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a b s t r a c t

In this theoretical study, we investigate the propagation of Love waves in a layered structure consisting of
two different homogenous piezoelectric materials, an upper layer and a substrate. A functionally graded
piezoelectric material (FGPM) buffer layer is in between the upper layer and the substrate. We employ
the power series technique to solve the governing differential equations with variable coefficients. The
influence of the gradient coefficients of FGPM and the layer thicknesses on the dispersion relations,
the electro-mechanical coupling factor, and the stress distributions of Love waves in this structure are
investigated. We demonstrate that the low gradient coefficient raises the significant variation of the
phase velocity within a certain range of ratios of upper layer thickness to equivalent thickness. The elec-
tro-mechanical coupling factor can be increased when the equivalent thickness equals one or two wave-
lengths, and the discontinuity of the interlaminar stress can be eliminated by the FGPM buffer layer. The
theoretical results set guidelines not only for the design of high-performance surface acoustic wave
(SAW) devices using the FGPM buffer layer, but also for the measurement of material properties in such
FGPM layered structures using Love waves.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Since the invention of the interdigital transducer (IDT) for trans-
mitting and receiving surface acoustic wave (SAW) signals (White
and Voltmer, 1965), SAW devices (e.g., filters, delay lines, oscilla-
tors, and amplifiers) have found a wide range of engineering appli-
cations based on the propagation characteristics of surface waves
such as Rayleigh waves and Love waves. Love wave sensors are
highly sensitive devices owing to the concentration of acoustic en-
ergy within a few wavelengths of the surface. To manufacture such
a high performance device, layered structures of functional materi-
als have been adopted. However, if all of the materials in the lay-
ered structure are homogenous, discontinuity of the interlaminar
stress and high local stress fields can arise around the edge of
the laminate, due to material mismatch across the interface. To im-
prove the efficiency and durability of SAW devices, the use of func-
tionally graded piezoelectric material (FGPM) has been considered.
As a result, the propagation of Love waves in FGPM layered struc-
tures has become a research topic with very practical importance.

For surface waves propagating in an inhomogeneous medium
for which the material parameters vary continuously, analytical
solutions can be obtained only for some special cases, due to the
ll rights reserved.

: +82 62 530 1689.
complexity of the governing equations. Hence, a variety of different
numerical methods have been used to study the propagation of
waves in functionally graded material (FGM) structures, including
FGPM structures. By applying the strip element method, Liu et al.
(1991) investigated surface waves propagating in a FGM plate.
Subsequently, Liu et al. (1999) and Han et al. (2000) addressed
stress waves in FGMs with linearly inhomogeneous elements and
quadratic layer elements, respectively. Han et al. (2001, 2002)
introduced a hybrid numerical method for analyzing the character-
istics of waves and transient responses in FGM cylinders. As this
method can also be used to solve wave propagation in FGPM struc-
tures, Liu et al. (2003) and Han and Liu (2003) later investigated
the frequency and group velocity dispersion behaviors and the
characteristics of surface waves in FGPM plates and cylinders.
Wang and Varadan (2002) studied wave propagation in piezoelec-
tric coupled plates by the reverberation matrix method (RMM).
Numerical techniques employed for studying wave propagation
in FGPM structures, such as the finite element method (FEM) and
reverberation matrix method, typically assume that the FGPM
has a multi-layer structure, with each layer taken as homogenous.

The asymptotic analysis of wave propagation in FGPM layered
structures has also been reported. Using the Wentzel–Kramers–
Brillouin (WKB) method, Li et al. (2004), Liu et al. (2007) and Qian
et al. (2007) analyzed the propagation properties of Love waves in
different kinds of FGPM layered structures, Jin et al. (2005)
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investigated Love waves in a piezoelectric layered structure with
inhomogeneous initial stresses, whilst Cao et al. (2008a) presented
the dispersion relations of Rayleigh waves in a FGPM half-space. In
addition to the WKB method, special functions have been used for
unique cases. For example, Du et al. (2007) reported an analytical
solution for Love waves in an FGPM layer that is bonded to a
semi-infinite homogeneous solid wherein all the material proper-
ties vary with the same exponential function. Collet et al. (2006)
analyzed Bleustein–Gulyaev (B–G) waves in FGPM structures
wherein all the material parameters vary proportionally to the
same inhomogeneous function. Cao et al. (2008b) studied the prop-
agation behavior of horizontal shear waves in a FGPM plate using
Airy equations and Airy functions. However, both the WKB method
and the use of special functions have limitations: while the former
can be used only at high frequencies, the latter can fit only special
cases.

In the present study, the problem of Love wave propagation in a
FGPM layered composite system is solved analytically. The com-
posite system consists of two different homogenous piezoelectric
materials, separated by a FGPM buffer layer, as shown in Fig. 1.
The power series technique, a method with high precision and
extensive applicability, is employed to solve the governing equa-
tions. The dispersion relations of Love waves are obtained, and
the effects of the gradient coefficients of FGPM and the geometrical
dimensions of the layers upon the dispersion relations, the electro-
mechanical coupling factor, and the stress distributions of Love
waves in this structure are quantified.
2. Statement of the problem and governing equations

We consider the propagation of Love waves in a three-layer
FGPM composite structure, as shown in Fig. 1. The top layer and
the bottom substrate are made of two different kinds of trans-
versely isotropic piezoelectric materials, designated as materials I
and II. The top layer has thickness h0, and its upper surface is trac-
tion free. For SAW devices, the thickness of the substrate is typi-
Fig. 1. FGPM layered structure
cally much greater than those of other layers, and hence it is
assumed here that the substrate can be treated as a half-space.
The middle layer, which acts as a buffer layer with thickness h, is
taken to be a functionally graded material compounded by materi-
als I and II. The coordinate system o–xyz is chosen such that the z-
axis is directed along the poling direction perpendicular to the x–y
plane; the x ¼ 0 plane lies at the boundary between the top layer
and the FGPM layer; and the x-axis points down into the substrate
(Fig. 1). The mechanical and electrical properties of the function-
ally graded material vary continuously along the x-axis direction.
Without loss of generality, it is further assumed that the Love
waves propagate in the positive direction of the y-axis.

The piezoelectric constitutive equations can be expressed as

rij ¼ cijklSkl � ekijEk; ð1Þ
Dj ¼ ejklSkl þ ejkEk; ð2Þ

where rij and Skl are the stress and strain tensors, Dj and Ek are the
electrical displacement and the electrical field intensity and
cijkl; ekij; ejk are the elastic, piezoelectric and dielectric coefficients,
respectively. For the FGPM buffer layer, the relevant material prop-
erties vary continuously along the thickness direction, i.e., they are
functions of the x-axis.

The motion equation and the electrical displacement equilib-
rium equation are given by

rij;j ¼ q€ui; ð3Þ
Di;i ¼ 0; ð4Þ

where q is the mass density and ui is the component of mechanical
displacement in the ith direction. The comma followed by the sub-
script i indicates space differentiation with respect to the corre-
sponding coordinate, xi and the dot ‘‘�” represents time
differentiation, and the repeated index in the subscript implies
summation with respect to that index.

The relation between the mechanical displacement and the
strain components is as follows:
and Cartesian coordinates.
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Sij ¼
1
2
ðui;j þ uj;iÞ: ð5Þ

According to the quasi-static Maxwell’s equation, the relation be-
tween the electrical intensity and the electrical potential is

Ei ¼ �
@u
@xi

; ð6Þ

where u is the electrical potential function.
Let u; v and w denote the mechanical displacement compo-

nents. For Love waves propagating in the FGPM layered structure
along the y-axis in the positive direction, as shown in Fig. 1, the
mechanical displacement components and the electrical potential
can be expressed as

u ¼ v ¼ 0; w ¼ wðx; y; tÞ; u ¼ uðx; y; tÞ: ð7Þ

Typically, for the transversely isotropic piezoelectric layer, Eqs.
(1) and (2) can be expressed in the rectangular form as

rx ¼ c11Sx þ c12Sy þ c13Sz � e31Ez;

ry ¼ c12Sx þ c11Sy þ c13Sz � e31Ez;

rz ¼ c13Sx þ c13Sy þ c33Sz � e31Ez;

syz ¼ c44Syz � e15Ey;

sxz ¼ c44Sxz � e15Ex;

sxy ¼ ðc11 � c12ÞSxy=2;
Dx ¼ e15Sxz þ e11Ex;

Dy ¼ e15Syz þ e11Ey;

Dy ¼ e31Sx þ e31Sy þ e33Sz þ e33Ez:

ð8Þ

Upon the following sequence of substitutions: (i) Eq. (7) into Eqs.
(5) and (6), (ii) the modified equations (5) and (6) into Eq. (8) and
(iii) the new equations into Eqs. (3) and (4), the governing equations
for the mechanical displacements and the electrical potential can be
obtained.

Let w1 and u1 denote the mechanical displacement and the
electrical potential in the upper layer, respectively. The governing
equations for Love waves propagating in the upper layer
ð�h0 < x < 0Þ can be expressed as

�c44
@2w1

@x2 þ
@2w1

@y2

 !
þ �e15

@2u1

@x2 þ
@2u1

@y2

 !
¼ �q

@2w1

@t2 ; ð9Þ

�e15
@2w1

@x2 þ
@2w1

@y2

 !
� �e11

@2u1

@x2 þ
@2u1

@y2

 !
¼ 0; ð10Þ

where the ‘‘–” symbol is used to denote the parameters associated
with the upper layer material.

Similarly, representing the mechanical displacement and the
electrical potential in the FGPM buffer layer by w2 and u2, respec-
tively, we can obtain the governing equations in the FGPM layer
ð0 < x < hÞ:
c44
@2w2

@x2 þ
@2w2

@y2

 !
þ e15

@2u2

@x2 þ
@2u2

@y2

 !

þ c044
@w2

@x
þ e015

@w2

@x
¼ q

@2w2

@t2 ; ð11Þ

e15
@2w2

@x2 þ
@2w2

@y2

 !
� e11

@2u2

@x2 þ
@2u2

@y2

 !
þ e015

@w2

@x
� e011

@w2

@x
¼ 0;

ð12Þ

where the superscript ‘‘0” indicates space differentiation with re-
spect to the x-coordinate.
Finally, the governing equations in the piezoelectric substrate
ðx > hÞ are derived as

ĉ44
@2w3

@x2 þ
@2w3

@y2

 !
þ ê15

@2u3

@x2 þ
@2u3

@y2

 !
¼ q̂

@2w3

@t2 ; ð13Þ

ê15
@2w3

@x2 þ
@2w3

@y2

 !
� ê11

@2u3

@x2 þ
@2u3

@y2

 !
¼ 0; ð14Þ

where w3 and u3 are the mechanical displacement and the electri-
cal potential in the substrate, and the symbol ‘‘̂” is used to denote
the parameters associated with the substrate material.

The electrical potential u0 in the air above the upper layer
should satisfy the Laplace equation, i.e., for x < �h0:

@2u0

@x2 þ
@2u0

@y2 ¼ 0: ð15Þ

For Love waves propagating in the FGPM layered structure
considered here, the following boundary conditions and interface
continuity conditions should be satisfied:

(a) Traction free boundary condition:
sxzð�h0; yÞ ¼ 0 at x ¼ �h0:
(b) Electrical boundary conditions:
Dx1ð�h0; yÞ ¼ Dx0ð�h0; yÞ;
u1ð�h0; yÞ ¼ 0 for the electrically shorted case;
u1ð�h0; yÞ ¼ u0ð�h0; yÞ for the electrically open case:
(c) Along the interfaces between the upper layer and the FGPM

layer, and between the FGPM layer and the substrate, the
stress, mechanical displacement, electrical potential and
electrical displacement are all continuous:
w1ð0;yÞ ¼w2ð0;yÞ; sxz1ð0;yÞ ¼ sxz2ð0;yÞ;
u1ð0;yÞ ¼u2ð0;yÞ; Dx1ð0;yÞ ¼Dx2ð0;yÞ;
w2ðh;yÞ ¼w3ðh;yÞ; sxz2ðh;yÞ ¼ sxz3ðh;yÞ;
u2ðh;yÞ ¼u3ðh;yÞ; Dx2ðh;yÞ ¼Dx3ðh;yÞ:
(d) The attenuation conditions for Love waves at x! �1 are
u3 ! 0; w3 ! 0 as x! þ1;
u0 ! 0 as x! �1:

In the above equations, the subscripts 0, 1, 2 and 3 are used to
denote the mechanical and electrical quantities in the air, the upper
layer, the FGPM layer and the substrate, respectively.

3. Solution of the problem

For Love waves propagating in the FGPM layered structure
described above, the solutions of the governing equations can be
expressed as

wjðx; y; tÞ ¼WjðxÞ exp½ikðy� ctÞ�; ð16Þ
ujðx; y; tÞ ¼ UjðxÞ exp½ikðy� ctÞ�; ð17Þ

where i ¼
ffiffiffiffiffiffiffi
�1
p

; j ð¼ 1;2;3Þ represents the jth layer, k ¼ 2p=k is the
wave number (k being the wavelength), c is the phase velocity and
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WjðxÞ and UjðxÞ are the amplitudes of the mechanical displacement
and the electrical potential that are to be solved, respectively.

First, the governing equations in the FGPM buffer layer can be
solved by substituting Eqs. (16) and (17) into Eqs. (11) and (12),
respectively, yielding the following:

c44 W 00
2�k2W2

� �
þ e15 U002�k2U2

� �
þ c044W 0

2þ e015U
0
2þqc2k2W2 ¼ 0;

ð18Þ

e15 W 00
2 � k2W2

� �
� e11 U002 � k2U2

� �
þ e015W 0

2 � e011U
0
2 ¼ 0: ð19Þ

It is assumed that the material parameters of the FGPM layer
are of the following functional form:

c44 ¼
X1
n¼0

a1
n

x
h

� �n
; q ¼

X1
n¼0

a2
n

x
h

� �n
; e15 ¼

X1
n¼0

a3
n

x
h

� �n
;

e11 ¼
X1
n¼0

a4
n

x
h

� �n
; ð20Þ

where the coefficients ai
n can be determined by the relations be-

tween the functions and their Taylor expansions. In view of the
material grading relations given in Eq. (20), the solutions of Eqs.
(18) and (19) can be assumed to take similar forms:

W2 ¼
X1
n¼0

sn
x
h

� �n

; U2 ¼
X1
n¼0

tn
x
h

� �n

: ð21Þ

Substitution of (20) and (21) into (18) and (19), respectively,
leads toX1

n¼0

ðnþ2Þðnþ1Þsnþ2
x
h

� �n
�ðkhÞ2

X1
n¼0

sn
x
h

� �n
 !X1

n¼0

a1
n

x
h

� �n

þ
X1
n¼0

ðnþ1Þa1
nþ1

x
h

� �nX1
n¼0

ðnþ1Þsnþ1
x
h

� �n
þ c2ðkhÞ2

�
X1
n¼0

a2
n

x
h

� �nX1
n¼0

sn
x
h

� �n
þ
X1
n¼0

ðnþ1Þa3
nþ1

x
h

� �nX1
n¼0

ðnþ1Þtnþ1
x
h

� �n

þ
X1
n¼0

ðnþ2Þðnþ1Þtnþ2
x
h

� �n
�ðkhÞ2

X1
n¼0

tn
x
h

� �n
 !X1

n¼0

a3
n

x
h

� �n
¼ 0;

ð22Þ

X1
n¼0

ðnþ2Þðnþ1Þsnþ2
x
h

� �n
�ðkhÞ2

X1
n¼0

sn
x
h

� �n
 !X1

n¼0

a3
n

x
h

� �n

þ
X1
n¼0

ðnþ1Þa3
nþ1

x
h

� �nX1
n¼0

ðnþ1Þsnþ1
x
h

� �n

�
X1
n¼0

ðnþ1Þa4
nþ1

x
h

� �nX1
n¼0

ðnþ1Þtnþ1
x
h

� �n

�
X1
n¼0

ðnþ2Þðnþ1Þtnþ2
x
h

� �n
�ðkhÞ2

X1
n¼0

tn
x
h

� �n
 !X1

n¼0

a4
n

x
h

� �n
¼ 0:

ð23Þ

By equating the coefficients of ðx=hÞn in Eqs. (22) and (23) to zero,
we obtain two recursive equations for sn and tn, as shown below:

Xn

i¼0

a1
n�i ðiþ 2Þðiþ 1Þsiþ2 � ðkhÞ2si

h i

þ
Xn

i¼0

ðn� iþ 1Þðiþ 1Þa1
n�iþ1siþ1 þ c2ðkhÞ2

Xn

i¼0

a2
n�isi

þ
Xn

i¼0

ðn� iþ 1Þðiþ 1Þa3
n�iþ1tiþ1

þ
Xn

i¼0

a3
n�i ðiþ 2Þðiþ 1Þtiþ2 � ðkhÞ2ti

h i
¼ 0; ð24Þ
Xn

i¼0

a3
n�i ðiþ 2Þðiþ 1Þsiþ2 � ðkhÞ2si

h i

þ
Xn

i¼0

ðn� iþ 1Þðiþ 1Þa3
n�iþ1siþ1

�
Xn

i¼0

ðn� iþ 1Þðiþ 1Þa4
n�iþ1tiþ1

�
Xn

i¼0

a4
n�i ðiþ 2Þðiþ 1Þtiþ2 � ðkhÞ2ti

h i
¼ 0: ð25Þ

Eqs. (24) and (25) describe a series of the linear recursive rela-
tions of sn and tn with n from zero to infinite. Here, s0; s1; t0 and t1

are the coefficients to be determined and, for i P 2, si and ti are all
linear functions of s0; s1; t0 and t1. For example, by equating the
coefficients of ðx=hÞ0 in Eqs. (22) and (23) to zero, we obtain the
first recursive equations of Eqs. (24) and (25) (with corresponding
to the case of n ¼ 0), which describe the linear relation of s0, s1, t0,
t1, s2 and t2. Therefore, s2 and t2 can be solved as the linear function
of these unknown coefficients.

To decouple the unknown coefficients, the following matrix is
introduced:

ðs0j; s1j; t0j; t1jÞ ¼ I; ð26Þ

where j ¼ 1—4 and I is a 4� 4 unit matrix. Accordingly, Eq. (21) can
be rewritten as

W2 ¼
X4

j¼1

Cj

X1
n¼0

snj
x
h

� �n
; U2 ¼

X4

j¼1

Cj

X1
n¼0

tnj
x
h

� �n
; ð27Þ

where the constants Cj ðj ¼ 1—4Þ are to be determined. For n ¼ 0
and 1, both snj and tnj are determined by (26). For other values of
n; snj and tnj can be determined by solving Eqs. (24) and (25), while
in these recursive equations, snj and tnj are replaced by sn and tn.

By substituting Eqs. (16) and (17) into Eqs. (9) and (10), the
mechanical displacements and the electrical potential functions
in the upper layer and the substrate can be solved. Let the bulk
shear wave velocity �csh in the piezoelectric upper layer be defined
as

�csh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c44 þ �e2

15=�e11
� �

=q̂
q

:

When c > �csh, the solutions of (9) and (10) are

w1ðx; y; tÞ ¼ ½C5 cosðk�q1xÞ þ C6 sinðk�q1xÞ� exp½ikðy� ctÞ�; ð28Þ

u1ðx; y; tÞ ¼
�e15

�e11
C5 cosðk�q1xÞ þ C6 sinðk�q1xÞ½ � þ C7e�kx þ C8ekx

� �
� exp½ikðy� ctÞ�; ð29Þ

where �q1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2=�c2

sh � 1
q

and Cj (j ¼ 5—8Þ are undetermined con-
stants. For c < �csh, the solutions of (9) and (10) become

w1ðx; y; tÞ ¼ C5e�k�q2x þ C6ek�q2x
	 


exp½ikðy� ctÞ�; ð30Þ

u1 x;y; tð Þ ¼
�e15

�e11
C5e�k�q2xþC6ek�q2x
� �

þC7e�kxþC8ekx

� �
exp½ikðy� ctÞ�;

ð31Þ

where �q2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2=�c2

sh

q
and Cj ðj ¼ 5—8Þ are undetermined

constants.
For the substrate medium, u3 ! 0 and w3 ! 0 as x!1, and

hence the solutions of (13) and (14) are given by

w3ðx; y; tÞ ¼ C9e�kq̂x exp½ikðy� ctÞ�; ð32Þ
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u3 x; y; tð Þ ¼ ê15

ê11
C9e�kq̂x þ C10e�kx

 �
exp½ikðy� ctÞ�; ð33Þ

where q̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2=ĉ2

sh

q
and Cj ðj ¼ 9—10Þ are undetermined con-

stants. Here, ĉsh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĉ44 þ ê2

15=ê11
� �

=q̂
q

is the bulk shear wave veloc-

ity in the substrate.
For the air above the top layer, u0 ! 0 as x! �1, and hence

the solution of (15) is

u0ðx; y; tÞ ¼ C11ekx exp½ikðy� ctÞ�; ð34Þ

where the constant C11 is yet to be determined.
By substituting Eq. (27)–(34) into the boundary conditions and

continuity conditions for the electrically open case, we obtain a set
of homogeneous linear algebraic equations to determine Ci

ði ¼ 1—11Þ. The sufficient and necessary condition for the existence
of a non-trivial solution is that the determinant of the coefficient
matrix has to vanish. For the electrically open case:

jQ o
ijj ¼ 0; i; j ¼ 1—11; ð35Þ

which leads to the dispersion relation for the Love wave. For c > �csh,
we have

Q o
15 ¼ k�q1 �c44 þ �e2

15=�e11
� �

sinðk�q1h0Þ;
Q o

16 ¼ k�q1 �c44 þ �e2
15=�e11

� �
cosðk�q1h0Þ;

Q o
17 ¼ �k�e15ekh0 ; Qo

18 ¼ k�e15e�kh0 ;

Q o
22 ¼

c0
44

h
; Q o

24 ¼
e0

15

h
; Q o

26 ¼ �k�q1 �c44 þ �e2
15=�e11

� �
;

Q o
27 ¼ k�e15; Q o

28 ¼ �k�e15;

Q o
31 ¼ 1; Q o

35 ¼ �1;

Q o
43 ¼ 1; Q o

45 ¼ �
�e15

�e11
; Q o

47 ¼ �1; Q o
48 ¼ �1;

Q o
52 ¼

e0
15

h
; Q o

54 ¼ �
e0

11

h
; Q o

57 ¼ �k�e11; Q o
58 ¼ k�e11;

Q o
6j ¼ ch

44

X1
n¼0

ðnþ 1Þ
h

snj þ eh
15

X1
n¼0

ðnþ 1Þ
h

tnj; j ¼ 1—4;

Q o
69 ¼ ĉ44 þ

ê2
15

ê11

 �
kq̂e�kq̂h; Qo

6�10 ¼ ê15ke�kh
;

Q o
7j ¼

X1
n¼0

snj; j ¼ 1—4; Qo
79 ¼ �e�kq̂h;

Q o
8j ¼

X1
n¼0

tnj; j ¼ 1—4; Qo
89 ¼ �

ê15

ê11
e�kq̂h; Q o

8�10 ¼ �e�kh;

Q o
9j ¼ eh

15

X1
n¼0

ðnþ 1Þ
h

snj � eh
11

X1
n¼0

ðnþ 1Þ
h

tnj; j ¼ 1—4;

Q o
9�10 ¼ �ê11ke�kh

;

Q o
10�5 ¼

�e15

�e11
cosðk�q1h0Þ; Qo

10�6 ¼ �
�e15

�e11
sinðk�q1h0Þ;

Q o
10�7 ¼ ekh0 ; Qo

10�8 ¼ e�kh0 ; Qo
10�11 ¼ �e�kh0 ;
Qo
11�7 ¼ k�e11ekh0 ; Q o

11�8 ¼ �k�e11e�kh0 ; Q o
11�11 ¼ e0ke�kh0

All the other terms in (35) are equal to zero. The superscript 0 and h
denote the material parameters of the top and bottom surfaces of
the FGPM layer, respectively.

Again, with Eq. (35), for c < �csh we have

Qo
15 ¼ �k�q2 �c44 þ �e2

15=�e11
� �

ek�q2h0 ; Q o
16 ¼ k�q2 �c44 þ �e2

15=�e11
� �

e�k�q2h0 ;

Qo
25 ¼ k�q2 �c44 þ �e2

15=�e11
� �

; Q o
26 ¼ �k�q2 �c44 þ �e2

15=�e11
� �

;

Qo
35 ¼ �1; Q o

36 ¼ �1; Q o
45 ¼ �

�e15

�e11
; Q o

46 ¼ �
�e15

�e11
;

Qo
10�5 ¼

�e15

�e11
ek�qh0 ; Q o

10�6 ¼
�e15

�e11
e�k�qh0 ;

and the other terms are identical to those in the case of c > �csh.
For the electrically shorted case, Eq. (34) and C11 are superflu-

ous. As indicated in condition (b), the number of the boundary con-
ditions for the electrically shorted case is one less than that for the
electrically open case. Hence, there exists only 10 undetermined
coefficients and the Love wave dispersion relation for the electri-
cally shorted case is determined:

jQsh
ij j ¼ 0; ð36Þ

where the coefficient matrix ½Qsh
ij � is 10� 10, with Qsh

ij ¼ Qo
ij;

i; j ¼ 1—10. Namely, we can obtain the coefficient matrix ½Qsh
ij � by

eliminating the 11th row and column of the coefficient matrix ½Qo
ij�.

The relations between the phase velocity and wave number for
the electrically open and shorted cases can be obtained from Eqs.
(35) and (36). Furthermore, the relations between the unknown
constants can be obtained from

Qo
ijCj ¼ 0 or Q sh

ij Cj ¼ 0:

The distribution of the stresses can be obtained from Eq. (8).
4. Numerical results and discussion

For numerical analysis with the theoretical model developed
above, the FGPM middle layer is taken as a functionally graded
composite compounded by materials I and II, with their volume
fractions varying along the thickness direction and the top and bot-
tom surfaces of the FGPM layer identical to those of material I and
material II, respectively. It is assumed that the volume fractions of
materials I and II in the FGPM layer can be described as

f1 ¼ 1� 1� expðpx=hÞ
1� expðpÞ ; f 2 ¼

1� expðpx=hÞ
1� expðpÞ ; ð37Þ

where p is the gradient coefficient. The variations of f1 and f2 with
depth x=h are plotted for values of p from �1 to 10 in Fig. 2. It
can be seen that the volume fraction of material I ðf1Þ increases
and that of material II ðf2Þ decreases when the gradient coefficient
p is increased, and f1 and f2 are linear functions of x=h, when
p ¼ 0. The parameters associated with the FGPM composite are de-
scribed as

gðxÞ ¼ gð1Þf1ðxÞ þ gð2Þf2ðxÞ; ð38Þ

where g represents the elastic, piezoelectric, dielectric and other
coefficients of the FGPM composite, and gð1Þ and gð2Þ represent the
corresponding parameters of materials I and II, respectively.
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In order to express the wave propagation properties in the same
average thickness of the top layer (material I), we define the equiv-
alent thickness of the material I, H, as

H ¼ h0 þ
Z h

0
f1ðxÞdx: ð39Þ

The influence of the gradient coefficient, p, and the thickness of
the upper layer h0, on the propagation properties of Love waves in
a structure having the same equivalent thickness, i.e.,
H ¼ 0:0005 m, is discussed below. With the value of H fixed, the
thinner the upper layer ðh0Þ, the thicker the FGPM layer ðhÞ
becomes.

PZT-2 and ZnO are chosen as materials I and II, respectively, with

�c44 ¼ 22:2 GPa; �q ¼ 7:600� 103 kg=m3; �e15 ¼ 9:80 C=m2;

�e11 ¼ 44:6� 10�10 F=m;

ĉ44 ¼ 42:3 GPa; q̂ ¼ 5:665� 103 kg=m3; ê15 ¼ 0:48 C=m2;

ê11 ¼ 6:70� 10�11 F=m

For both materials, the dielectric constant is e0 ¼ 8:854� 10�12 F=m.
It has been established that if the material parameters of the

FGPM layer vary slowly, i.e., if j½gð1Þ � gð2Þ�=gð1Þj < 1, then all the
numerical results satisfy the convergence criterion given below:

jcjn¼N � cjn>Nj
cjn¼N

< e; ð40Þ

where cn is the solution of the phase velocity that is yielded by the
first n terms of the power series. For e ¼ 0:001%, the convergence
criterion (40) can be satisfied with N ¼ 500 in all the numerical
examples presented in this paper.

4.1. Influence of gradient coefficient and top layer thickness on
dispersive curves

To investigate the influence of the inhomogeneous characteris-
tics of FGPM on the propagation properties of Love waves, the rela-
tion between phase velocity, c, and wave number, k, is obtained
with Eqs. (35) and (36). When p ¼ 0, i.e., when all the FGPM
parameters vary linearly, the dispersive curves for the electrically
open and shorted cases are plotted in Figs. 3 and 4, with
Fig. 2. The profile of volume fractio
h0=H ¼ 0:6 and h0=H ¼ 0:2, respectively, and kH as the dimension-
less wave number. The first and second modes for each case, M1
and M2, correspond to the two smallest roots of the pertinent dis-
persion relation. For comparison, results for a bilayer structure
consisting of material I as the top layer (thickness h0Þ and material
II as the substrate (half-space) are also included in Figs. 3 and 4.

The results shown in Figs. 3 and 4 demonstrate that the phase
velocity of Love waves changes noticeably if there is a FGPM mid-
dle layer. For the first mode, in the electrically open case, the rate
of change of the phase velocity is significant, as the value of kH in-
creases from 1 to 4, but remains fairly constant when kH > 4. Also
for the first mode of the electrically shorted case, the phase veloc-
ity drops sharply as kH is increased to a value of approximately 1.8.
After reaching this value, the rate with which phase velocity drops
begins to asymptotically approach zero as kH is further increased.
For the second mode, the variation of the phase velocity is similar
for both the electrically open and shorted cases. At the beginning,
the velocity of the FGPM composite structure is less than that of
the bilayer structure until a critical value of kH, at which point
the two types of curves cross each other (Figs. 3 and 4). As the va-
lue of kH is further increased, the phase velocity of the former ex-
ceeds that of the latter.

The results in Figs. 3 and 4 also suggest that the thickness of the
FGPM layer significantly affects the dispersion relations. To explore
this further, the variation of the phase velocity of the first mode,
Dc, is plotted as a function of h0=H in Fig. 5 for selected values of
kH. For kH ¼ p=2, i.e., when the equivalent thickness H equals
one quarter of the wavelength, the change of phase velocity in
the electrically shorted case is more obvious than that in the elec-
trically open case. However, the reverse holds when kH equals 2p
or 3p, i.e., when the equivalent thickness, H, equals 1 or 1.5
wavelengths.

To highlight the influence of the gradient coefficient on phase
velocity, the variation of the phase velocity of the first mode, Dc,
is plotted in Fig. 6 as a function of kH for selected values of gradient
coefficient p, while Dc is the difference between the value of the
phase velocity of Love waves in the FGPM layered structure and
in the bilayer structure. It is seen that Dc initially decreases as
the value of pis increased from �1 to 1, then increases sharply with
further increase of p, and reaches a maximum when the equivalent
thickness H equals 0.2–0.4 wavelengths for the electrically shorted
case and 0.5–1 wavelengths for the electrically open case. When
n of material I along the depth.



Fig. 3. Comparison of the dispersive relations of Love waves between the FGPM
layered structure ðp ¼ 0; h0=H ¼ 0:6Þ and the bilayer structure.

Fig. 4. Comparison of the dispersive relations of Love waves between the FGPM
layered structure ðp ¼ 0; h0=H ¼ 0:2Þ and the bilayer structure.

Fig. 5. Relations between the variation of the phase velocity and h0=H.

Fig. 6. Comparison of Dc with different p; h0=H ¼ 0:2.
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the value of p equals �1, the change in the phase velocity is the
most significant (see Fig. 6), which is expected because the distri-
bution of material in the FGPM three-layer structure is distinguish-
ably different from that in the bilayer structure. For large values of
the gradient coefficient (e.g., p ¼ 10 when the distribution of mate-
rial in the FGPM three-layer structure is similar to that in the un-
graded bilayer structure), the dispersive relations of the two
different structures can still be distinguished (especially for small
values of kH), due to differences in the continuity of relevant mate-
rial parameters.

Fig. 7 shows the variation of phase velocity as a function of gra-
dient coefficient, with the value of kH fixed at 2p. It is interesting to
see that the relation between Dc and p is approximately linear.

To further investigate the influence of material gradient on dis-
persion properties, the group velocity of wave propagation is intro-
duced, which is defined as cg ¼ c þ kdc=dk and expresses the rate
at which energy is transported. Normally, the dispersion property
is determined by the relation between the phase velocity and the
group velocity. If the group velocity is actually greater than the
phase velocity, the dispersion is termed ‘‘anomalous”, and if the
converse holds the dispersion is ‘‘normal”. By examining the Love
wave dispersive curves in Figs. 3 and 4, it is seen that the waves ex-
hibit normal dispersion because dc=dk < 0. Fig. 8 plots both the
phase velocity and the group velocity as functions of kH for the
three-layer FGPM structure and the bilayer structure. It is seen that
for the electrically open case, the velocity of energy propagation in
the FGPM structure is always larger than that in the bilayer struc-
ture. For the electrically shorted case, the velocity of energy prop-
agation in the FGPM structure is more than that in the bilayer
structure only when kH > 2:65.

4.2. Influence of gradient coefficient and top layer thickness on coupled
electromechanical factors

For typical engineering applications, both a greater electrome-
chanical coupling factor and a lower penetration depth of the
waves are expected in SAW devices. The electromechanical cou-
pling factor for surface waves can be defined as

j2 ¼ 2
co � cs

co
;

where co and cs are the phase velocity for the electrically open and
electrically shorted cases, respectively. Fig. 9 plots the electro-
mechanical coupling factor as a function of kH for the first two



Fig. 7. Relation between Dc and p at h0=H ¼ 0:2 and kH ¼ 2p.
Fig. 9. Comparison of the electro-mechanical coupling factor.
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modes. In comparison, for mode 1, although the presence of a FGPM
buffer layer leads to decreased peak values of the factor, it can also
increase the factor when kH is larger than approximately 3.8. For
mode 2, the presence of a FGPM layer causes the factor to decrease
over the range of kH considered here.

It is of particular interest to examine the propagation properties
when the non-dimensional thickness of the FGPM layer, h0=H, is a
multiple of the wavelength. The electro-mechanical coupling factor
is plotted as a function of h0=H in Fig. 10 for p ¼ 0 and two different
values of kH (2p and 3pÞ. The two thin lines in Fig. 10 (i.e.,
j2 ¼ 28:98% and 27.56%) represent the electro-mechanical cou-
pling factor of the bilayer structure for kH ¼ 2p and kH ¼ 3p,
respectively. It is seen from Fig. 10 that the electro-mechanical
coupling factor of the FGPM composite structure is maximized
when h0=H equals 0.1–0.2. These results should be useful for the
practical design of Love wave SAW devices that adopt a FGPM buf-
fer layer.

The influence of the gradient coefficient on the electro-mechan-
ical coupling factor has also been studied, and the results are
shown in Fig. 11. From this figure, it can be concluded that the
addition of a FGPM layer to a bilayer structure leads to enhanced
electro-mechanical coupling factors, but this enhancement effect
weakens as the gradient coefficient is increased in magnitude.
Fig. 8. Comparison of the group velocity between the FGPM layered structure
ðp ¼ �1; h0=H ¼ 0:2Þ and the bilayer structure.
4.3. Influence of gradient coefficient and top layer thickness on stress
distributions

Fig. 12 shows the distribution of shear stresses along the thick-
ness direction for the electrically open case, with the amplitude of
the displacement on the surface fixed at 1 lm, the gradient coeffi-
cient p equal to zero, kH ¼ 2p and h0=H ¼ 0:6 (i.e., the traction free
surface is at x=H ¼ �0:6Þ. The results for a bilayer structure are also
included in Fig. 12, for comparison. Note that there exists two
interfaces in the FGPM composite structure located at x=H ¼ 0
and x=H ¼ 0:8, respectively, whereas only one interface exists in
the two-layered structure at x=H ¼ 0:4. By comparing the shear
stress distributions at kH ¼ 2p, it is seen that for the ungraded bi-
layer structure, the shear stress sxz changes abruptly and discontin-
uously at the interface ðx=H ¼ 0:4Þ for both mode 1 (Fig. 12a) and
mode 2 (Fig. 12c). It is obvious from Fig. 12 that this discontinuity
of shear stress can be eliminated by using the FGPM buffer layer.
5. Conclusions

In this work, the problem of the propagation of Love waves on
the free surface of a three-layer FGPM composite structure is
solved analytically. The power series technique is employed for
Fig. 10. Relations between the electro-mechanical coupling factor and h0=H.



Fig. 11. Relations between the electro-mechanical coupling factor and p.
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solving the differential equations with variable material coeffi-
cients. The influence of the material gradients on the dispersion
relations of Love waves is systematically investigated.

Numerical examples indicate that the propagation properties in
the FGPM composite structure are not only determined by the gra-
Fig. 12. The stress distributions of the first mode for the electrically open case at
kH ¼ 2p. (a) sxz of Mode 1, (b) syz of Mode 1, (c) sxz of Mode 2 and (d) syz of Mode 2.

Fig 12. (continued)
dient coefficient and the thickness of the FGPM layer, but also by
the electrical boundary conditions and the equivalent thickness.
It is demonstrated that the adoption of a FGPM middle layer is very
useful for improving the efficiency and durability of SAW devices.
On one hand, the FGPM layer acts as a buffer layer and can avoid
the stress discontinuity of the interface; a lower gradient coeffi-
cient and a suitable ratio of the top layer thickness to the FGPM
layer thickness can improve the electro-mechanical coupling factor
of the system. On the other hand, by combining the relation be-
tween wave number and gradient coefficient with the variations
in Love wave velocities, a theoretical foundation can be provided
for characterizing the material gradient coefficient through exper-
imental measurements.
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