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Abstract

A promising theory of quaternion-valued functions of one quaternionic variable, now called slice regular
functions, has been introduced by Gentili and Struppa in 2006. The basic examples of slice regular functions
are the power series of type


n∈N qnan on their balls of convergence B(0, R) = {q ∈ H : |q| < R}.

Conversely, if f is a slice regular function on a domain Ω ⊆ H then it admits at each point q0 ∈ Ω an
expansion of type f (q) =


n∈N(q−q0)∗nan where (q−q0)∗n denotes the nth power of q−q0 with respect

to an appropriately defined multiplication ∗. However, the information provided by such an expansion is
somewhat limited by a fact: if q0 does not lie on the real axis then the set of convergence of the series in
the previous equation needs not be a Euclidean neighborhood of q0. We are now able to construct a new
type of expansion that is not affected by this phenomenon: an expansion into series of polynomials valid in
open subsets of the domain. Along with this construction, we present applications to the computation of the
multiplicities of zeros and of partial derivatives.
c⃝ 2012 Elsevier Inc. All rights reserved.
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1. Introduction

Let H denote the real algebra of quaternions, that is the vector space R4 endowed with the
multiplication constructed as follows: if 1, i, j, k denotes the standard basis, define

i2
= j2

= k2
= −1,

i j = − j i = k, jk = −k j = i, ki = −ik = j,
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let 1 be the neutral element and extend the operation by distributivity and linearity to all
quaternions q = x0 + x1i + x2 j + x3k. The conjugate of such a q is defined as q̄ =

x0 − x1i − x2 j − x3k, its real and imaginary parts as Re(q) = x0 and Im(q) = x1i + x2 j + x3k,
and its modulus as |q| =

√
qq̄ =


Re(q)2 + |Im(q)|2. The multiplicative inverse of each q ≠ 0

is computed as

q−1
=

q̄

|q|2
.

Much literature has been devoted to the possibility of defining for quaternionic functions
a notion of regularity playing the same role as holomorphy for complex functions. This is by
no means an elementary question, as neatly explained in [19]. First of all, let us consider the
following fact.

Theorem 1.1. A function f : H → H is left q-differentiable at every q ∈ H, i.e.

lim
h→0

h−1
[ f (q + h) − f (q)]

exists at every q ∈ H, if and only if there exist a, b ∈ H such that f (q) = qa + b for all q ∈ H.

A proof can be found in [19]. The class of functions encompassed does not grow significantly
if we vary the domain of definition or consider the analogous notion of right q-differentiability.
The next corollary can be easily derived.

Corollary 1.2. The class of functions f : H → H admitting at every q0 ∈ H a power series
expansion

f (q) =


n∈N

(q − q0)
nan

with {an}n∈N coincides with the class of affine functions f (q) = qa + b with a, b ∈ H.

Once again, the situation changes but little if we consider an expansion of type f (q) =
n∈N an(q − q0)

n instead. It should be noticed, however, that (q − q0)
nan and an(q − q0)

n

are not the only possible terms of degree n in q −q0: in fact, in an (associative) non-commutative
framework, the generic form of such a term is

α0(q − q0)α1(q − q0) . . . αn−1(q − q0)αn . (1)

We may try to define a notion of analyticity based on series of terms of this type, but we are
immediately discouraged by the following fact.

Proposition 1.3. The class of functions f : H → H admitting at every q0 ∈ H an expansion
into series of monomials of type (1) coincides with the class of functions f : H → H that are
analytic in the four real variables x0, . . . , x3.

The proof of the preceding proposition relies upon the fact that if q = x0 + i x1 + j x2 + kx3,
then

x0 =
1
4
(q − iqi − jq j − kqk), x1 =

1
4i

(q − iqi + jq j + kqk),

x2 =
1

4 j
(q + iqi − jq j + kqk), x3 =

1
4k

(q + iqi + jq j − kqk).
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The facts just mentioned encouraged to base the study of quaternionic functions on analogs
of the Cauchy–Riemann equations rather than on some notion of analyticity. The best known of
such analogs is due to Fueter [5,6] and it gave rise to a renowned function theory on Clifford
algebras, for which we refer the reader to [1,4,15] and references therein. Let us also mention the
work [16] on the specific topic of analyticity in this context.

A different notion of quaternionic analyticity arose from the theory introduced by Gentili and
Struppa in [10,11]. They gave the following definition, where S = {q ∈ H : q2

= −1} denotes
the 2-sphere of imaginary units.

Definition 1.4. Let Ω be a domain in H and let f : Ω → H be a function. For all I ∈ S, let us
denote L I = R + IR,ΩI = Ω ∩ L I and f I = f|ΩI

. The function f is called (slice) regular if,

for all I ∈ S, the restriction f I is holomorphic, i.e. the function ∂̄I f : ΩI → H defined by

∂̄I f (x + I y) =
1
2


∂

∂x
+ I

∂

∂y


f I (x + I y)

vanishes identically.

The definition immediately implies that any power series f (q) =


n∈N qnan defines a
regular function on its ball of convergence

B(0, R) = {q ∈ H : |q| < R}

(a perfect analog of Abel’s theorem holds). Moreover, the set of such series forms a real algebra
when endowed with the usual addition + and the multiplication ∗ defined in the following
manner:

n∈N
qnan


∗


n∈N

qnbn


=


n∈N

qn
n

k=0

akbn−k . (2)

In [9], we considered series of the form

f (q) =


n∈N

(q − q0)
∗nan (3)

where (q −q0)
∗n

= (q −q0)∗· · ·∗(q −q0) denotes the ∗-product of n copies of q → q −q0. We
were able to prove that the sets of convergence of such series are balls with respect to a distance
σ : H × H → R defined in the following fashion.

Definition 1.5. For all p, q ∈ H, we set

σ(q, p) =


|q − p| if p, q lie on the same complex plane L I
ω(q, p) otherwise

(4)

where

ω(q, p) =


[Re(q) − Re(p)]2

+ [|Im(q)| + |Im(p)|]2. (5)

More precisely, we proved the next theorem.

Theorem 1.6. If Ω is a domain in H, a function f : Ω → H is regular if and only if it is
σ -analytic, i.e. it admits at every q0 ∈ Ω an expansion of type (3) that is valid in a σ -ball
Σ (q0, R) = {q ∈ H : σ(q, q0) < R}.
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The analogy with the complex case is remarkable, but it should be taken into account that the
topology induced by σ is finer than the Euclidean: if q0 = x0 + I y0 does not lie on the real axis
then for R < 2y0 the σ -ball Σ (q0, R) reduces to a (2-dimensional) disk {z ∈ L I : |z − q0| < R}

in the complex plane L I through q0 (see [9] for a detailed account on σ -balls). Hence the series
expansion (3), in general, may not predict the behavior of f in a Euclidean neighborhood of q0,
but only along the complex plane L I containing q0. This curious phenomenon is partly explained
by the fact that for a generic domain Ω in H, a regular function f : Ω → H needs not be
continuous, as shown by the next example.

Example 1.7. For a fixed I ∈ S, we can define a regular function f : H \ R → H by setting

f (q) =


0 if q ∈ H \ L I
1 if q ∈ L I \ R.

Clearly, f is not continuous.

However, [3] explained that real differentiability (and other interesting properties) are granted
if Ω is carefully chosen. First, let us consider the following class of domains.

Definition 1.8. Let Ω be a domain in H, intersecting the real axis. If, for all I ∈ S,ΩI = Ω ∩ L I
is a domain in L I ≃ C then Ω is called a slice domain.

Theorem 1.9 (Identity Principle). Let Ω be a slice domain and let f, g : Ω → H be slice
regular. Suppose that f and g coincide on a subset C of ΩI , for some I ∈ S. If C has an
accumulation point in ΩI , then f ≡ g in Ω .

Second, let us consider slice domains having the additional property of axial symmetry with
respect to the real axis, i.e. those slice domains Ω such that

Ω =


x+I y∈Ω

x + yS.

The word symmetric will refer to this type of symmetry throughout the paper. A very peculiar
property holds for regular functions f on symmetric slice domains: they are affine when
restricted to a single 2-sphere x + yS. Indeed, the Representation Formula proven in [3] can
be restated as follows.

Theorem 1.10. Let f be a regular function on a symmetric slice domain Ω and let x0+y0S ⊂ Ω .
For all q, q0, q1, q2 ∈ x0 + y0S with q1 ≠ q2

f (q) = (q2 − q1)
−1 [q̄1 f (q1) − q̄2 f (q2)] + q(q2 − q1)

−1 [ f (q2) − f (q1)] (6)

and

f (q) = f (q0) + (q − q0)(q1 − q2)
−1 [ f (q1) − f (q2)] (7)

where (q2 − q1)
−1 [ f (q2) − f (q1)] and (q2 − q1)

−1 [q̄1 f (q1) − q̄2 f (q2)] do not depend on the
choice of q1, q2, but only on x0, y0.

As an immediate consequence of Theorem 1.10, if f is a regular function on a symmetric
slice domain then its values can all be recovered from those of one of its restrictions f I . This
allowed a further study of these functions in [3], including the construction of a structure of real
algebra for regular functions on a symmetric slice domain Ω (with the usual addition + and a
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multiplication ∗ that extends the one defined in Eq. (2)) and the observation that a regular f on
a symmetric slice domain is C∞(Ω). This last result has been improved to f ∈ Cω(Ω) in [13].
This makes it reasonable to expect, in the case of symmetric slice domains, a stronger form of
analyticity than the one presented in Theorem 1.6. Finding this stronger notion of analyticity is
the aim of the present paper, which introduces a new type of series expansions and proves their
validity in Euclidean open sets.

We start in Section 2 with a regular function f on a symmetric slice domain Ω , and we
construct a formal expansion of the form

f (q) =


n∈N

[(q − x0)
2
+ y2

0 ]
n
[A2n + (q − q0)A2n+1] (8)

at each point q0 = x0 + I y0 ∈ Ω . We then prove what follows.

Proposition 1.11. Let {an}n∈N ⊂ H and suppose

lim sup
n→+∞

|an|
1/n

= 1/R (9)

for some R > 0. Let q0 = x0 + I y0 ∈ H with x0 ∈ R, y0 > 0, I ∈ S and set P2n(q) =

[(q − x0)
2
+ y2

0 ]
n and P2n+1(q) = [(q − x0)

2
+ y2

0 ]
n(q − q0) for all n ∈ N. Then the function

series


n∈N Pn(q)an converges absolutely and uniformly on compact sets in

U (x0 + y0S, R) = {q ∈ H : |(q − x0)
2
+ y2

0 | < R2
}, (10)

where it defines a regular function. Furthermore, the series diverges at every q ∈ H \

U (x0 + y0S, R).

In Section 3, we obtain estimates for the coefficients of our new formal expansion (8). More
precisely, we prove that for every U = U (x0 + y0S, R) such that U ⊂ Ω , there exists a constant
C > 0 such that

|An| ≤ C ·

max
∂U

| f |

Rn .

This result is achieved by means of new integral representations.
In Section 4 we define f to be symmetrically analytic if it admits at any q0 ∈ Ω an expansion

of type (8) valid in a neighborhood of q0. We are able to prove that regularity is equivalent to
symmetric analyticity.

In Section 5, we apply the new series expansion (8) to the computation of the multiplicities of
the zeros of regular functions. Finally, in Section 6, we apply it to the computation of directional
derivatives.

Theorem 1.12. Let f be a regular function on a symmetric slice domain Ω , and let q0 = x0 +

I y0 ∈ Ω . For all v ∈ H, |v| = 1 the derivative of f along v can be computed at q0 as

lim
t→0

f (q0 + tv) − f (q0)

t
= vA1 + (q0v − vq̄0)A2. (11)

We conclude by studying the bearings of this result in (real and) complex coordinates: it
turns out that if we fix q0 and choose appropriate complex coordinates on H, then f is complex
differentiable at q0 and its Jacobian at the same point can be easily computed in terms of A1
and A2.
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2. A new series expansion

Let us recall a result from [18] (extending [7]) and derive from it the subsequent theorem.

Proposition 2.1. Let f be a regular function on a symmetric slice domain Ω . A point q0 ∈ Ω
is a zero of f if and only if there exists a regular function g : Ω → H such that f (q) =

(q − q0) ∗ g(q).

Theorem 2.2. Let f be a regular function on a symmetric slice domain Ω . For each q0 ∈ Ω , let
us denote as Rq0 f : Ω → H the function such that

f (q) = f (q0) + (q − q0) ∗ Rq0 f (q).

If q0 = x0 + I y0 for x0, y0 ∈ R and for some I ∈ S, then

f (q) = f (q0) + (q − q0)Rq0 f (q̄0) + [(q − x0)
2
+ y2

0 ]Rq̄0 Rq0 f (q)

for all q ∈ Ω .

Proof. The existence of a regular Rq0 f : Ω → H such that

f (q) = f (q0) + (q − q0) ∗ Rq0 f (q),

is granted by the previous proposition, since f − f (q0) is a regular function on Ω vanishing at
q0. Applying the same procedure to Rq0 f at the point q̄0 yields

f (q) = f (q0) + (q − q0) ∗

Rq0 f (q̄0) + (q − q̄0) ∗ Rq̄0 Rq0 f (q)


= f (q0) + (q − q0)Rq0 f (q̄0) + [(q − x0)

2
+ y2

0 ]Rq̄0 Rq0 f (q)

where we have taken into account that

(q − q0) ∗ (q − q̄0) = q2
− q(q0 + q̄0) + q0q̄0

= q2
− q2x0 + x2

0 + y2
0 = (q − x0)

2
+ y2

0 . �

If we repeatedly apply the previous theorem, we get the formal expansion

f (q) = f (q0) + (q − q0) Rq0 f (q̄0) + [(q − x0)
2
+ y2

0 ]

×

Rq̄0 Rq0 f (q0) + (q − q0)Rq0 Rq̄0 Rq0 f (q̄0)


+ · · ·

+ [(q − x0)
2
+ y2

0 ]
n (Rq̄0 Rq0)

n f (q0) + (q − q0)Rq0(Rq̄0 Rq0)
n f (q̄0)


+ · · ·

where (Rq̄0 Rq0)
n denotes the nth iterate of Rq̄0 Rq0 . If A2n = (Rq̄0 Rq0)

n f (q0) and A2n+1 =

Rq0(Rq̄0 Rq0)
n f (q̄0) for all n ∈ N, our new formal expansion reads as

f (q) =


n∈N

Pn(q)An (12)

where P2n(q) = [(q − x0)
2
+ y2

0 ]
n and P2n+1(q) = [(q − x0)

2
+ y2

0 ]
n(q − q0) for all n ∈ N. Let

us study the sets of convergence of function series of this type.

Lemma 2.3. Let x0 ∈ R, y0 > 0, q ∈ H and let r ≥ 0 be such that |(q − x0)
2

+ y2
0 | = r2. If

q0 = x0 + I y0 for some I ∈ S then
r2 + y2

0 − y0 ≤ |q − q0| ≤


r2 + y2

0 + y0.
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Proof. If r = 0, i.e. q ∈ x0 + yS, then clearly 0 ≤ |q − q0| ≤ 2y0. Else q ∉ x0 + yS and

|(q − x0)
2
+ y2

0 | = |q − q0| |(q − q0)
−1q(q − q0) − q̄0| = |q − q0| |q − q̃0|

where q̃0 = (q − q0)q̄0(q − q0)
−1

∈ x0 + y0S. If |q − q0| >


r2 + y2

0 + y0 then

|q − q̃0| ≥ |q − q0| − |q0 − q̃0| ≥ |q − q0| − 2y0 >


r2 + y2

0 − y0

so that

|(q − x0)
2
+ y2

0 | = |q − q0| |q − q̃0| > r2
+ y2

0 − y2
0 = r2

a contradiction with the hypothesis. A similar reasoning excludes that |q − q0| <


r2 + y2

0
− y0. �

Proposition 2.4. Let {an}n∈N ⊂ H and suppose

lim sup
n→+∞

|an|
1/n

= 1/R (13)

for some R > 0. Let q0 = x0 + I y0 ∈ H with x0 ∈ R, y0 > 0, I ∈ S and set P2n(q) =

[(q − x0)
2
+ y2

0 ]
n and P2n+1(q) = [(q − x0)

2
+ y2

0 ]
n(q − q0) for all n ∈ N. Then the function

series 
n∈N

Pn(q)an (14)

converges absolutely and uniformly on compact sets in

U (x0 + y0S, R) = {q ∈ H : |(q − x0)
2
+ y2

0 | < R2
}, (15)

where it defines a regular function. Furthermore, the series (14) diverges at every q ∈ H \

U (x0 + y0S, R).

Proof. If K is a compact subset of U (x0 + y0S, R) then there exists r < R such that
|(q − x0)

2
+ y2

0 | ≤ r2 for all q ∈ K . Thus, for all q ∈ K

|P2n(q)a2n| = |(q − x0)
2
+ y2

0 |
n
|a2n| ≤ r2n

|a2n|

while (thanks to the previous lemma)

|P2n+1(q)a2n+1| = |(q − x0)
2
+ y2

0 |
n
|q − q0| |a2n+1|

≤ r2n


r2 + y2
0 + y0


|a2n+1|.

Hence (14) is dominated on K by a number series


n∈N cn with

lim sup
n→+∞

|cn|
1/n

= r/R < 1.

This guarantees absolute and uniform convergence of (14) in K . This, in turn, proves the
regularity of the sum (since all the addends in (14) are regular polynomials).

Finally, if q ∈ H \ U (x0 + y0S, R) then |(q − x0)
2
+ y2

0 | = r2 for some r > R. Reasoning as
before, we get |P2n(q)a2n| ≥ r2n

|a2n| and

|P2n+1(q)a2n+1| ≥ r2n


r2 + y2
0 − y0


|a2n+1|.
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Fig. 1. Examples of U (S, R), intersected with a plane L I , for different values of R.

Thus,


n∈N Pn(q)an dominates a number series


n∈N Cn with

lim sup
n→+∞

|Cn|
1/n

= r/R > 1

and it must diverge. �

Let us now describe the sets U (x0 + y0S, R). The intersection between the hypersurface
|(q − x0)

2
+ y2

0 | = R2 and any complex plane L I is a polynomial lemniscate, connected for
R ≥ y0 and having two connected components for R < y0. If y0 ≠ 0 then at the critical value
R = y0 the lemniscate is of figure-eight type. Some examples are portrayed in Fig. 1.

Remark 2.5. For R > y0 the set U (x0 + y0S, R) is a symmetric slice domain; for 0 < R ≤ y0
the set U (x0 + y0S, R) is a symmetric domain whose intersection with any complex plane L I
has two connected components.

So far, we have introduced the formal expansion (12), and we have studied what its set of
convergence would be if estimates for the coefficients An were provided. In the next section, we
will search exactly for such estimates by means of Cauchy-type integral representations.

3. Integral formulas and Cauchy estimates

Let us recall the “slicewise” Cauchy integral formula proven in [11]. We first introduce some
notations. Suppose γI : [0, 1] → L I to be a rectifiable curve whose support lies in a complex
plane L I for some I ∈ S; let ΓI be a neighborhood of γI in L I and let f, g : ΓI → H be
continuous functions. If J ∈ S is such that J ⊥ I then L I + L I J = H = L I + J L I and there
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exist continuous functions F, G, H, K : ΓI → L I such that f = F + G J and g = H + J K
in ΓI . Then

γI

g(s)ds f (s) :=


γI

H(s)ds F(s) +


γI

H(s)dsG(s)J

+ J


γI

K (s)ds F(s) + J


γI

K (s)dsG(s)J.

The aforementioned Cauchy-type formula reads as follows.

Lemma 3.1. Let f be a regular function on a symmetric slice domain Ω , let I ∈ S and let UI
be a bounded Jordan domain in L I , with UI ⊂ ΩI . If ∂UI is rectifiable then

f (z) =
1

2π I


∂UI

ds

s − z
f (s) (16)

for all z ∈ UI .

The previous lemma was the basis for the proof of a more complete Cauchy formula in [2].
It will now provide a new integral representation and lead us to the desired estimates for the
coefficients An in the formal expansion (12).

Theorem 3.2. Let f be a regular function on a symmetric slice domain Ω , let I ∈ S and let UI
be a symmetric bounded Jordan domain in L I , with UI ⊂ ΩI . If ∂UI is rectifiable then for each
z0 = x0 + I y0 ∈ UI and for all z ∈ UI

f (z) = f (z0) + (z − z0) ·
1

2π I


∂UI

ds

(s − z)(s − z0)
f (s). (17)

Furthermore,

(Rz̄0 Rz0)
n f (z) =

1
2π I


∂UI

ds

(s − z)[(s − x0)2 + y2
0 ]n

f (s) (18)

Rz0(Rz̄0 Rz0)
n f (z) =

1
2π I


∂UI

ds

(s − z)(s − z0)[(s − x0)2 + y2
0 ]n

f (s) (19)

for all n ∈ N and all z ∈ UI .

Proof. The previous lemma is equivalent to (18) in the special case n = 0. That immediately
implies

Rz0 f (z) = (z − z0)
−1

[ f (z) − f (z0)]

=
1

2π I


∂UI

1
z − z0


1

s − z
−

1
s − z0


ds f (s)

=
1

2π I


∂UI

ds

(s − z)(s − z0)
f (s),

that is (19) in the special case n = 0. This last equality, in turn, implies (17). Moreover,

Rz0 f (z̄0) =
1

2π I


∂UI

ds

(s − x0)2 + y2
0

f (s)
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and

Rz̄0 Rz0 f (z) = (z − z̄0)
−1

[Rz0 f (z) − Rz0 f (z̄0)]

=
1

2π I


∂UI

1
z − z̄0


1

(s − z)(s − z0)
−

1

(s − x0)2 + y2
0


ds f (s)

=
1

2π I


∂UI

1
z − z̄0

s − z̄0 − (s − z)

(s − z)[(s − x0)2 + y2
0 ]

ds f (s)

=
1

2π I


∂UI

ds

(s − z)[(s − x0)2 + y2
0 ]

f (s),

that is (18) with n = 1. An analogous reasoning proves that if (18) holds for n = k, then (19)
holds for n = k, which in turn implies (18) for n = k + 1 completing the proof. �

We are now in a position to get the desired estimates for the coefficients An in the formal
expansion (12).

Corollary 3.3. Let f be a regular function on a symmetric slice domain Ω , let x0 + y0S ⊂ Ω
and let q0 ∈ x0 + y0S. Set A2n = (Rq̄0 Rq0)

n f (q0) and A2n+1 = Rq0(Rq̄0 Rq0)
n f (q̄0). For every

U = U (x0 + y0S, R) such that U ⊂ Ω , there exists a constant C > 0 such that

|An| ≤ C ·

max
∂U

| f |

Rn (20)

for all n ∈ N.

Proof. If we choose U = U (x0 + y0S, R) then the previous theorem implies

|(Rq̄0 Rq0)
n f (q0)| =

 1
2π I


∂UI

ds

(s − z0)[(s − x0)2 + y2
0 ]n

f (s)


≤

1
2π


∂UI

| f (s)|
R2 + y2

0 − y0


R2n

d|s| ≤ C ·

max
∂U

| f |

R2n

if we set C =
length(∂UI )

2π


R2+y2

0−y0

 . On the other hand

|Rq0(Rq̄0 Rq0)
n f (q̄0)| =

 1
2π I


∂UI

ds

[(s − x0)2 + y2
0 ]n+1

f (s)


≤

1
2π


∂UI

| f (s)|

R2n+2 d|s| ≤ K ·

max
∂U

| f |

R2n+1

where K =
length(∂UI )

2π R ≤ C . �

4. A new notion of analyticity

We are now ready to prove the desired result concerning the expansion of slice regular
functions.
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Theorem 4.1. Let f be a regular function on a symmetric slice domain Ω , and let x0, y0 ∈ R and
R > 0 be such that U (x0 + y0S, R) ⊆ Ω . For all q0 ∈ x0 + y0S, setting A2n = (Rq̄0 Rq0)

n f (q0)

and A2n+1 = Rq0(Rq̄0 Rq0)
n f (q̄0), we have that

f (q) =


n∈N

[(q − x0)
2
+ y2

0 ]
n
[A2n + (q − q0)A2n+1] (21)

for all q ∈ U (x0 + y0S, R).

Proof. Thanks to Proposition 2.4 and Corollary 3.3, the function series in Eq. (21) converges in
U = U (x0 + y0S, R), where it defines a regular function. Let us consider the difference

g(q) = f (q) −


n∈N

[(q − x0)
2
+ y2

0 ]
n
[A2n + (q − q0)A2n+1].

By construction, g(q) = [(q − x0)
2
+ y2

0 ]
n(Rq̄0 Rq0)

n f (q) for all n ∈ N. For any choice of I ∈ S
and for all z ∈ UI , we derive that

gI (z) = [(z − x0)
2
+ y2

0 ]
n(Rq̄0 Rq0)

n f I (z) = [z − (x0 + I y0)]
nh[n]

I (z)

where h[n]

I (z) = [z − (x0 − I y0)]
n(Rq̄0 Rq0)

n f I (z) is holomorphic in UI . The identity principle
for holomorphic functions of one complex variable implies that gI ≡ 0. Since I can be arbitrarily
chosen in S, the function g must be identically zero in U . This is equivalent to Eq. (21). �

Definition 4.2. Let f be a regular function on a symmetric slice domain Ω . We say that f
is symmetrically analytic if it admits at any q0 ∈ Ω an expansion of type (12) valid in a
neighborhood of q0.

The previous theorem, along with Proposition 2.4, proves what follows.

Corollary 4.3. Let Ω be a symmetric slice domain. A function f : Ω → H is regular if, and
only if, it is symmetrically analytic.

We conclude this section reformulating expansion (21) as follows, thanks to Theorem 1.10.

Corollary 4.4. Let f be a regular function on a symmetric slice domain Ω , and let x0, y0 ∈ R
and R > 0 be such that U (x0 + y0S, R) ⊆ Ω . Then, for all q ∈ U (x0 + y0S, R)

f (q) =


n∈N

[(q − x0)
2
+ y2

0 ]
n
[C2n + qC2n+1] (22)

where the coefficients Cn depend only on f, x0, y0 and can be computed as

C2n = (q2 − q1)
−1 q̄1(Rq̄0 Rq0)

n f (q1) − q̄2(Rq̄0 Rq0)
n f (q2)


, (23)

C2n+1 = (q2 − q1)
−1 (Rq̄0 Rq0)

n f (q2) − (Rq̄0 Rq0)
n f (q1)


for all q0, q1, q2 ∈ x0 + y0S with q1 ≠ q2.

We notice that the odd-indexed coefficients in expansions (21) and (22) coincide.
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5. Computing multiplicities of zeros

As a first application of our new type of series expansions, let us look at its bearings in
the computation of the multiplicities of the zeros. After the study of the roots of polynomials
of [17], the following result was proven for power series in [7], and in its present form in [8] (for
generalizations to other real alternative algebras, see [13,14]).

Theorem 5.1 (Structure of the Zero Set). Let f be a regular function on a symmetric slice
domain Ω . If f does not vanish identically, then the zero set of f consists of isolated points or
isolated 2-spheres of the form x + yS.

The following notion of multiplicity was introduced in [7].

Definition 5.2. Let f be a regular function on a symmetric slice domain Ω and let q0 ∈ Ω . We
define the (classical) multiplicity of q0 as a zero of f and denote by m f (q0) the largest n ∈ N
such that f (q) = (q − q0)

∗n
∗ g(q) for some regular g : Ω → H.

In other words, m f (q0) is the index n of the first non vanishing coefficient an in the expansion
(3). Despite its analogy with complex multiplicity, this notion of multiplicity is not completely
satisfactory, since the sum of the classical multiplicities of the zeros of a polynomial is unrelated
to its degree.

Example 5.3. Let us choose I ∈ S and let

P(q) = (q − I ) ∗ (q + I ) = q2
+ 1.

P has multiplicity m P (I ) = 1 at all I ∈ S.

Example 5.4. Let us choose I, J ∈ S with I ≠ −J and let

P(q) = (q − I ) ∗ (q − J ) = q2
− q(I + J ) + I J.

The zero set of P is {I }. If I ≠ J then m P (I ) = 1, while f has degree 2.

For this reason [12] introduced alternative notions of multiplicity for the roots of regular
polynomials. We present them as generalized in [18] to all regular functions on symmetric slice
domains.

Theorem 5.5. Let f be a regular function on a symmetric slice domain Ω ; suppose f ≢ 0 and
let x + yS ⊂ Ω . There exist m ∈ N and a regular function f̃ : Ω → H not identically zero in
x + yS such that

f (q) = [(q − x)2
+ y2

]
m f̃ (q). (24)

If f̃ has a zero p1 ∈ x+yS then such a zero is unique and there exist n ∈ N, p2, . . . , pn ∈ x+yS
(with pi ≠ p̄i+1 for all i ∈ {1, . . . , n − 1}) such that

f̃ (q) = (q − p1) ∗ (q − p2) ∗ · · · ∗ (q − pn) ∗ g(q) (25)

for some regular function g : Ω → H which does not have zeros in x + yS.

Definition 5.6. In the situation of Theorem 5.5, we say that f has spherical multiplicity 2m at
x + yS and that f has isolated multiplicity n at p1.

As observed in [12], the degree of a polynomial equals the sum of the spherical multiplicities
and of the isolated multiplicities of its zeros. For instance: in the previous example, q2

+ 1 has
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spherical multiplicity 2 at S, (q − I ) ∗ (q − J ) (with I ≠ −J ) has spherical multiplicity 0 at S
and isolated multiplicity 2 at I .

Our new series expansion allows an immediate computation of the spherical multiplicity and
it gives some information on the isolated multiplicity.

Remark 5.7. Let f be a regular function on a symmetric slice domain Ω and let q0 = x0 + I y0
∈ Ω . If A2n or A2n+1 is the first non vanishing coefficient in the expansion (21) then 2n is the
spherical multiplicity of f at x0 + y0S. Moreover, q0 has positive isolated multiplicity if and only
if A2n = 0.

Remark 5.8. Let f be a regular function on a symmetric slice domain Ω and let x0 + y0S ⊂ Ω .
If the first non vanishing coefficient in the expansion (22) is C2n or C2n+1 then 2n is the spherical
multiplicity of f at x0 + y0S. Moreover, there exists a point with positive isolated multiplicity in
x0 + y0S if, and only if, C−1

2n+1C2n ∈ x0 + y0S.

6. Differentiating regular functions

In Section 4 we proved that a regular function f on a symmetric slice domain Ω admits an
expansion of the form

f (q) =


n∈N

[(q − x0)
2
+ y2

0 ]
n
[A2n + (q − q0)A2n+1]

at each q0 ∈ Ω . This new expansion allows the computation of the real partial derivatives of f .

Theorem 6.1. Let f be a regular function on a symmetric slice domain Ω , and let q0 = x0 +

I y0 ∈ Ω . For all v ∈ H, |v| = 1 the derivative of f along v can be computed at q0 as

lim
t→0

f (q0 + tv) − f (q0)

t
= vA1 + (q0v − vq̄0)A2 (26)

where A1 = Rq0 f (q̄0), A2 = Rq̄0 Rq0 f (q0). In particular if e0, e1, e2, e3 ∈ H form a basis for
H and if x0, x1, x2, x3 denote the corresponding coordinates, then

∂ f

∂xi
(q0) = ei Rq0 f (q̄0) + (q0ei − ei q̄0)Rq̄0 Rq0 f (q0). (27)

Proof. We observe that

(q − x0)
2
+ y2

0 = (q − q0) ∗ (q − q̄0) = q(q − q0) − (q − q0)q̄0

and for q = q0 + tv

(q − x0)
2
+ y2

0 = (q0 + tv)tv − tvq̄0 = t (tv2
+ q0v − vq̄0)

whence

f (q0 + tv) =


n∈N

tn(tv2
+ q0v − vq̄0)

n
[A2n + tvA2n+1].

Hence,

f (q0 + tv) − f (q0) = t A1 + t (tv2
+ q0v − vq̄0)[A2 + tvA3] + o(t)

and the thesis immediately follows. �
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We notice that similar reasonings allow the computation of higher order derivatives.
Furthermore, we make the following observation.

Remark 6.2. Let f be a regular function on a symmetric slice domain Ω and let q0 ∈ Ω . If v

lies in the same L I as q0, then v commutes with q0 and

vRq0 f (q̄0) + (q0v − vq̄0)Rq̄0 Rq0 f (q0) = v[Rq0 f (q̄0) + (q0 − q̄0)Rq̄0 Rq0 f (q0)]

= v[Rq0 f (q̄0) + Rq0 f (q0) − Rq0 f (q̄0)]

= vRq0 f (q0).

On the other hand, if q0 = x0 + I y0 with y0 ≠ 0 and v is tangent to the 2-sphere x0 + y0S at q0,
then q0v = vq̄0 and

vRq0 f (q̄0) + (q0v − vq̄0)Rq̄0 Rq0 f (q0) = vRq0 f (q̄0).

As a consequence, the notions of derivatives of regular functions already introduced in the
literature can be recovered as special cases of formula (26). Indeed, Rq0 f (q0) coincides with
∂c f (q0), where ∂c f denotes the Cullen (or slice) derivative of f , defined in [11] to equal

∂I f (x + I y) =
1
2


∂

∂x
− I

∂

∂y


f I (x + I y)

at each point x + I y ∈ ΩI . On the other hand, Rq0 f (q̄0) equals ∂s f (q0)
y0

, where ∂s f denotes the
spherical derivative of f , defined in [13] setting

∂s f (q0) =
1
2

Im(q0)
−1( f (q0) − f (q̄0)).

We conclude by looking at the implications of our result in complex coordinates. In the
hypotheses of the previous theorem, let us choose I ∈ S so that q0 ∈ L I , choose J ∈ S with
I ⊥ J and set e0 = 1, e1 = I, e2 = J, e3 = I J . Then H = (R + IR) + (R + IR)J can be
identified with C2 setting z1 = x0 + I x1, z2 = x2 + I x3, z̄1 = x0 − I x1, z̄2 = x2 − I x3; we may
as well split f = f1 + f2 J for some f1, f2 : Ω → L I .

Theorem 6.3. Let Ω be a symmetric slice domain, let f : Ω → H be a regular function and let
q0 ∈ Ω . Choose I, J ∈ S so that q0 ∈ L I and I ⊥ J , let z1, z2, z̄1, z̄2 be the induced coordinates
and let ∂1, ∂2, ∂̄1, ∂̄2 be the corresponding derivations. Then

∂̄1 f1 ∂̄2 f1

∂̄1 f2 ∂̄2 f2


q0

=


0 0
0 0


. (28)

Furthermore, if Rq0 f splits as Rq0 f = R1 + R2 J with R1, R2 ranging in L I then
∂1 f1 ∂2 f1
∂1 f2 ∂2 f2


q0

=


R1(q0) −R2(q̄0)

R2(q0) R1(q̄0)


. (29)

Proof. Setting e0 = 1, e1 = I, e2 = J, e3 = I J and denoting as x0, x1, x2, x3 the corresponding
real coordinates, the derivations ∂1, ∂2, ∂̄1, ∂̄2 are defined by

∂1 =
1
2


∂

∂x0
− I

∂

∂x1


, ∂̄1 =

1
2


∂

∂x0
+ I

∂

∂x1


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∂2 =
1
2


∂

∂x2
− I

∂

∂x3


, ∂̄2 =

1
2


∂

∂x2
+ I

∂

∂x3


.

By means of the previous proposition, we compute

∂ f

∂x0
(q0) = Rq0 f (q0) = R1(q0) + R2(q0)J,

∂ f

∂x1
(q0) = I Rq0 f (q0) = I R1(q0) + I R2(q0)J,

∂ f

∂x2
(q0) = J Rq0 f (q̄0) + (q0 J − J q̄0)Rq̄0 Rq0 f (q0) = J Rq0 f (q̄0)

= J (R1(q̄0) + R2(q̄0)J ) = −R2(q̄0) + R1(q̄0)J,

∂ f

∂x3
(q0) = K Rq0 f (q̄0) + (q0 K − K q̄0)Rq̄0 Rq0 f (q0) = K Rq0 f (q̄0)

= I J (R1(q̄0) + R2(q̄0)J ) = −I R2(q̄0) + I R1(q̄0)J,

where we have taken into account that J z = z̄ J for all z ∈ L I . The thesis follows by direct
computation. �

Eq. (28) tells us that fixing q0 and choosing appropriate complex coordinates on H, f is
complex differentiable at q0; Eq. (29) then allows to compute the complex Jacobian of f at q0.
These tools open the possibility of using complex variables in the study of slice regular functions.
We also point out that in the special case where q0 ∈ R the complex Jacobian has the form

a −b̄
b ā


,

which implies limh→0 h−1
[ f (q0 + h) − f (q0)] = a + bJ and proves what follows.

Corollary 6.4. Let Ω be a symmetric slice domain. If f : Ω → H is a regular function then it is
left q-differentiable at each q0 ∈ Ω ∩ R, where limh→0 h−1

[ f (q0 + h) − f (q0)] = Rq0 f (q0) =

∂c f (q0).
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