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Introduction 

The purpose of this paper is to prove a fixed-point theorem for discrete group 
actions. In a separate paper we will apply this theorem to the theory of Euler charac- 
teristics of groups. We begin by briefly describing this application, since it provides 
the motivation for the fixed-point theorem. 

Let r be a group such that (9, regarded as Qf-module with trivial r-action, 
admits a resolution 0 4 P, + *a* * PO -+ Q -, 0, where each Pi is a finitely generated 
projective QT-module. (r is then said to be of type (FP) over (4.) The complete 
Eulercharucteristicof f, first introduced by Stallings 1131 and denoted here by E(T), 
is then defined by E(T) = C (-l)‘r(Pi), where r( ) denotes the Hattori-Stallings 
rank. Thus E(T) is a finite linear combination (with Q-coefficients) of f-conjugacy 
classes, and we denote by E(f)(s) the coefficient of the conjugacy class [s) of an 
element s E f. We set E(f)(l) = e(T). This is the Euler characteristic of I- in the sense 
of Bass [2] and Chiswell [8]; under suitable hypotheses on r, it is known to agree 
with the Euler characteristics previously defined and studied by Wall [16], Serre 
[12], and Brown [6] (cf. [2, 10.61). 

A theorem of Bass f2, 9.21 implies that E(f)(s) =0 for s of infinite order, pro- 
vided r satisfies a certain ‘non-divisibility’ condition (which holds, for example, if r 
is a linear group). The coefficients E(T)(s) for s of finite order have remained 
mysterious, however, and Serre [private communication] proposed the formula 

w-)(s) = o I e@(s)) if s has finite order, 
if s has infinite order, (1) 

where Z(s) (or Z,-(s) if there is ambiguity) denotes the centralizer of s in 1 It was in 
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attempting to prove (1) that we needed the fixed-point theorem which is the subject 
of the present paper, and which we now describe.’ 

Suppose a group r acts cellularly on a CW-complex X. Under a suitable (FP) 
hypothesis, we will define an equivariant Euler characteristic e,-(X) and a complete 
equivariant Euler characteristic Er(X), which reduce to e(f) and E(T) if X is a 
point (or, more generally, if X is Q-acyclic). As before, E,(X) is a linear combina- 
tion of conjugacy classes, and we denote by Er(X)(s) the coefficient of [s]. The 
fixed-point set X5 is invariant under the action of Z(s), and our theorem will say, 
under suitable hypotheses on (K X), that one has the following fixed-point formula: 

E/-OX4 = 
ezc5)(XS) ifs has finite order, 
o ifs has infinite order. (2) 

In particular, if Xs is Q-acyclic for each element s of finite order (including s= l), 
then (2) yields (1). [Unfortunately, the precise hypotheses on r under which we can 
prove (1) by this method are too complicated to be stated here, but we mention an 
important family of examples: if G is an algebraic group over a number field k, then 
the arithmetic subgroups of G(k) satisfy (1); if G is reductive, then (1) holds for the 
S-arithmetic subgroups also. The proof, which will be given in detail elsewhere, is 
based on Theorem 3.1 of the present paper, together with the work of Bore1 and 
Serre [3,4]. 

The contents of this paper are as follows: Section 1 is preliminary; it contains 
some homological algebra that is needed later in the paper. In Section 2 we define 
E,-(X) and give some elementary properties. Section 3 contains the first version of 
the fixed-point theorem. We impose very strong finiteness conditions on ((;X) 
(compact quotient, ‘good’ isotropy groups), and we then prove (2) by a completely 
elementary argument. 

In Section 4 we weaken the finiteness hypotheses (in particular, we allow a non- 
compact quotient), and we show that the fixed-point formula (2) remains valid, 
provided we assume the truth of a conjecture of Bass [2]. (Conversely, the con- 
jectured fixed-point formula (2) implies Bass’s conjecture, cf. Remark 4.1.) In 
Section 5 we specialize to the case where r is finite (in which case Bass’s conjecture is 
known to be true by a theorem of Swan). The content of the fixed-point theorem in 
this case is the following (see Theorem 5.1 and Remark 5.2): 

Theorem. Let X be a paracompact space of finite cohomological dimension and let 
s be a homeomorphism of X of finite order. For each element t of the cyclic group 
generated by s, assume that X’ has finitely-generated integral cohomology. Then the 
Lefschetz number of s is equal to the Euler characteristic of XS. 

’ It is, of course, not surprising that an attempt to understand E(T) should lead to fixed-point theory, 

in view of the fact that the definition of E(f) was originally motivated by classical fixed-point theory (cf. 

[13], introduction). 
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(Here ‘cohomology’ and ‘cohomological dimension’ are to be interpreted in the 
sense of sheaf theory [l I].) This theorem is, in fact, an immediate consequence of 
our earlier work on finite group actions (cf. [6], p. 233, Theorem 2 and footnote; see 
also Verdier [15]), but it was not explicitly stated there. An analogous theorem in 
the context of etale cohomology theory has been proved by Deligne and Lusztig [9]. 

Finally, in Section 6 we return to the situation of Section 4 (with fallowed to be 
infinite) and we show that, without assuming Bass’s conjecture, one can still prove a 
weak form of the fixed-point theorem. 

This paper was written while I was a visitor at the Institut des Hautes Etudes 
Scientifiques; I would like to thank I.H.E.S. for its hospitality. 

1. Chain complexes of type (FP) 

All chain complexes in this section will be assumed to be non-negative. If C and 
C’are chain complexes (over an arbitrary ring A), we denote by [C, C’] the group of 
homotopy classes of chain maps from C to C’. A chain map f: C+ C’ is called a 
weak equivalence if HJ: H,C4 H,C’ is an isomorphism. The following result is 
well known; see, for example, [IO, Kor. 3.21. 

1.1. Lemma. If f : C * C’ is a weak equivalence and P is a complex of projective 
modules, then the induced map [P, C] + [P, C’] is an isomorphism. 

By a complex of finite type we will mean a complex P = (Pi) such that each Pi is a 
finitely generated projective A-module. If, in addition, Pi = 0 for sufficiently large i, 

then we will say that P is finite. We will say that a complex C is of type (FP) 
(resp. (@)) if there is a weak equivalence P + C with P finite (resp. of finite type). 
If C is of type (FP) then we can associate to C a well-defined element [C] of Ko(.4) 
by choosing a weak equivalence P -+ C with P finite and setting 

[Cl = c (-1Ym 

for if P’ + C is any other such weak equivalence then Lemma 1.1 implies that P and 
P’ are homotopy equivalent, hence 1 (-l)‘[Pi] = 1 (-l)‘[P[] (cf. [l, Ch. VIII, $4, 
Prop. 4.1(d)]). 

As in [2], let T(A)=A/[A,A], the target group for the Hattori-Stallings trace 
over A. We write r(P) (or rA(P)) for the Hattori-Stallings rank of a finitely 
generated projective A-module P. Since r induces a homomorphism r: K&l) -, 
T(A), we may define the Hattori-Stallings rank r(C) (or rA(C)) for a complex C of 
type (FP), by r(C) = P( [Cl). Explicitly, if P + C is a weak equivalence with P finite, 
then 

r(C) = C (-l)‘r(Pi). 
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In case C consists of single module M concentrated in dimension 0, C is of type 

(FP) (resp. (i?)) if and only if M admits a finite (resp. finite type) projective resolu- - 
tion. In this case we say that the module M is of type (FP) (resp. (FP)). In the (FP) 

case, [C] = [Ml, the class of M in K&4) in the usual sense, and r(C) = r(M), the 

Hattori-Stallings rank of M as defined in [2, 2.81. 

1.2. Proposition. if P is a complex of projectives, then the following two condi- 
tions are equivalent: 

(i) P is of type (FP). - 
(ii) P is of type (FP) and there is an integer n such that H’(Hom(P, M)) =0 for 

all i > n and all A-modules M. 

For a proof see [6, Q 1, proof of lemma]. 

We will denote by M(f) the mapping cone of a chain map J 

1.3. Lemma. Let f: C’ --* C be a chain map. 
(a) Let n ‘ : P’ + C’ and n : P + C be weak equivalences such that P’ is a c0mple.u 

of projectives. Then one can find a map f: P’+ P and a weak equivalence 
M(f) - M(f) which fit into a diagram 

f 
P’ - P L M(3) 

II, f II I 
C’ - c -!---b M(f), 

such that the right-hand square is commutative and the left-hand square is homo- 
topy-commutative. (Here i and Tare the canonical inclusions.) 

(b) If C’ and C are of type (FP) (resp. E)) then the same is true of M(f ). In the 
(FP) case, [M(f )] = [C] - [C’] in &(A). 

Proof. For (a) one uses Lemma 1.1 to find a map f making the left-hand square 

above homotopy-commutative; the rest then follows easily (cf. [ 10, p. 283, proof of 

2. lo]). (b) is an immediate consequence of (a). 

1.4. Proposition. Let 0 + C’ + C -. C” -+ 0 be a short exact sequence of chain com- 

ple,ues. If any two of the three complexes are of type (FP) (resp. (v)) then so is the 
third. In the (FP) case one has [C] = [C’] + [C”], and hence 

r(C) = r(C’) + r(CN). 

Proof. Let D be the mapping cone of the map C ’ - C. There is a weak equivalence 

D -, C”, hence C” if of type (FP) or (e) if and only if D is, and [C”] = [D] in the 

(FP) case. Also there is a short sequence 

O-C-D+.ZC’-0, (*) 
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where ZC’ is obtained from C’ by re-indexing: (,X’), = CA _ , . It is easy to see that 
C’ is of type (FP) or (@) if and only if ZC’ is. We now consider the three possible 
cases. Case I: If C and C’ are of type (FP) (or (FP)), then the desired result follows 
from 1.3(b). Case 2: If C and C” are of type (FP) (or (p)), then the result follows 
from case 1, applied to the sequence (*). Case 3: If C’ and C” are of type (FP) (or 
(I?)), then the result follows from case 2, applied to (*). 

1.5. Lemma. Let C = (C,) be a chain complex, andfor each i let (Pij)j,o beaprojec- 
rive resolution of C’i. Then one can find a complex Q with Q,, = 0, +, =” Pij, such that 
there is a weak equivalence Q -+ C. 

Proof. For k r0 let Ctk) be the k-skeleton of C, i.e. the subcomplex of Cdefined by 
C’jk’=Ci for ilkand C,@‘=O for i>k. Let Z +‘) be the complex consisting of the 
module Ck concentrated in dimension k - 1, and note that Cc&) can be identified with 
the mapping cone of a chain map Z(k-‘) -, C’k-‘). We can therefore use Lemma 
1.3(a) to construct, inductively, a compatible family of weak equivalences 
Q@) -+ Cck), where Q@) is a complex such that 

Qp’= @ Pij, 
i+j=n 

isk 

Passing to the limit, we obtain the desired complex Q and weak equivalence Q -+ C. 

1.6. Proposition. If C is a complex such that each module C, is of type (E), then 
C is of type (w). If each C, is of type (FP) and Ci = 0 for sufficiently large i, then C 
is of type (FP) and [C] = 1 (-l)‘[Ci] in &(A); consequently, 

r(C) = C (-l)‘r(Ci). 

This is an immediate consequence of Lemma 1 S. 

- 
1.7. Lemma. if C is a complex of type (FP) and n is an integer such that HiC = 0 
for i c n, then H,, C is a finitely-generated module. 

Proof. We may assume that C is a complex of projectives of finite type. Then the 
hypothesis implies that the module Zi of i-cycles is a direct summand of Ci for i 5 n. 
In particular, 2, is finitely generated, whence the lemma. 

1.8. Lemma. The following conditions on a chain complex C are equivalent: 
(i) C is of type (FP). 

(ii) For any complex C’ of type (w) and any map C’ --) C, the first non-vanishing 
homology module of the mapping cone is finitely generated. 

- 
Proof. If C is of type (FP) and C’* C is as in (ii), then the mapping cone is of type 
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(E) by Lemma 1.3(b), hence its first non-vanishing homology module is finitely 
generated by Lemma 1.7. Conversely, if (ii) hoIds then it is easy to construct, step- 
by-step, a finite type complex F of free modules together with a weak equivalence 
F+ C. In fact, suppose inductively that we have constructed the k-skeleton Fck) of 
the desired F, together with a map fck) : F(@ -t C such that H, (M(f’k’)) = 0 for i s k. 

Then Hk+ ,(M(fck))) is finitely generated by hypothesis, hence we can attach to F@) 
a finitely generated free module in dimension k + 1 to get a complex F(“- I) such that 
fck) extends to a map f@ + *) : Fck + ’ + C with H#vI(~(~+ I))) = 0 for is k + 1 (cf. [7, 
Lemma 31). This completes the inductive step and hence the proof of the lemma. 

1.9. Proposition. If the ring A is (Ieft) noetherian, then a chain complex C of A- 
modules is of type (E) if and only if H,C is finitely generated for each i. 

Proof. It is trivial that a complex of type (E) over a noetherian ring has finitely 
generated homology. Conversely, if C has finitely generated homology then it is 
clear from a consideration of long exact homology sequences that condition (ii) of 
Lemma 1.8 is satisfied, so C is of type (@). 

Recall (cf. [2, 2.101) that if A -+B is a ring homomorphism such that B is of type 
(FP) as (left) A-module, then there is a trace map TrBiA : T(B) -+ T(A) such that 

r,M) = Tra&a(P)) 

for any finitely generated projective B-module P. (This formula makes sense 
because P is of type (FP) as A-module.) 

1.10. Proposition. Let A -, B be a ring homomorphism such that B is of type (i?) 
as A-module, and let C be a complex of B-modules. Then: 

(a) C is of type (%) as complex of B-modules if and only if it is of type (E) as 
complex of A-modules. 

(b) If B is of type (FP) as A-module and C is of type (FP) as complex of B- 
modules, then C is of type (FP) as complex of A-modules and 

rA(C) = TsB/A(re(C)). 

Proof. Assume first that the hypotheses of(b) hold, and let P be a finite complex of 
projective B-modules which admits a weak equivalence P -+ C. Then Proposition 1.6 
implies that P, and hence also C, is of type (FP) over A, and that 

This proves (b), and a similar argument proves the ‘only if’ part of (a). The ‘if’ part 
of (a) now follows easily from Lemma 1.8. For suppose C is of type (i?) over A and 
let C’-, C be a map of B-complexes, where C’ is of type (w) over B; then C’ is also 
of type (@) over A by what we have just proved, so the first non-vanishing 
homology group of the mapping cone is finitely generated over A and hence also 
over B. 
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We close this section by remarking that the rank r(C) which we have defined in 

this section for a complex C of type (FP) is really a special case of a Hattori- 
Sfallings trace Tr(f) which can be defined for an endomorphism f of such a 

complex C. In fact, if P-C is weak equivalence with P finite, then we can lift f 
(up to homotopy) to an endomorphism f=(x) of P= (P,), and we then set 

Tr(f)=C(-l)‘Tr(J). It is easy to check that Tr(f) is well defined. For future 

reference we record the following obvious fact (cf. [2, 3.11): 

1.11. Proposition. Let C be a complex of type (FP) over A, and suppose that A is 
an algebra over a commutative ring R. Then the trace map Tr : End(C) - T(A) is 
R-linear. 

2. Equivariant Euler characteristics 

Let r be a group and X a CW-complex on which facts. We will assume that the 

r-action satisfies the following two conditions, in which case we will say that X is an 

admissible f-complex: 

(i) The action of I- permutes the cells of X. 

(ii) For each cell o of X, the isotropy group r, fixes every point of cr. 

Note that (i) and (ii) imply that the fixed-point set X’ and the orbit space X/T 

inherit CW-structures. 

For any commutative ring k, the cellular chain complex C(X,k) is a complex of 

modules over the group algebra kr, and we will say that (6 X) is of type (FP) (resp. - 
(FP)) over k if this chain complex is of type (FP) (resp. (E)) in the sense of Section 

1. If it is of type (FP) then we define the complete equivariant Euler characteristic 

Er(X, k) by 

6(X, k) = rkr(C(X, k)). 

If there is no ambiguity then we will suppress the coefficient ring k from the 

notation and simply write E,(X). As usual we identify T(kT) with the free k-module 

generated by the cconjugacy classes; thus Er(X) is a k-linear combination of r- 

conjugacy classes, and, as in the introduction, we denote by E,(X)(s) the coefficient 

of [s]. We set 

&(X)(l) =er(X) 

and call this the equivariant Euler characteristic of (I; X) (over k). 
All of these definitions extend in the obvious way to the relative situation. Thus if 

X’c X is a subcomplex invariant under the action of f, then we will say that 

(r; X, X’) is of type (FP) or (m) (over k) if this is true of C(X, X’; k), and in the 

(FP) situation we can define Er(X, X’), Er(X, X’)(s), and er(X, X’) as above. 

In case X is a point, C(X, k) is simply k, with trivial Faction, concentrated in 
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dimension 0. Hence (K pt.) is of type (FP) (resp. (I?)) over k if and only if k is a kf- 
module of type (FP) (resp. (F)), in which case one says that r is of type (FP) (resp. - 
(FP)) over k. If I- is of type (FP) over k then we set 

E(T)=Er(pt.)=r,,-(k); 

this is the Stallings complete Euler characteristic of r over k (cf. [13], [2]). As 
before, we write E(T)(s) for the coefficient of [s] and we set 

e(T) = E(T)( 1) = er(pt.); 

this is the Euler characteristic of r (over k) in the sense of Bass [2] and Chiswell [8]. 
We now record some properties of the (complete) equivariant Euler characteris- 

tic. To simplify the notation we will state the results only in the absolute case, but it 
will be obvious from the proofs that everything extends to pairs (X,X’). 

2.1. Proposition. (i) Let X and Y be admissible l--complexes such that there exists a 
cellular r-map X- Y which induces an isomorphism H*(X, k) + H,( Y, k). Then 
(&X) is of type (FP) or (%) over k if and only if (f, Y) is, and in the (FP) case 

E/-(X) = F-(Y). 
(ii) If X is a k-acyclic admissible Romplex (i.e. A,(X, k) = 0), then (c X) is of 

type (FP) (resp. (fi)) over k if and on/y if I- is of type (FP) (resp. (E)) over k, and 
in the (FP) case Et-(X) = E(f). 

(iii) If (C X) is of type (FP) over k and PC r is a subgroup of finite index, then 

(I-‘, X) is of type (FP) over k and 

~rW)W = (Z,(s) : Z,.(s)) * or 
for s E I-‘. In particular, 

er(X) = (r: r’). et-(X). 

(iv) Let X be an admissible r-complex such that X/T is compact and each 
isotropy group r, is of type (FP) over k. Then (c X) is of type (FP) over k and 

l+(X) = C (-l)dim ui&(E(f,)), 

where o ranges over a set of representatives for the cells of X mod r and i[ : 0 
T(kT,) + T(kT) is the map induced by the inclusion T,G~ 

(v) If (r; X) is of type (FP) over k and r has a central subgroup of infinite order 
which acts trivially on X, then e,-(X) = 0. 

(Note that (v) reduces to the Gottlieb-Stallings theorem [13, 3.51 in case X is a 
point.) 

Proof. (i) follows from the fact that the given map induces a weak equivalence 
C(X, k) 4 C(Y k). (ii) is the special case of (i) where Y is a point. (iii) follows from 
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the restriction formula for the Hattori-Stallings rank [2, 6.31. For (iv) we note that 

where C, is a set of representatives for the p-cells of X mod r; the result now follows 
from Proposition 1.6. Finally, (v) is an immediate consequence of Proposition 1.11, 
exactly as in the proof of the Gottlieb-Stallings theorem (cf. [2, 10.41). 

2.2. Remark. If X is an admissible r-complex, then one can show that the cellular 
complex C(X, k) is weakly equivalent over kT to the singular chain complex of X. It 
follows that the definitions of this section ((FP), E,(X), etc.) are independent of the 
CW-structure on X. It also follows that we can drop in Proposition 2.1(i) the 
assumption that the map be cellular. 

Let X be an admissible f--complex. We will say that (I;X) is proper (resp. free) if 
each isotropy group r, is finite (resp. trivial). We will say that (K X) is virtually free 
if (r’, X) is free for some subgroup r’ c r of finite index. Any virtually free r-corn- 
plex is proper, and the converse holds if r is virtually torsion-free. 

2.3. Proposition. Assume that (l-,X) is proper and that the order of each isotropy 
group r, is invertible in k. 

(a) If X is finite dimensional, then (4 X) is of type (FP) over k if and only ifit is 
of type (FP) over k. 

(b) If (KX) is of type (FP) over k, then so is (T/TO, X/TO) for any normal 
subgroup rO of r, and Er,rO(X/TO) is equal to the image of E,(X) under the canoni- 
cal map T(kT) -, T(k[T/T,]). 

Proof. The hypothesis implies that C(X, k) is a complex of projective kcmodules; 
(a) is therefore a consequence of Proposition 1.2. Now suppose (I;X) is of type (FP) 
over k and let f : P- C(X, k) be a weak equivalence with P a finite chain complex 
over kT. Then f is a homotopy equivalence, hence it induces a homotopy equiva- 
lence 

k[T/T,] Ok,- P --) k[T/T,] Ok,- C(X, k) = C(XKo, k) 

over k[T/T,], and (b) follows at once. 

We close this section by briefly describing a homologically defined ‘equivariant 
Euler characteristic’ x,-(X), which is closely related to er(X). This will be needed in 
Section 6. Let X be a finite dimensional, virtually free, admissible r-complex. We 
will say that (T;X) is of finite homological type if X/T’ has finitely generated 
integral homology for each subgroup r’ of finite index which acts freely on X. In 
this case we choose such a subgroup r’ and set 



112 h’. S. Brown 

one can show, exactly as in Section 4 of [6], that this is a well-defined rational 
number, independent of the choice off’. (Here x(X/f’) is defined, as usual, as the 
alternating sum of the ranks of the homology groups of X/f-‘.) Note that if X is Q- 
acyclic then xr(X) is simply x(T), as defined in (61 for groups Tof ‘finite homologi- 
cal type’. 

In case (CX) is of finite homological type and also of type (FP) over IQ, one can 
ask whether X(X) is equal to e,-(X) (=e,-(X, Q)). The following proposition gives a 
sufficient condition for this equality. 

2.4. Proposition. Let X be a finite dimensional, virtually free, admissible f- - 
complex of type (FP) over Z. Then: 

(a) (C X) is of finite homological type and also of type (FP) over G. 
(b) If I- is residually finite then x,-(X) = er(X). 

Proof. (6 X) is of type (FP) over Q by Proposition 2.3(a), applied with k=Q. If f’ 
is a subgroup of finite index which acts freely on X, then another application of 
Proposition 2.3(a) (this time with k=Z) shows that (r’, X) is of type (FP) over H. 
We now apply Proposition 2.3(b) to (r’, X) (with k=Z and r,= r’) to deduce that 
X/T’ has finitely generated integral homology, whence (a), and that 

x(X/O = c ~rw)(t), (*I 

where t ranges over a set of representatives for the r’-conjugacy classes. Assuming 
now that f is residually finite, the restriction formula of Proposition Z.l(iii) implies 
that we can choose r’ so that Er(X)(t) =0 for t f 1 (tar’). Then (*) says that 
x(X/r’) = erf (X), so 

x(X/O er W) xdx) = (=: r,) = (r = eAX), 

whence (b). 

2.5. Remark. It follows from the proof that x,-(X) = er(X) if r has a subgroup of 
finite index for which Bass’s ‘weak conjecture’ [2, p. 1561 is true. Thus (b) could 
have been deduced from Bass’s observation [2, 6. lo] that his weak conjecture is true 
for residually-finite groups. 

3. The fixed-point theorem in the case of a compact quotient 

We continue to denote by k an arbitrary commutative ring, fixed throughout this 
section; all Euler characteristics (Er(X), er(X), E(T), e(r)) will be understood to be 
those defined over k. We will say that a group I- is good (relative to k) if the 
following three conditions are satisfied: 

(i) Up to conjugacy f has only finitely many elements of finite order. 
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(ii) For each sE f- of finite order, the centralizer Z(s) is of type (FP) over k. 
(iii) E(T) (which is defined, in view of (ii)) satisfies: 

E(0(s) = 0 
I 

e(Z(s)) if s has finite order, 
if s has infinite order. 

For example, if k= Q then every finite group is good (cf. [Z, 10.1, remark 31). 

3.1. Theorem. Let I- be an arbitrary group and X an admissible r-complex such 
that X/T is compact and each isotropy group I-, is good. Then: 

(i) Up to conjugacy r has only finitely many elements of finite order which have 
fixed-points in X. 

(ii) For each s E r of finite order, (Z(s), XS) is of type (FP) over k. 
(iii) One has the formula 

El- (X)(s) = 
I 

eZc,,(XS) ifs has finite order, 
o ifs has infinite order. 

Proof. Let ,E be a set of representatives for the cells of X mod K Ifs has a fixed- 
point in X then s is conjugate to an element of r, for some cr EC, whence (i). To 
prove (ii) and (iii) we use Proposition 2.l(iv); in particular, since E(T,)(t) =0 for 
t or, of infinite order, (iii) follows at once for s of infinite order. Now let s be of 
finite order and let T, = { y E r : y-‘sy E r,}. T,, is closed under left multiplication by 
Z(s) and right multiplication by r,, and we choose a set CJ, of representatives for the 
double cosets Z(s)\T,/T,. Then (y-‘~y),,~~ is a set of representatives for the 
T’-conjugacy classes of elements of r, which are conjugate to s in K Since r, is 
good, it follows that U, is finite and that Zr,(y-‘sy) is of type (FP) over k for y E U,, 
and the formula of Proposition 2.l(iv) yields 

E/-(X)(s) = c (-,)dima 
oe’ 

,,C, e(Zf$PW). 
D 

Now Zr,(y-‘sy) is conjugate to ZrYO(s) = Z(s) fl r,, = Z(s),,, hence the latter is of 
type (FP) over k and we have 

Er(X)(s) = C (-l)dimOe(Z(s)ycr). 
0 E .? 
YEW, 

(3.2) 

Finally, we note that the cells yo (a EE, y E CT,) form a set of representatives for the 
cells of X’mod Z(s), so we may apply 2.l(iv) to (Z(s), X5) to deduce that the latter is 
of type (FP) over k and that the right-hand side of (3.2) is equal to ezCs)(XS). This 
proves (ii) and (iii). 

3.3. Remark. One might expect to have, instead of (iii), the uniform formula 

&-(X)(s) = eZc,,(X’) (3.4) 

for all ser. Note, however, that the generalized Gottlieb-Stallings theorem 
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(Proposition 2.1(v)) implies that the right-hand side of (3.4) must vanish, if it is 
defined, for s of infinite order. Thus (iii) is consistent with (3.4) and has the 
advantage that it makes sense even for elements s of infinite order such that 
(Z(s),X’) is not of type (FP). A similar remark applies to condition (iii) in the 
definition of ‘good’. 

4. The case of non-compact quotient 

In this section we will specialize to the case k= Q for simplicity, and we will 
attempt to prove that the formula of Theorem 3.l(iii) remains valid with the com- 
pactness assumption replaced by milder finiteness assumptions on (I;X). We will 
use the techniques of [6, $61 in which we studied finite group actions and made 
crucial use of a theorem of Swan [14] concerning projective modules over the 
integral group ring of a finite group. Bass has conjectured that Swan’s theorem 
generalizes to infinite groups, and we will have to assume that r and certain of its 
subquotients satisfy this conjecture in order to prove our fixed-point theorem. We 
begin, therefore, by recalling Swan’s theorem and Bass’s conjecture. 

Swan’s theorem can be stated in terms of the Hattori-Stallings rank, as follows 
(cf. [2]): 

Theorem. Let r be a finite group and P a finitely generated projective UFmodule. 
Then r(P) = n - [ 1] for some integer n. 

We will say that a group I- has property (S) if the conclusion of Swan’s theorem 
holds for all finitely-generated projective U-modules P. Bass [2] proved that many 
torsion-free groups (including all torsion-free linear groups) have property (S), and 
he conjectured that every group has property (S). 

4.1. Remark. It is possible to restate property (S) topologically, as a ‘fixed-point 
property’ for free actions: r has property (S) if and only if for every free, finite- 
dimensional r-complex X of type (FP) over Z one has E,-(X)(s) =0 for s # 1. [The 
point is that every element of K,,(U) can be realized as [C(X)] for some such c 
complex X. In case r is finitely presented this follows from [17, Thm. F], and the 
genera1 case is easily reduced to the finitely presented case.] 

Now let r be an arbitrary group and X an admissible r-complex. For any sub- 
group N G r, we define a subcomplex XBH of X by 

H’>H 

Let N(H) (or Nr(H) if there is ambiguity) be the normalizer of H in r, and note that 
N(H)/H acts on the pair (XH, X’H). This action freely permutes the cells of 
XH- X’H, which is simply the set XH of points whose isotropy group is H. 
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We can now state the first version of our fixed-point theorem. For the moment we 
will assume that the action of r is proper (cf. Section 2) and that (T;X) has only 
finitely many orbit types (i.e. the isotropy groups r, form only finitely many con- 
jugacy classes of subgroups off-). Both of these assumptions are easily removed (see 
Theorem 4.10 below) in the important special case where vcd f < m. (Here ‘vcd I-’ is 
the virtual cohomological dimension of r in the sense of Serre [ 121.) 

4.2. Theorem. Let X be a finite-dimensional, proper, admissible r-complex with - 
on!y finitely many orbit types. Assume that (N(H), XH) is of type (FP) over Z for 
each subgroup H c r which occurs as an isotropy group in X. Then: 

(i) (N(H); XH, X’H) is of type (FP) over H for each H. 
(ii) (Z(s), Xs) is of type (FP) over Q for each s E f. 

(iii) If &(H)/H(x H, X’H)(t) = 0 for all H and all t # 1 in N(H)/H (e.g. if each 
N(H)/H has property (S)), then 

&(X)(s) = e2(,,(XS) 

for all s E r. 
- 

Proof. We begin by showing that (N(H), X’H) and (N(H), XH) are of type (FP) 
over Z for every subgroup H G r. Fix Hand let T be the set of subgroups F> H such 
that F occurs as an isotropy group in X. Then N(H) acts on T by conjugation, and I 
claim that T mod N(H) is finite. In fact, let @ be a (finite) set of representatives for 
the conjugacy classes of isotropy groups, and for each FE @ let IF be a finite subset 
of rsuch that the groups y-‘Hy (y E 1,) exhaust all the r-conjugates of H contained 
in F; one then sees easily that every element of T is N(H)-conjugate to some yFy-’ 
(FE @, y E IF), whence the claim. 

We now analyze X’H = U,, T XF as in [6, Appendix B]. Let K be the simplicial 
complex associated to the ordered set T; thus the n-simplices of K correspond to the 
chains F,< ... <F,, (Fi E T). Note that N(H) acts on K and that, in view of the above 
claim, K has only finitely many simplices mod N(H) (cf. [6, $5, Lemma]). As in [6, 
Appendix B], we have an exact sequence of chain complexes (with N(H)-action) 

where d= dim K, K,, (Olnzzd) is the set of n-simplices of K, and X0= XFn if 
a=(F,,<.-- <F,,). Now each complex BoEK “C(XO) is a finite direct sum of chain 
complexes of the form Z[N(H)] @IIN C(XF), where FE T, N 5 N(F) n N(H), and - 
(N(F) : N)<co; this complex is therefore of type (FP) over Z[N(H)]. In view of the 
above exact sequence and Proposition 1.4, it follows that (N(H), XBH) is of type - 
(FP) over Z. The same proof, but with T replaced by TV {H}, shows that (N(H), - 
XH) is of type (FP) over Z. - 

Using Proposition 1.4 again we see that (N(H); X5 X’H) is of type (FP) over Z, 
hence so is (N(H)/H; X! X’H) by Proposition 1.10(a). Since N(H)/H acts freely in 
XH- XBH, (i) now follows from the relative version of Proposition 2.3(a). 
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For (ii) we may assume s has finite order. Then Z(s) has finite index in N(H), 
where H=(S), the cyclic subgroup generated by s. Since we proved above that 
(N(H),XS) is of type (%) over Z, the same is true of (Z(s), X3). In particular, 
(Z(s), X3) is of type (@) over Q, so another application of Proposition 2.3(a) now 
yields (ii). 

To prove (iii), we begin by using the technique of ‘stratification by orbit type’, 
exactly as in [6, $2, proof of Theorem 21, to obtain a formula for E,(X). Thus 
we filter X by r-invariant subcomplexes 0 =AOcA I c **- CA, =X such that 
Aj-Aj-1 =r. X”,, where HI, . . . . H,, are the elements of @, suitably ordered. (Here 

@ is as in the first paragraph of the proof.) We then observe that 

C(Ai, -4, - I) z Z~@L[,V(H)) C(XH, X’H), 

where H = H/; using Propositions 1.4 and 1. IO(b), we conclude 

6-W = H;. i,&,,E,(,,WH, X’H) 

i,6(H,tN(H)/H 
NW) E 

N(H)/H cxH* X’H), (4.3) 

where f;(?;,H= TrQ[N(H)/H]/Q(N(H), and ” NcHj is induced by the inclusion N(H)c,r, 

as in Proposition 2.l(iv). By hypothesis we have 

EN(H)/H(XHv X’H)=eN(H)/H(X? X’H)’ 111, 

and it is easy to see that t,c:$H [I] = xheH [h]/lHj. It follows that 

tN(H)/H 
N(H) E 

N(H)/H cxy X’H) = eN(H,( XHxH) c [Al, 
heH 

and (4.3) thus takes the form 

&(x) = c eN(H)(XHvX’H) c IhI. 

HE0 hcH 
(4.4) 

Now fix s E r and let TH = { y E f~ y -‘sy E H}. Note that TH is closed under left 
multiplication by Z(s) and right multiplication by N(H) and that Z(s)\TH can be 

identified with the set of I--conjugates of s which are contained in H. Hence Z(s)\TH 

is finite and (4.4) yields 

Er(x)(s) = c eN(H)(X? X’H) * card(Z@)\TH). 
HE9 

(4.5) 

Before proceeding further, we remark that (4.5) immediately yields the fixed- 

point formula (iii) ifs has no fixed-points in X (in which case each TH =0), or if the 
subgroup Ho = (s) is an isotropy group and is maximal among the isotropy groups 
(in which case THo=N(Ho) and TH = 0 for H# Ho). To prove (iii) in general, 
however, we must work a little harder. 

Let UH be a set of representatives for the double cosets Z(s)\TH/N(H). Decom- 
posing the set Z(s)\TH according to the right-action of N(H), we find 

card(Z(s)\TH) = c (N(H) : N(H) fl y-lZ(s)y). 
YEti” 



Complete Euler characreristrcs andfY.ued-pornr 1heor.v 117 

Hence (4.5) can be rewritten 

E,(X)(s)= c c (N(H) :N(H)n~-‘Z(s)y).e,~(H,(XH,X’“) 
He0 :IEL’,, 

=c c e,(“,.,-I,,,,,WH, XT. (4.6) 
HE@ YEL;, 

We now compute eZc,,(X”) using the same filtration (A;) that we used above to 

prove (4.3). Thus we set B, = (Aj rl X5) and we observe that we have an isomorphism 

(over Z) 

C(Bj, Bj + 1) z @ C(XF; X’F), (4.7) 
FE i, 

where .$ is the set of conjugates of Hj which contain s. The action of Z(s) permutes 

the summands of (4.7) according to the conjugation-action of Z(S) on .-‘;, hence one 

obtains a Z(s)-isomorphism 

C(Bj, B,- I) z O ~[z(~)l OZ[Z(~)~.V(F)I C(XF; X’F)t (4.8) 

where F ranges over a set of representatives for ./I mod Z(s)-conjugation. Finally, 

note that (yHy -‘) yE uH is such a set of representatives, where H = Hj, SO (4.8) yields 

ez+)(Bj, Bj_,) = C eZcs,n,~(yHy-I)(X?Hy-‘,X’y~-‘) 
Yey 

= ;z, ey-lZ(s)yn,l-cH) (XY X7; 

summing overj and comparing with (4.6), we obtain the desired equality, E,(X)(s) = 

eZCs) (X3). 

4.9. Remark. Even without the hypothesis of (iii), the proof of the theorem yields 

information about E,-(X). For example, it follows from formula (4.3) that rn. E,-(X) 
has integral coefficients, where m is the least common multiple of the orders of the 

subgroups of I’which have fixed-points in X. 

We now give a variant of Theorem 4.2, for which the finiteness hypotheses on 

(C X) are more agreeable. 

4.10. Theorem. Let X be a finite-dimensional admissible r-complex such that - 
(Z(s), Xs) is of type (FP) over U for each s E I- of finite order. Assume either that 
vcd I-< 03 or that the action of r on X is virtually free. Then: 

(i) Up to conjugacy, I- has only finitely many elements t of finite order such that 
X’# 0, and for each such t, (Z(t), X’) is of type (FP) over Q. 

(ii) For each t as in (i), assume that every subgroup of Z(t)/(t) offinite index has 
property (S). Then one has, for any s E K 

Er(X)(s) = () 
I 

eZc,,(Xs) ifs has finite order, 
ifs has infinite order. 

The proof will require the following lemma: 



4.11. Lemma. Let X be a finite-dimensional, virtually free. admissible r-complex. 
(a) Let p be a prime number. Suppose that r has a normal subgroup f’ of finite 

index such lhat r’ acts freely on X and H,(X/T: U/p) is finite. Then I- has, up to 
conjugacy, only finitely many elemenls s of order a power of p such that X’ f 0. 

(b) For each s E C suppose Z(s) has a normal subgroup Z’(s) of finite index such 
that Z’(s) acts freely on X’ and H,(XS/Z’(s)) is finirely generated. Then r has, up to 
conjugacy, only finitely many elements s such that X5 f 0. 

Proof of lemma. (a) Let G = T/T’ and let Y be the G-complex X/T’. For any t E G it 
is easy to see that 

Y’ = II xs/z(.q 1-7 r’, (4.12) 

where s ranges over a set of representatives for the r’-conjugacy classes of elements 
s~rwhose image in G is t (cf. [6, top of p. 2461). Suppose now that the order oft is 
a power of p. Since H,(Y, Up) is finite, it follows from Smith theory (cf. [5, Ch. 
III]) that H,(Y’, Up) is finite. Therefore only finitely many of the complexes on the 
right-hand side of (4.12) can be non-empty, and (a) follows at once. 

(b) It suffices to prove for a fixed positive integer n that r has (up to conjugacy) 
only finitely many elements s of order n such that X’# 0. We argue by induction on 
n. Let p be a prime dividing n and write n =n,n2, where p{ n, and n2 is a power 
of p. Then any element s of order n can be written uniquely in the form s=sIs2, 
where si has order ni and Suez. Since sI and s2 are in the cyclic subgroup 
generated by s, it is clear that X’= (X51)+. Now we may assume inductively that (up 
to cconjugacy) there are only finitely many sI of order n, such that X’I # 0; and for 
each fixed st we know from (a) applied to (Z(s,), X51) that (up to Z(si)-conjugacy) 
there are only finitely many s2 E Z(st) of order n2 such that (Xsl)s: # 0. (b) follows at 
once. 

Proof of Theorem 4.10. Assume first that (&X) is virtually free. Then we may 
apply Proposition 2.4(a) to each (Z(s), X5) to deduce that the hypotheses of Lemma 
4.1 I(b) are satisfied, whence (i). To prove (ii), fix an element soeT, let r’Gr be a 
normal subgroup of finite index which acts freely on X, and let.r, be the subgroup 
generated by r’ and so. Then every isotropy group (To)a is cyclic, so (i) implies that 
(To, X) has only finitely many orbit types. ,Moreover, since r,/r’ is abelian, it is 
clear that NrO(H) = ZrO(H) for any subgroup H c r. which has fixed-points in X. 
Thus (To, X) satisfies all the hypotheses of Theorem 4.2(iii), so we may apply the 
latter to compute ErO(X). In particular, Ero(X)(so) = eZ,OcsO,(XSo). [Note that all we 
need here is the easy case of Theorem 4.2 mentioned after formula (4.9.1 In view of 
the restriction formula of Proposition 2. I(iii), it follows that E,(X)(s,) = eZc,,(XSo), 
as required. 

Now suppose vcd T<w. A construction due to Serre (cf. [12, No. 1.71 or [6, $6, 
lemma]) shows that there exists a finite-dimensional, contractible, proper, admis- 
sible ficomplex Z such that ZH is contractible for each finite subgroup H c K Let Y 
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be the fkomplex Xx 2 (with the diagonal &action). Note that the action off on Y 
is proper, hence virtually free. The projection Y-X is a cellular Cmap and a homo- 
topy equivalence, and it induces a homotopy equivalence Y5+ X’ for every s E r of 
finite order. In view of Proposition 2.1(i), the theorem now follows from the 
virtually-free case, applied to (6 Y). 

5. Finite group actions 

Theorem 4.10 is particularly easy to interpret if the group f is finite. The hypo- 
thesis that (Z(s), Xs) be of type (fi) over h simply means in this case that H,(X’) is 
finitely generated (cf. Proposition 1.9). The property (S) hypothesis holds automati- 
cally by Swan’s theorem. And the conclusion about E,-(X) can be restated in terms 
of Lefschetz numbers; in fact, we clearly have 

J%(X) = c (-l)‘$,(W(X, Q)), 

hence (cf. [2, 5.81) 

E&V(s) = $, 
s 

where the Lefschetz number L(s) is defined as usual by 

L(s) = C (- 1)’ tro(s acting on H, (X, Q)). 

Similarly, 

x(X? x(X’-‘) 
eZW (X7 = Iz(s)l = Izo/ - 

Thus Theorem 4.10, yields: 

5.1. Theorem. Let r be a finite group and X a finite-dimensional admissible 
r-complex such that Xs has finitely generated integral homology for each s E 1 
Then L(s) =x(X”) for any s E f. 

5.2. Remark. As we stated in the introduction, this theorem remains valid if we 
drop the assumption that X be a CW-complex and simply require that it be a para- 
compact space of finite cohomological dimension in the sense of sheaf theory [l 11. 

(Homology is then replaced by sheaf-theoretic (or Tech) cohomology in the state- 
ment of the theorem,) In fact, the proof of Theorem 5.1 goes through with no diffi- 
culty, the only essential change being the following: In the proof of Theorem 5.1 
(for which all the work was done in the proof of Theorem 4.2 or, equivalently, in the 
proof of Theorem 2 of [6]), we considered the (relatively) free action of N(H)/Hon 
(X! X’H), and we used Swan’s theorem to conclude that the non-trivial elements of 
N(H)/H have vanishing Lefschetz number; in the sheaf-theoretic version, one must 
instead use a theorem of Zarelua [18, Thm. 31. 
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5.3. Remark. It would be of interest to similarly have a sheaf-theoretic version of 
the results of Sections 3 and 4 in case f is infinite. 

6. A weak form of the fixed-point theorem 

We continue to work over the ground ring k=Q. The result of this section is, 
roughly speaking, that if we drop the property (S) assumption in Theorem 4.1O(ii) 
then we can still prove that the fixed-point formula holds ‘modulo any subgroup of 
finite index’. More precisely: 

6.1. Theorem. Let X be a finite-dimensional admissible r-complex such that 
(Z(s), Xs) is of type (E) over B for each SET of finite order. Assume either that 
vcd rc co or that the action of I’ on X is virtually free. Let l?,-(X) E T(Qf) be 
defined by 

G(X) = C e2(,,WS)~ IsI, 
se9 

where Y is a set of representatives for the conjugacy classes of elements of I- of finite 
order. If r is residually finite, then Er(X) and i?r(X) have the same image in T(Q G) 
for every finite quotient G of r. 

(Note that the definition of E,-(X) makes sense because of Theorem 4. IO(i).) 
As in the last paragraph of the proof of Theorem 4.10, one reduces easily to the 

case where the action is virtually free. In view of Propositions 2.3(b) and 2.4, the 
theorem now follows from: 

6.2. Theorem. Let r be an arbitrary group and X a finite-dimensional, virtually 
free, admissible r-complex. Assume that (Z(s), XS) is of finite homological type for 
each s E r, and let 

where Y is a set of representatives for the r-conjugacy classes. Let G =T/T’ be a 
finite quotient of I- and let Y be the G-complezc X/T’. Then (G, Y) is of type (FP) 
over Q and Eo(Y) is equal to the image in T(QG) of f?r(X). 

(Note that the definition of Er(X) makes sense because of Lemma 4.1 l(b).) 

Proof. Using Proposition 2.3(b), it is easy to see that we may replace r’by a smaller 
normal subgroup of finite index if necessary, and thereby reduce to the case where 
f’ acts freely on X. By hypothesis H,(XS/Z’(s)) is finitely generated for each SET, 
where Z’(s) =Z(s) fl r’; hence Lemma 4.1 l(b) and (4.12) imply that H,(Y’) is 
finitely generated for each t E G and that 

x(Y’) = c x(X5/Z’(s)) = c (Z(s) : Z’(s)). KZ(&w, 
seY, 5EY, 
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where Y! is a set of representatives for the F-conjugacy classes of elements of f 
whose image in G is f. We may therefore apply Theorem 5.1 (see also the discussion 
preceding it) to obtain 

x0-‘) 1 
EG(Y)(t) = JZOJ = ]2$)J 

- c (Z(s) : Z’(s)). xz(s,ws). SE P; 
(6.3) 

Note that the term (Z(S) : Z’(s)). K~(~)(X’) above depends only on the Izconjugacy 
class of s. Moreover, I claim that the Fconjugacy class of s contains exactly 
lZ(t)l /(Z(s) : Z’(s)) r’-conjugacy classes of elements of r whose image in C is t; for 
if Z(t) is the inverse image of Z(f) in f-and Z(s) is the image of Z(s) in G, then the 
number of such F-classes is given by 

card(f’ \.?(f)/Z(s)) = card(Z(t)/Z(s)) = lZV)l 
(Z(s) : Z’(s)) * 

Thus if we group together in (6.3) those terms corresponding to a given konjugacy 
class, we obtain 

EG (y)(t) = c xZ(s)(x% 

where s ranges over a set of representatives for the f-conjugacy classes of elements 
whose image in G is t. The right-hand side of this equation is clearly equal to the co- 
efficient of c in the image of E&Y) in T(QG), whence the theorem. 
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