order has a uniform base (see [15,30]). �
The next theorem follows from the O. Förrster’s theorem (see [18], Theorem 1.4) which affirms that a Noetherian base

of countable order and of sub-infinite rank is uniform. For the completeness we have presented another proof.

Theorem 4.4. Let B be a base of a space X. Then the following statements are equivalent:

1. B is a uniform base for X.
2. B is a sharp base of sub-infinite rank for X.
3. B is a strong base of countable order of sub-infinite rank for X.

Proof. Implications 1 → 2 → 3 are obvious.
Assume that B is a strong base of countable order for X . In particular, this means that B is Noetherian.
We now fix an infinite subfamily μ ⊆ B and a point x ∈ X such that x ∈ ⋂

μ.

Claim 1. There exists U ∈ μ such that the family μ(U ) = {V ∈ μ: V ⊆ U , V �= U } is infinite.

Claim 1 will be proved with the help of the next statement:
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Claim 2. Assume that the family μ(U ) is finite for any U ∈ μ. Then there exists a sequence η = {Un ∈ μ: n ∈ ω} such that Un \ Um �=
∅, for all distinct n,m ∈ ω.

We construct η by induction. Let U0 be any maximal element of μ. Suppose that elements Ui of μ are already defined
for i ∈ {0, . . . ,k}, for some k ∈ ω. By the assumption, the family μ(Ui) is finite for any i � k. Put μk = μ \ (

⋃{μ(Ui) ∪
{Ui}: i = 0, . . . ,k}). Since μ is infinite, the family μk is an infinite subfamily of μ. Let Uk+1 be some maximal element
of the family μk . The inductive construction is complete. It is easy to verify that the sequence η so constructed satisfies
the required condition. Claim 2 is established. Thus, the family η is infinite and independent subfamily of B. This is a
contradiction, since the rank of B is finite in any point. Claim 1 is proved.

We continue to discuss properties of the family μ fixed before Claim 1.

Claim 3. The family μ is a base of the space X at the point x.

This statement is true if U = {x}, for some U ∈ μ. Assume that U �= {x} for any U ∈ μ. By virtue of Claim 1, there exists
a sequence ξ = {Un ∈ μ: n ∈ ω} such that:

– Un+1 ⊆ Un for any n ∈ ω;
– μ(Un) is infinite for any n ∈ ω;
– Un+1 ∈ μ(Un) for any n ∈ ω.

Since B is a base of countable order, ξ is a base of the space X at the point x. Thus, μ ⊇ ξ is a base of the space X at
the point x too. Claim 3 is proved.

It follows from Claim 3 that B is a uniform base of the space X . Implication 3 → 1 is proved. The proof is complete. �
In ([10], Theorem 2) it was proved that a normal space with a base of finite big rank is paracompact. We recall that a

family γ has a finite big rank if there exist a positive integer n ∈ ω and a finite sequence {γi: i ∈ {1,2, . . . ,n}} of families of
the rank 1 such that γ = ⋃{γi: ∈ {1,2, . . . ,n}}. Hence from Theorem 4.4 it follows:

Corollary 4.5. A normal space X with a strong base of countable order B of a big finite rank is metrizable.

5. Examples and problems

The union of two metric spaces is not, as a rule, a p-space. For instance, if ω ⊆ X ⊆ βω and X \ω is a discrete non-empty
space, then X is not a p-space and X is the union of two discrete subspaces.

Proposition 5.1. Let X = Y ∪ Z , Z be a discrete closed subspace of X , and χ(z, X) � ℵ0 for each z ∈ Z . Then:

1. If Y has a base of countable order, then X has a base of countable order too.
2. If Y has a strong base of countable order, then X has a strong base of countable order too.
3. If Y is a (hereditarily) p-space and Z is a Gδ-subset of X , then X is a (hereditarily) p-space.

Proof. Let {Wn: n ∈ ω} be a sequence of open subsets of X and Z ⊆ Un+1 ⊆ Un for any n ∈ ω. We put Z ′ = Z \ clX Y . The
set Z ′ is open-and-closed in X . Fix a compactification B of X such that clB Z ′ is open-and-closed in B .

Now for any point z ∈ Z fix a countable base {Unz: n ∈ ω} for the space B at the point z such that Z ∩ Unz = {z} and
X ∩ Unz ⊆ Wn for each n ∈ ω. Let {ηn = {Unz: z ∈ Z}: n ∈ ω} and B1 = {X ∩ Unz: z ∈ Z ,n ∈ ω}.

Clearly, {ηn: n ∈ ω} is a plumage of Z in B . Statement 1 is proved.
Let B2 be a base of the space Y , and B = B1 ∪ B2. Obviously, B is a base for X . If B2 is a (strong) base of countable

order for Y , then B is a (strong) base of countable order for X . Statements 2 and 3 are proved.
Suppose that Z = ⋂{Wn: n ∈ ω} and {ζn = {Uα: α ∈ An}: n ∈ ω} is a plumage of Y in B . We put Anm = An ∪ Z and

γnm = ζn ∪ ηm = {Uα: α ∈ Anm}. Then {γnm: n,m ∈ ω} is a plumage of X in B . Statement 4 is proved. �
Proposition 5.2. Let X = Y ∪ Z , Z be a discrete closed subspace of X , χ(z, X) � ℵ0 for every z ∈ Z , ζ = {Wα: α ∈ A} is a family of
open subsets of the space X and n ∈ ω such that:

– |{α ∈ A: x ∈ Wα}| � n for every x ∈ X ;
– the set Wα ∩ Z is finite for each α ∈ A and Z ⊆ ⋃{Wα: α ∈ A}.

Then:

1. Z is a Gδ-subset of the Stone–Čech compactification B = β X of the space X.
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2. If Y has a sharp base, then X has a sharp base too.
3. If Y is a Čech-complete space, then X is a Čech-complete space too.

Proof. Since Z is a discrete closed subspace, we can assume that Z = A and Z ∩ W z = {z} for any z ∈ Z . In the Stone–Čech
compactification B = β X we fix the open sets V z such that X ∩ V z = W z for each z ∈ Z . Then |{α ∈ A: x ∈ Vα}| � n for any
x ∈ B .

Now for any point z ∈ Z fix a countable base {Unz: n ∈ ω} for the space B at the point z such that Z ∩ Unz = {z} and
Un+1z ⊆ Unz ∩ V z for each n ∈ ω.

Let Un = ⋃{Unz: z ∈ Z}. Then Un is an open subset of B and
⋂{Un: n ∈ ω} = Z . Assertion 1 is proved. Statement 3

follows from assertion 1.
We put B1 = {X ∩ Unz: z ∈ Z ,n ∈ ω}. Let B2 be a base of the space Y and B = B1 ∪ B2. Obviously, B is a base for X . If

B2 is a sharp base for Y , then B is a sharp base for X . Statement 2 is proved. �
Applying Example 2.1 from [13] and Proposition 5.1, we derive the following curious example.

Example 5.3. There exist a Tychonoff space Z and a perfect mapping f : Z → Y onto a Tychonoff space Y such that the
following conditions are satisfied:

– Z is a hereditarily p-space with a sharp base;
– Y is a space with a strong base of countable order;
– Y is not a p-space and does not have a sharp base;
– Z = ⋃{Zn: n ∈ ω}, where Zn ⊆ Zn+1 and Zn is a Čech-complete open subspace of Z for each n ∈ ω;
– Y = ⋃{Yn: n ∈ ω}, where Yn ⊆ Yn+1 and Yn is a Čech-complete open subspace of Y with a sharp base for each n ∈ ω;
– Z and Y are locally complete metrizable spaces.

Really, in ([1], Example 1) an example of a Tychonoff space X with a sharp base and a closed discrete subspace M which
is not a Gδ-set in X was constructed. The space X has a σ -disjoint sharp base and B = X \ M is a complete metrizable zero-
dimensional space. Moreover, the set M contains no isolated points of X . Let S = {0} ∪ {2−n: n ∈ ω} and A = {2−n: n ∈ ω}
be the subspaces of the space of real numbers. As in [13], we take the subspace Z = (X × A) ∪ (M × S) of X × S and define
a quotient space Y of Z by identifying {x} × S , x ∈ M , to a point. Clearly, we have:

– X ′ = X × A is an open subspace of Y with a σ -disjoint sharp base;
– P = M × {0} is a closed discrete Gδ-subset of the space Y .

From these facts it follows that Y has a sharp base (see [13]).
Since X is a space with a σ -disjoint base and the set M is closed and discrete in X , there exist a sequence {Mn: n ∈ ω}

of subsets of M and a family {V z: z ∈ M} of open subsets of X such that the following conditions hold:

– M = ⋃{Mn: n ∈ ω};
– the family {V z: z ∈ Mn} is disjoint for any n ∈ ω;
– V z ∩ M = {z} for each z ∈ M .

Fix n ∈ ω. We put Xn = B ∪ Mn , Z ′
n = Xn × A, Pn = Mn × {0} and Z ′′

n = Z ′
n ∪ Pn . From Propositions 5.1 and 5.2 it follows

that Xn , Z ′
n and Z ′′

n are Čech-complete. Obviously, the sets Z ′
n and Z ′′

n are open in Z . Thus, the subspace Zn = ⋃{Z ′′
i : i � n}

is Čech-complete and open in Z .
Since the subspace M is discrete and closed, the resulting mapping f : Z → Y is perfect. In [13] it was proved that Y is

not a p-space and it does not have a sharp base.
Since f −1( f (Zn)) = Zn , the subspace Yn = f (Zn) is Čech-complete and open in Y .
Clearly, H = f (M × S) is a closed discrete subspace of Y . Since Y is first countable, Y \ H is with a sharp base and H is

discrete in Y , the space Y is with a strong base of countable order.
By Proposition 5.2, the subspaces Y ′′

n = f (Z ′′
n ) and Yn are spaces with sharp bases.

Since X is a locally complete metrizable space, Z and Y are locally complete metrizable spaces.

Example 5.4. Let X = N ∪ S be the Mrowka space ([16], Exercise 3.6.I). Thus, X is pseudocompact, N = {1,2,3, . . .} is an
open discrete subspace of X , and S is a closed discrete subspace of X . Besides, X is a locally compact locally metrizable
Moore space. In X any subset is a Gδ-set. Notice that the space X has a strong base of countable order and does not have
a sharp base.

Example 5.5. Let X be the space of all countable ordinal numbers in the topology induced by the natural linear order. The
space X has a base of countable order and does not have a strong base of countable order.
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Problem 5.6. Does the square X × X of an arbitrary space X with a σ -point-finite sharp base have a sharp base?

Problem 5.7. Is every collectionwise normal space with a sharp base metrizable?

A space X is perfect if every closed subset of X is a Gδ-set. We recall that every space with a development is perfect. In
particular, every space with a uniform base is perfect. Every σ -space, that is, a space with a σ -discrete network, is perfect.

Problem 5.8. Let X be a Čech-complete space with a sharp base, or with a fibering sharp base. Is it true that X is devel-
opable?

Some very interesting open question were posed in [23]:

Problem 5.9. ([23], Question 3) Let X be a perfect Tychonoff space with a sharp base. Is it true that X has a uniform base?

Problem 5.10. ([23], Question 3) Let X be a perfect Tychonoff space with a sharp base. Is it true that X is developable?

Acknowledgements

The authors express theirs grateful to the referee for comments that helped the authors to improve some results of the
paper.

References

[1] B. Alleche, A.V. Arhangel’skii, J. Calbrix, Weak developments and metrization, Topology Appl. 100 (2000) 23–38.
[2] P.S. Alexandroff, On metrization of topological spaces, Bull. Polon. Acad. Sci. 8 (1960) 135–140.
[3] A.V. Arhangel’skii, External bases of sets lying in bicompacta, DAN SSSR 132 (1960) 495–496; English translation: Soviet Math. Dokl. 1 (1960) 573–574.
[4] A.V. Arhangel’skii, On metrization of topological spaces, Bull. Polon. Acad. Sci. 8 (1960) 585–595.
[5] A.V. Arhangel’skii, Some metrization theorems, Uspekhi Mat. Nauk 18 (5) (1963) 139–145.
[6] A.V. Arhangel’skii, Ranks of families of sets and dimension of spaces, Fund. Math. 52 (1963) 257–275 (in Russian).
[7] A.V. Arhangel’skii, A class of spaces which contains all metric and all locally compact spaces, Mat. Sb. 67 (1965) 55–88; English translation: Amer.

Math. Soc. Transl. 92 (1970) 1–39.
[8] A.V. Arhangel’skii, Open and near open mappings. Connections between spaces, Tr. Mosk. Mat. Obs. 15 (1966) 181–223; English translation: Trans.

Moscow Math. Soc. 15 (1966) 204–250.
[9] A.V. Arhangel’skii, Mappings and spaces, Uspekhi Mat. Nauk 21 (4) (1966) 133–184; English translation: Russian Math. Surveys 21 (4) (1966) 115–162.

[10] A.V. Arhangel’skii, V.V. Filippov, Spaces with bases of finite rank, Mat. Sb. 87 (2) (1972) 147–158; English translation: Math. USSR Sb. 16 (2) (1972)
147–158.

[11] A.V. Arhangelskii, W. Just, E.A. Reznichenko, P.J. Szerptycki, Sharp bases and weakly uniform bases versus point-countable bases, Topology Appl. 100
(2000) 39–46.

[12] A.V. Arhangelskii, M.G. Tkachenko, Topological Groups and Related Structures, Atlantis Press, Amsterdam–Paris, 2008.
[13] Z. Balogh, D.K. Burke, Two results on spaces with a sharp base, Topology Appl. 154 (2007) 1281–1285.
[14] R.H. Bing, Metrization of topological spaces, Canad. J. Math. 3 (1951) 175–186.
[15] M. Choban, The open mappings and spaces, Rend. Circolo Matem. di Palermo, Suppl. Serie II 29 (1992) 51–104.
[16] R. Engelking, General Topology, PWN, Warsaw, 1977.
[17] O. Förrster, G. Grabner, The metacompactness of spaces having bases of subinfinite rank, Topology Appl. 13 (1982) 115–121.
[18] G. Grabner, Spaces having Noetherian bases, Topology Proc. 8 (1983) 267–283.
[19] G. Gruenhage, Metrizable spaces and generalizations, in: M. Hušek, J. van Mill (Eds.), Recent Progress in General Topology II, Elsevier, Amsterdam,

2002, pp. 201–225.
[20] G. Gruenhage, B. Bailey, On a question concerning sharp bases, Topology Appl. 153 (2005) 90–96.
[21] G. Gruenhage, P. Nyikos, Spaces with bases of countable rank, General Topology Appl. 8 (1978) 233–257.
[22] W.F. Lindgren, P.J. Nyikos, Spaces with bases satisfying certain order and intersection properties, Pacific J. Math. 66 (2) (1976) 455–476.
[23] C. Good, R.W. Knight, A.M. Mohamad, On the metrizability of spaces with sharp base, Topology Appl. 125 (2002) 543–552.
[24] V. Malykhin, Noether spaces, in: Seminar on General Topology, Moskov. Gos. Univ., Moscow, 1981, pp. 51–59.
[25] J. Nagata, On a necessary and sufficient condition of metrizability, J. Inst. Polytech., Osaka City Univ. 1 (1950) 93–100.
[26] J. Nagata, Two theorems for the n-dimensionality of metric spaces, Comput. Math. 15 (1963) 227–237.
[27] S.A. Peregudov, On the rank and cardinality of Noetherian families of sets, Uspekhi Mat. Nauk 39 (6) (1984) 205–206; English translation: Russian

Math. Surveys 39 (6) (1984) 221–222.
[28] Ju. Smirnov, On metrization of topological spaces, Uspekhi Mat. Nauk 6 (6) (1951) 100–111; English translation: Amer. Math. Soc. Transl., Ser. 1 8

(1962) 63–77.
[29] V. Uspenskii, Pseudocompact spaces with a σ -point-finite bases are metrizable, Comment. Math. Univ. Carolin. 25 (1984) 261–264.
[30] H.H. Wicke, J.M. Worrell, Characterizations of developable spaces, Canad. J. Math. 17 (1965) 820–830.
[31] H.H. Wicke, J.M. Worrell, Open continuous images of spaces having bases of countable order, Duke Math. J. 34 (1967) 255–271.


	Spaces with sharp bases and with other special bases of countable order
	1 Introduction
	2 Bases of countable order
	3 Sharp bases
	4 On bases of ﬁnite rank
	5 Examples and problems
	Acknowledgements
	References


