Optimal approximation of SDE’s with additive fractional noise

Andreas Neuenkirch

Department of Mathematics, Technical University of Darmstadt, Schlossgartenstrasse 7, 64289 Darmstadt, Germany

Received 22 June 2005; accepted 22 February 2006
Available online 2 May 2006

Abstract

We study pathwise approximation of scalar stochastic differential equations with additive fractional Brownian noise of Hurst parameter $H > \frac{1}{2}$, considering the mean square L^2-error criterion. By means of the Malliavin calculus we derive the exact rate of convergence of the Euler scheme, also for non-equidistant discretizations. Moreover, we establish a sharp lower error bound that holds for arbitrary methods, which use a fixed number of bounded linear functionals of the driving fractional Brownian motion. The Euler scheme based on a discretization, which reflects the local smoothness properties of the equation, matches this lower error bound up to the factor 1.39.

© 2006 Elsevier Inc. All rights reserved.

MSC: Primary, 60H35; Secondary, 60H07; 60H10; 65C30

Keywords: Exact rate of convergence; Fractional Brownian motion; Lower bounds; Malliavin calculus; Pathwise approximation; Stochastic differential equations

1. Introduction

Let $B^H(t), t \in [0, 1]$ be a fractional Brownian motion with Hurst parameter $H \in (0, 1)$, i.e., B^H is a continuous centered Gaussian process with covariance kernel

$$K(s, t) = \frac{1}{2} (s^{2H} + t^{2H} - |t - s|^{2H}), \quad s, t \in [0, 1].$$

For $H = \frac{1}{2}$ fractional Brownian motion is a Brownian motion, while for $H \neq \frac{1}{2}$ it is neither a semimartingale nor a Markov process. In particular, non-overlapping increments are negatively
correlated if $H < \frac{1}{2}$ and positively correlated if $H > \frac{1}{2}$. Moreover, it holds

\[(\mathbb{E}|B^H(t) - B^H(s)|^2)^{1/2} = |t - s|^H, \quad t, s \in [0, 1],\]

and almost all sample paths of B^H are Hölder continuous of any order $\lambda < H$.

We consider pathwise approximations of the stochastic differential equation

\[dX(t) = a(t, X(t)) \, dt + \sigma(t) \, dB^H(t), \quad t \in [0, 1],\]

\[X(0) = x_0,\]

with $H \in (\frac{1}{2}, 1)$ and deterministic initial value $x_0 \in \mathbb{R}$. Here a and σ satisfy standard smoothness assumptions and Eq. (1) is an integral equation with all integrals being pathwise Riemann–Stieltjes integrals. See, e.g., [9,8,16] also for the case of non-additive diffusion coefficients.

Approximation of stochastic differential equations driven by fractional Brownian motion is studied only in few articles. In particular, no results on lower error bounds are available up to now. Mainly, analytic methods like the Picard iteration ([9]), Wong–Zakai-type approximations ([9,11,2]) and the Kramers–Smoluchowski approximation ([2]) are considered, and uniform convergence of the approximation sequence for almost all sample paths is proved. Lin [9] also shows that the Euler approximation of Eq. (1) converges uniformly in probability. Nourdin [12] studies the approximation of autonomous differential equations driven by Hölder continuous functions and determines upper error bounds for the order of convergence of the equidistant Euler scheme and an equidistant Milstein-type scheme.

In this paper the error $e(\hat{X})$ of an approximation \hat{X} of Eq. (1) will be measured as follows. The pathwise distance between X and \hat{X} in the L^2-norm $\|\cdot\|_2$ is taken and then averaged over all trajectories, i.e.,

\[e(\hat{X}) = (\mathbb{E}\|X - \hat{X}\|_2^2)^{1/2}.\]

First, we study the Euler approximation of Eq. (1) and wish to determine the best discretization in a strong asymptotic sense. Specifically, we consider regular sequences of discretizations generated by a density function h, i.e., the knots of these discretizations are quantiles of the density h.

Applying the Malliavin calculus for fractional Brownian motion, see, e.g. [1], we derive the exact rate of convergence of these non-equidistant Euler schemes, see Theorem 1. It turns out that the optimal density h^* is proportional to $\sigma^{1/(H+1/2)}$. For the error of the corresponding Euler scheme $\hat{X}_{h^*,n}^E$ we obtain

\[\lim_{n \to \infty} n^H \cdot e(\hat{X}_{h^*,n}^E) = \beta_H \cdot \|\sigma\|_1^{1/(H+1/2)}\]

with

\[\beta_H^2 = \frac{1}{(2H + 1)(H + 1)} - \frac{1}{6}.\]

Here n denotes the number of subintervals of the discretization, i.e., the number of evaluations of B^H.

Moreover we address the following questions: Can we reduce the error by switching to arbitrary discretizations or different approximation schemes? Furthermore, to which extent can we decrease the error by approximation schemes that can use arbitrary bounded linear functionals of the driving fractional Brownian motion?
To this end, we consider arbitrary approximation methods \(\hat{X}_n \) of Eq. (1), which apply \(n \) bounded linear functionals to a sample path of \(B^H \). The \(n \) functionals may be determined sequentially. This data about \(B^H \) may then be used in any way to produce an approximation \(\hat{X}_n \). The quantity

\[
e(n) = \inf_{\hat{X}_n} e(\hat{X}_n)
\]

is the minimal error that can be achieved by approximations \(\hat{X}_n \) of this type.

We show that the minimal errors satisfy

\[
\lim_{n \to \infty} n^H e(n) = \gamma_H \| \sigma \|_{1/(H+1/2)}
\]

with

\[
\gamma_H = \frac{\sin(\pi H) \Gamma(2H)}{\pi^{2H+1}},
\]

see Theorem 2.

Thus, the Euler scheme based on the optimal density \(h^* \) matches the minimal errors up to a constant factor, which only depends on the Hurst parameter \(H \). Hence other approximations schemes, which may use arbitrary bounded linear functionals, can only decrease the error slightly, asymptotically. Moreover, there are no approximation schemes \(\hat{X}_n \) of the above type, which can achieve a better approximation rate than \(n^{-H} \).

The paper is organized as follows. In Section 2 we state our assumptions on the drift- and diffusion coefficient and we provide basic properties of the solution in the mean square sense. Section 3 contains the results for the error of non-equidistant Euler schemes. The minimal error is addressed in Section 4. Proofs are postponed to Section 5.

2. Stochastic differential equations with additive fractional noise

In the sequel let \(H > \frac{1}{2} \). Furthermore, we will assume throughout this article that the drift- and diffusion coefficient satisfy:

(A) \(a \in C^{0,2}([0, 1] \times \mathbb{R}) \) and there exist constants \(K_1, K_2, K_3 > 0 \) such that

\[
|a_x(t, x)| \leq K_1, \quad |a_{xx}(t, x)| \leq K_2
\]

and

\[
|a(t, x) - a(s, x)| \leq K_3 \cdot (1 + |x|) \cdot |t - s|
\]

for all \(s, t \in [0, 1] \) and \(x \in \mathbb{R} \),

(B) \(\sigma \in C^1([0, 1]) \),

(C) \(\sigma(t) > 0 \) for all \(t \in [0, 1] \).

Under these assumptions Eq. (1) has a unique pathwise solution \(X \), i.e., almost all sample paths of the process \(X \) satisfy the integral equation

\[
X(t) = x_0 + \int_0^t a(\tau, X(\tau)) \, d\tau + \int_0^t \sigma(\tau) \, dB^H(\tau), \quad t \in [0, 1],
\]
with all integrals being Riemann–Stieltjes integrals, and if \(\tilde{X} \) is another solution of Eq. (1), then \(X \) and \(\tilde{X} \) are indistinguishable. Moreover, almost all sample paths of \(X \) are Hölder continuous of every order \(\lambda < H \), and it holds

\[
\mathbb{E} \| X \|_p < \infty
\]

(2) for all \(p > 1 \). See [9,16].

The assumptions (A), (B) and (C) are required for the analysis of approximations of Eq. (1). For existence of a unique pathwise Riemann–Stieltjes solution much weaker assumptions are sufficient. Compare, e.g. [9,14].

The following Proposition characterizes the smoothness of the solution in the mean square sense.

Proposition 1. Let \(X \) be the solution of Eq. (1). It holds

\[
\lim_{s \to 0} \frac{1}{s^H} \cdot \left(\mathbb{E} |X(t + s) - X(t)|^2 \right)^{1/2} = |\sigma(t)| \quad \text{uniformly in } t \in [0, 1].
\]

Hence the solution \(X \) behaves in mean square sense locally like a weighted fractional Brownian motion, although \(X \) is not necessarily Gaussian. The mean square Hölder exponent is given by the Hurst parameter \(H \) of the driving fractional Brownian motion, and the local mean square Hölder constant is determined by the diffusion coefficient \(\sigma \).

Remark 1. Stochastic differential equations with non-additive fractional noise are studied, e.g., in [9,8,16,11]. Ferrante and Rovira [5] also consider stochastic delay differential equations driven by fractional Brownian motion.

3. Non-equidistant Euler scheme

For any discretization

\[
0 = t_0 < t_1 < \cdots < t_n = 1
\]

the corresponding Euler scheme \(\hat{X}^E \) for Eq. (1) is given by

\[
\hat{X}^E(0) = x_0
\]

and

\[
\hat{X}^E(t_{j+1}) = \hat{X}^E(t_j) + a(t_j, \hat{X}^E(t_j)) \cdot (t_{j+1} - t_j) + \sigma(t_j) \cdot (B^H(t_{j+1}) - B^H(t_j))
\]

for \(j = 0, \ldots, n - 1 \). A global approximation \(\hat{X}^E \) on \([0, 1]\) is obtained by piecewise linear interpolation, i.e.,

\[
\hat{X}^E(t) = \frac{t_{j+1} - t}{t_{j+1} - t_j} \cdot \hat{X}^E(t_j) + \frac{t - t_j}{t_{j+1} - t_j} \cdot \hat{X}^E(t_{j+1})
\]

for \(t \in [t_j, t_{j+1}] \).

To determine the exact rate of convergence of the Euler scheme, we will restrict to regular sequences of discretizations generated by a strictly positive probability density function

\[h \in C([0, 1]), \text{i.e.,} \]
\[0 = t_{0,n} < t_{1,n} < \cdots < t_{n,n} = 1 \quad \text{with} \quad \int_{0}^{t_{j,n}} h(s) \, ds = \frac{j}{n}, \quad j = 1, \ldots, n - 1. \quad (3) \]

So by choosing such a density \(h \) one gets a sequence of discretizations. If, e.g., \(h = 1 \), we obtain a sequence of equidistant discretizations.

We will use the notation \(\hat{X}_{t,n}^E \) for the Euler scheme based on the discretization given by (3). Clearly, good choices of \(h \) have to be related to the local smoothness of the solution of Eq. (1), i.e., the local Hölder constant \(\sigma \) and the Hölder exponent \(H \).

Theorem 1. It holds

\[\lim_{n \to \infty} n^H \cdot e(\hat{X}_{t,n}^E) = \beta_H \cdot \| \sigma \cdot h^{-H} \|_2 \]

with

\[\beta_H^2 = \frac{1}{(2H + 1)(H + 1)} - \frac{1}{6}. \]

Theorem 1 shows that the order of convergence of the Euler scheme only depends on the Hurst parameter of the driving fractional Brownian motion. The minimal asymptotic constant is obtained by choosing the density

\[h^*(t) = \frac{1}{\| \sigma^{1/(H+1/2)} \|_1} \cdot |\sigma(t)|^{1/(H+1/2)}, \quad t \in [0, 1]. \]

Corollary 1. (1) For the equidistant Euler scheme it holds

\[\lim_{n \to \infty} n^H \cdot e(\hat{X}_{t,n}^E) = \beta_H \cdot \| \sigma \|_2. \]

(2) For the optimal density \(h^* \) we have

\[\lim_{n \to \infty} n^H \cdot e(\hat{X}_{t,n}^E) = \beta_H \cdot \| \sigma \|_1/(H+1/2). \]

Consequently, equidistant discretization leads only to the best asymptotic constant, if the diffusion coefficient is a constant mapping. For non-constant diffusion coefficients the error can be reduced asymptotically by the factor \(\| \sigma \|_1/(H+1/2)/\| \sigma \|_2 \).

Remark 2. Regular sequences of discretizations are, e.g., widely studied and used for the approximation of stochastic processes and for the prediction of integrals of stochastic processes. See, e.g., [17] for results and references. In the context of stochastic differential equations driven by Brownian motion regular sequences are studied, e.g., in [3].

4. Lower bounds

The non-equidistant Euler scheme from the previous section uses a finite number of evaluations of \(B^H \), i.e., a finite number of Dirac functionals is applied to the trajectories of the driving fractional Brownian motion. Now we determine sharp lower error bounds that hold for every approximation method, which applies \(n \) sequentially selected bounded linear functionals to a sample path of \(B^H \).
Let \(A^\text{lin} \) denote the class of all bounded linear functionals on \(C([0, 1]) \) and assume that \(x_0 \) is known. Fix \(a \) and \(\sigma \) and consider the corresponding Eq. (1). An arbitrary approximation method \(\hat{X}_n \), based on \(x_0 \) and \(n \) sequentially chosen bounded linear functionals, is defined by mappings

\[
\psi_k : \mathbb{R}^k \to A^\text{lin}
\]

for \(k = 1, \ldots, n \), which determine the selection of the bounded linear functionals, and a mapping

\[
\phi_n : \mathbb{R}^{n+1} \to L_2([0, 1]),
\]

which is used to obtain the approximation to the solution from the observed data.

The initial value \(x_0 \) determines the first functional \(\psi_1(x_0) \) that is applied to the trajectory of the fractional Brownian motion \(B^H \). After \(n \) steps we have observed the data

\[
\Psi_n(x_0, \omega) = (x_0, y_1, \ldots, y_n),
\]

where

\[
y_1 = \psi_1(x_0)(\omega), \quad y_2 = \psi_2(x_0, y_1)(\omega), \ldots, \quad y_n = \psi_n(x_0, y_1, \ldots, y_{n-1})(w).
\]

These data are then used to compute the approximation

\[
\phi_n(\Psi_n(x_0, \omega)).
\]

Thus, we end up with the approximation method

\[
\hat{X}_n = \phi_n(\Psi_n(x_0, B^H)).
\]

We only assume Borel measurability of the mappings \(\phi_n \) and \(\psi_k(\cdot)(\omega) \) for every \(w \in C([0, 1]) \).

This ensures that the mapping \(\Psi_n \) is Borel measurable on \(\mathbb{R} \times C([0, 1]) \).

The quantity

\[
e_2(n) = \inf_{\hat{X}_n} e_2(\hat{X}_n)
\]

is the minimal error, which can be obtained by using such approximation methods.

For fixed \(\psi_1, \ldots, \psi_n \) the best choice of \(\phi_n \) is the conditional mean of \(X \) given the respective functionals applied to \(B^H \). Hence the main difficulty in this theoretical minimization problem is the choice of the functionals, i.e., of the mappings \(\psi_1, \ldots, \psi_n \).

The number \(n \) can be considered as a coarse measure for the computational cost of the method \(\hat{X}_n \). Clearly, a more precise analysis of the computational cost should take also the number of arithmetical operations performed by \(\hat{X}_n \) into account.

Theorem 2. It holds

\[
\lim_{n \to \infty} n^H \cdot e(n) = \gamma_H \cdot \| \sigma \|_{1/(H+1/2)},
\]

where

\[
\gamma_H^2 = \frac{\sin(\pi H) \Gamma(2H)}{\pi^{1+2H}}.
\]

Hence, the intrinsic difficulty of Eq. (1) is completely determined by the \(L^{1/(H+1/2)} \)-quasinorm of the diffusion coefficient \(\sigma \) and the Hurst parameter \(H \) of the driving fractional Brownian
motion. In particular, Theorem 2 implies that approximation schemes \(\hat{X}_n \) of the above type, which obtain a higher convergence rate than \(n^{-H} \), do not exist.

Combining Theorems 1 and 2, we obtain that the non-equidistant Euler schemes obtain the optimal order of convergence. Moreover, by Corollary 1 we have that the Euler scheme based on the optimal density \(h^* \) is asymptotically optimal up to a constant factor, which only depends on \(H \) and not on the drift- or diffusion coefficient of the equation.

Corollary 2. It holds

\[
\limsup_{n \to \infty} \frac{e(\hat{X}^E_{h^*,n})}{e(n)} \leq \frac{\beta_H}{\gamma_H}.
\]

The ratio \(\beta_H/\gamma_H \) is a monotonically increasing function of \(H \) and we have

\[
\frac{\pi}{\sqrt{6}} \leq \frac{\beta_H}{\gamma_H} \leq \frac{\sqrt{\pi}}{6}.
\]

Note that \(\sqrt{\pi}/6 \approx 1.3853 \). Thus, arbitrary approximations methods \(\hat{X}_n \) can only be slightly better than the best Euler scheme, asymptotically.

Remark 3. Theorem 2 remains valid, if \(n \) sequentially selected bounded linear functionals of a trajectory of \(B^H \) are allowed on average. See Section 5.6.

Remark 4. Theorem 2 is also valid in the case \(H = \frac{1}{2} \), see [7] for more general results. On the other hand, if one restricts in this case to methods that may use only point evaluations of the driving Brownian motion, then the corresponding minimal errors satisfy

\[
\lim_{n \to \infty} n^{1/2} \cdot e(n) = \beta_{1/2} \cdot \|\sigma\|_1,
\]

see [6]. The ratio \(\beta_{1/2}/\gamma_{1/2} = \pi/\sqrt{6} \) is the well known gap between linear and standard information.

5. Proofs

Unspecified constants, depending only on \(K_1, K_2, K_3, x_0, \|\sigma\|_\infty \) and \(\|\sigma'\|_\infty \) will be denoted by \(c \), regardless of their value. Note that the assumptions \((A) \) on the drift coefficient \(a \) imply a linear growth condition and a global Lipschitz condition with respect to the state space variable, i.e.,

\[
(A1) \quad \forall x \in \mathbb{R}, \forall t \in [0, 1] : \quad |a(t, x)| \leq c \cdot (1 + |x|),
\]

\[
(A2) \quad \forall x, y \in \mathbb{R}, \forall t \in [0, 1] : \quad |a(t, y) - a(t, x)| \leq c \cdot |y - x|.
\]

5.1. Proof of Proposition 1

Let \(0 \leq t \leq t + s \leq 1 \). We have

\[
\begin{align*}
X(t + s) - X(t) &= \int_t^{t+s} a(\tau, X(\tau)) \, d\tau + \int_t^{t+s} \sigma'(\tau)(B^H(t + s) - B^H(t)) \, d\tau \\
&\quad + \sigma(t)(B^H(t + s) - B^H(t)).
\end{align*}
\]
We get by ($\bar{A}1$)
\[\mathbb{E} \left| \int_{t}^{t+s} a(\tau, X(\tau)) \, d\tau \right|^2 \leq c \cdot \left(1 + \mathbb{E} \|X\|_{\infty}^2 \right) \cdot s^2. \]

Moreover, we have
\[\mathbb{E} \left| \int_{t}^{t+s} \sigma'(\tau)(B^H(t + s) - B^H(\tau)) \, d\tau \right|^2 \leq c \cdot \mathbb{E} \|B^H\|_{\infty}^2 \cdot s^2. \]

Note that $\mathbb{E} \|X\|_{\infty}^2 < \infty$ by (2) and in particular $\mathbb{E} \|B^H\|_{\infty}^2 < \infty$. Thus, we finally obtain
\[|\sigma(t)| - c \cdot s^{1-H} \leq \frac{1}{s^H} \cdot \left(\mathbb{E} |X(t + s) - X(t)|^2 \right)^{1/2} \leq |\sigma(t)| + c \cdot s^{1-H}, \]
which completes the proof.

5.2. Preliminaries for the Proof of Theorem 1

Let
\[0 = t_0 < t_1 < \cdots < t_n = 1 \]
be a discretization of $[0, 1]$ and put $\Delta = \max_{i=1,\ldots,n} |t_i - t_{i-1}|$. We will use the notations
\[Z(t) = \int_{0}^{t} a(\tau, X(\tau)) \, d\tau, \quad F(t) = \int_{0}^{t} \sigma(\tau) \, dB^H(\tau), \quad t \in [0, 1], \]
and
\[\tilde{Z}(t) = \int_{0}^{t} \sum_{i=0}^{n-1} a(t_i, X(t_i)) \cdot 1_{[t_i, t_{i+1})}(\tau) \, d\tau, \quad t \in [0, 1], \]
\[\tilde{F}(t) = \int_{0}^{t} \sum_{i=0}^{n-1} \sigma(t_i) \cdot 1_{[t_i, t_{i+1})}(\tau) \, dB^H(\tau), \quad t \in [0, 1]. \]

Moreover, let
\[\phi(s, t) = H(2H - 1)|s - t|^{2H-2}, \quad s, t \in [0, 1]. \]

Lemma 1. It holds
\[\sup_{t \in [0, 1]} \mathbb{E} |F(t) - \tilde{F}(t)|^2 \leq c \cdot \Delta^2. \]

Proof. We have
\[F(t) - \tilde{F}(t) = \int_{0}^{t} \sum_{i=0}^{n-1} (\sigma(\tau) - \sigma(t_i)) \cdot 1_{[t_i, t_{i+1})}(\tau) \, dB^H(\tau). \]
Using the isometry for integrals with respect to fractional Brownian motion with deterministic integrands, see, e.g. [4, Lemma 2.1], we obtain
\[
\mathbb{E}|F(t) - \tilde{F}(t)|^2 = \int_0^t \int_0^t \sum_{i,j=0}^{n-1} (\sigma(\tau_1) - \sigma(t_i)) (\sigma(\tau_2) - \sigma(t_j)) \phi(\tau_1, \tau_2) \cdot 1_{[t_i, t_i+1] \times [t_j, t_j+1]}(\tau_1, \tau_2) \, d\tau_1 \, d\tau_2.
\]
So we get by assumption (B)
\[
\mathbb{E}|F(t) - \tilde{F}(t)|^2 \leq c^2 \cdot \Delta^2 \int_0^t \int_0^t \sum_{i,j=0}^{n-1} \phi(\tau_1, \tau_2) \cdot 1_{[t_i, t_i+1] \times [t_j, t_j+1]}(\tau_1, \tau_2) \, d\tau_1 \, d\tau_2 = c^2 \cdot \Delta^2 \cdot 2^{-H} \cdot \Delta^2. \tag*{\square}
\]
Recall that almost all sample paths of the solution \(X\) of Eq. (1) are Hölder continuous of any order \(\lambda < H\). Hence, if \(g \in C^1(\mathbb{R})\), the Riemann–Stieltjes integrals
\[
\int_0^t g(X(s)) \, dB^H(s), \quad t \in [0, 1],
\]
exist almost surely. Compare, e.g. [20, Theorem 4.2.1]. We will use the following change-of-variable formula, which follows straightforwardly from [20, Theorems 4.3.1 and 4.4.2].

Lemma 2. Let \(g \in C^2(\mathbb{R})\). It holds
\[
g(X(t)) = g(x_0) + \int_0^t g'(X(s))a(s, X(s)) \, ds + \int_0^t g'(X(s))\sigma(s) \, dB^H(s), \quad t \in [0, 1],
\]
amost surely.

In the following, we will also apply the Malliavin calculus for fractional Brownian motion. For an overview on this topic, see, e.g. [1].

In particular, we will use the Malliavin derivative \(D_s X(t), s, t \in [0, 1]\) of the solution \(X\). The following lemma can be obtained by a slight modification of [5, Proposition 6] or [13, Theorem B].

Lemma 3. We have
\[
D_s X(t) = \sigma(s) \exp \left(\int_s^t a_X(\tau, X(\tau)) \, d\tau \right) \cdot 1_{[0, t]}(s), \quad s, t \in [0, 1].
\]

Next we analyze the approximation \(\tilde{Z}\) of \(Z\), using Lemmas 2 and 3.

Lemma 4. We have
\[
\sup_{t \in [0, 1]} \mathbb{E}|Z(t) - \tilde{Z}(t)|^2 \leq c \cdot \Delta^2.
\]
Proof. We have

$$
\mathbb{E}(Z(t) - \tilde{Z}(t))^2 \leq 2\mathbb{E}\left| \int_0^t \sum_{i=0}^{n-1} (a(\tau, X(\tau)) - a(t_i, X(\tau))) \cdot 1_{[t_i, t_{i+1})}(\tau) \, d\tau \right|^2 + 2\mathbb{E}\left| \int_0^t \sum_{i=0}^{n-1} (a(t_i, X(\tau)) - a(t_i, X(t_i))) \cdot 1_{[t_i, t_{i+1})}(\tau) \, d\tau \right|^2.
$$

Since \(|a(\tau_1, x) - a(\tau_2, x)| \leq K_3 \cdot (1 + |x|) \cdot |\tau_1 - \tau_2|\) due to Assumption (A) we get for the first summand

$$
\mathbb{E}\left| \int_0^t \sum_{i=0}^{n-1} (a(\tau, X(\tau)) - a(t_i, X(\tau))) \cdot 1_{[t_i, t_{i+1})}(\tau) \, d\tau \right|^2 \leq c \cdot \mathbb{E}(1 + \|X\|_{\infty})^2 \cdot \Delta^2.
$$

For the second summand we have

$$
\mathbb{E}\left| \int_0^t \sum_{i=0}^{n-1} (a(t_i, X(\tau)) - a(t_i, X(t_i))) \cdot 1_{[t_i, t_{i+1})}(\tau) \, d\tau \right|^2 \leq \sum_{i,j=0}^{n-1} \int_{t_j}^{t_{j+1}} \int_{t_i}^{t_{i+1}} |R(t_i, t_j, \tau_1, \tau_2)| \, d\tau_1 \, d\tau_2,
$$

where

$$
R(t_i, t_j, \tau_1, \tau_2) = \mathbb{E}[a(t_i, X(\tau_1)) - a(t_i, X(t_i))] \cdot [a(t_j, X(\tau_2)) - a(t_j, X(t_j))]
$$

for \(i, j = 0, \ldots, n - 1\) and \(\tau_1, \tau_2 \in [0, 1]\).

Now fix \(t_i\) and consider the process \(a(t_i, X(t)), t \in [0, 1]\). By Lemma 2 we get

$$
a(t_i, X(t)) - a(t_i, X(t_i)) = \int_{t_i}^{t} a_x(t_i, X(u))a(u, X(u)) \, du + \int_{t_i}^{t} a_x(t_i, X(u))\sigma(u) \, dB^H(u), \quad t \in [0, 1],
$$

almost surely. Moreover, by the chain rule for the Malliavin derivative we have

$$
D_s[a(t_i, X(t))] = \sigma(t)a_x(t_i, X(t))D_sX(t), \quad s, t \in [0, 1].
$$

Since

$$
\sup_{t \in [0,1]} |a(t)a_x(t_i, X(t))| \leq \|a\|_{\infty} \cdot K_1, \quad (4)
$$

$$
\sup_{s,t \in [0,1]} |D_s[a(t)a_x(t_i, X(t))]| \leq \|a\|_{\infty}^2 \cdot K_2 \exp(K_1), \quad (5)
$$

the process \(\sigma(t)a(t_i, X(t)), t \in [0, 1]\), is Skorohod integrable, see, e.g. [5, Lemma 1]. Moreover, by the relation between the Riemann–Stieltjes integral and the Skorohod integral for fractional
Brownian motion, see, e.g. [15, Section 2.1], we obtain
\[
a(t_i, X(t)) - a(t_i, X(t_i)) = \int_{t_i}^t a_x(t_i, X(u))a(u, X(u))
du + \int_{t_i}^t a_x(t_i, X(u))\sigma(u)\delta B^H(u)
+ \int_{t_i}^t \int_0^1 D_x[\sigma(u)a_x(t_i, X(u))]\phi(s, u)
ds du \quad \text{a.s.,}
\]
where the integral with respect to \(\delta B^H \) denotes the Skorohod integral. Since
\[
\sup_{s \in [0,1]} \int_0^1 \phi(\tau, s) d\tau \leq 2H,
\]
it follows by (A1), (4) and (5)
\[
|R(t_i, t_j, \tau_1, \tau_2)| \leq c \cdot \mathbb{E}(1 + \| X \|_\infty)^2 \cdot A^2
+ \mathbb{E} \int_{t_i}^{\tau_1} a_x(t_i, X(u))\sigma(u)\delta B^H(u)
\int_{t_j}^{\tau_2} a_x(t_j, X(u))\sigma(u)\delta B^H(u) |.
\]
By the isometry for Skorohod integrals, see, e.g. [15, Lemma 5], we have moreover
\[
\mathbb{E} \int_{t_i}^{\tau_1} a_x(t_i, X(u))\sigma(u)\delta B^H(u)
\int_{t_j}^{\tau_2} a_x(t_j, X(u))\sigma(u)\delta B^H(u)
= \mathbb{E} \int_{t_j}^{\tau_2} \int_{t_i}^{\tau_1} a_x(t_i, X(u_1))\sigma(u_1)a_x(t_j, X(u_2))\sigma(u_2)\phi(u_1, u_2)
du_1 du_2
+ \mathbb{E} \int_{t_j}^{\tau_2} \int_{t_i}^{\tau_1} \int_0^1 \int_0^1 D_{v_1}[\sigma(u_1)a_x(t_i, X(u_1))]D_{v_2}[\sigma(u_2)a_x(t_j, X(u_2))]
\times \phi(v_1, u_2)\phi(v_2, u_1)
dv_1 dv_2 du_1 du_2.
\]
Hence it follows by (4), (5) and (6)
\[
\mathbb{E} \int_{t_i}^{\tau_1} a_x(t_i, X(u))\sigma(u)\delta B^H(u)
\int_{t_j}^{\tau_2} a_x(t_j, X(u))\sigma(u)\delta B^H(u)
\leq c \int_{t_j}^{\tau_2} \int_{t_i}^{\tau_1} \phi(u_1, u_2)
du_1 du_2 + c \cdot |\tau_1 - t_i||\tau_2 - t_j|
\]
and therefore
\[
|R(t_i, t_j, \tau_1, \tau_2)| \leq c \cdot \mathbb{E}(1 + \| X \|_\infty)^2 \cdot A^2 + c \int_{t_j}^{t_j+1} \int_{t_i}^{t_i+1} \phi(u_1, u_2)
du_1 du_2
\]
for \((\tau_1, \tau_2) \in [t_i, t_{i+1}] \times [t_j, t_{j+1}]\). So we finally obtain
\[
\mathbb{E} \int_0^{t_{n-1}} \sum_{i=0}^{n-1} (a(t_i, X(\tau)) - a(t_i, X(t_i))) \cdot 1_{[t_i, t_{i+1})}(\tau)
d\tau \leq c \cdot \mathbb{E}(1 + \| X \|_\infty)^2 \cdot A^2 + c \cdot A^2 \sum_{i,j=0}^{n-1} \int_{t_j}^{t_{j+1}} \int_{t_i}^{t_{i+1}} \phi(u_1, u_2)
du_1 du_2 \leq c \cdot A^2.
\]
To analyze the error of the Euler approximation \hat{X}^E in the discretization points, we will use the Euler process \tilde{X}^E given by

$$\tilde{X}^E(t) = \hat{X}^E(t_j) + a(t_j, \hat{X}^E(t_j)) \cdot (t - t_j) + \sigma(t_j) \cdot (B^H(t) - B^H(t_j))$$

for $t \in [t_j, t_{j+1})$. Clearly, we have $\tilde{X}^E(t_j) = \hat{X}^E(t_j)$ for $j = 0, 1, \ldots, n$.

Lemma 5. It holds

$$\sup_{t \in [0, 1]} \mathbb{E}|X(t) - \tilde{X}^E(t)|^2 \leq c \cdot \Delta^2.$$

Proof. We have

$$X(t) - \tilde{X}^E(t) = Z(t) - \tilde{Z}(t) + F(t) - \tilde{F}(t) + \int_0^t \sum_{i=0}^{n-1} (a(t_i, X(t_i)) - a(t_i, \tilde{X}^E(t_i))) \cdot 1_{[t_i, t_{i+1})}(\tau) \, d\tau.$$

By Lemmas 1 and 4 we get

$$\mathbb{E}|X(t) - \tilde{X}^E(t)|^2 \leq \mathbb{E} \left| \int_0^t \sum_{i=0}^{n-1} (a(t_i, X(t_i)) - a(t_i, \tilde{X}^E(t_i))) \cdot 1_{[t_i, t_{i+1})}(\tau) \, d\tau \right|^2 + c \cdot \Delta^2.$$

Moreover, by the Hölder inequality and (A2) it follows

$$\mathbb{E}|X(t) - \tilde{X}^E(t)|^2 \leq c \int_0^t \sum_{i=0}^{n-1} \mathbb{E}|X(t_i) - \tilde{X}^E(t_i)|^2 \cdot 1_{[t_i, t_{i+1})}(\tau) \, d\tau + c \cdot \Delta^2,$$

and

$$\sup_{0 \leq s \leq t} \mathbb{E}|X(s) - \tilde{X}^E(s)|^2 \leq c \int_0^t \sup_{0 \leq s \leq \tau} \mathbb{E}|X(s) - \tilde{X}^E(s)|^2 \, d\tau + c \cdot \Delta^2,$$

respectively. Consequently, an application of Gronwall’s lemma completes the proof. □

5.3. Proof of Theorem 1

By $X_{h,n}^{\text{lin}}$ we denote the piecewise linear interpolation of X based on the discretization $0 = t_{0,n} < t_{1,n} < \cdots < t_{n,n} = 1$ generated by the density function h, i.e.,

$$X_{h,n}^{\text{lin}}(t) = \frac{t_{j+1,n} - t}{t_{j+1,n} - t_{j,n}} \cdot X(t_{j,n}) + \frac{t - t_{j,n}}{t_{j+1,n} - t_{j,n}} \cdot X(t_{j+1,n})$$

for $t \in [t_{j,n}, t_{j+1,n})$. We have

$$\sup_{n \in \mathbb{N}} \max_{i=1,\ldots,n} |t_{i,n} - t_{i-1,n}| \leq \|1/h\|_{\infty} \cdot n^{-1}.$$

Note that $\|1/h\|_{\infty} < \infty$, since the density function h is strictly positive. Hence it follows by Lemma 5

$$\left(\mathbb{E} \int_0^1 |X_{h,n}^{\text{lin}}(t) - \hat{X}^E_{h,n}(t)|^2 \, dt \right)^{1/2} \leq c \cdot \|1/h\|_{\infty} \cdot n^{-1}.$$

(7)
Furthermore, we obtain due to Theorem 1 in [18] and Proposition 1
\[
\lim_{n \to \infty} n^H \cdot \left(\mathbb{E} \int_0^1 |X(t) - X_{h,n}^\text{lin}(t)|^2 \, dt \right)^{1/2} = \beta_H \cdot \left(\int_0^1 \sigma(t)^2 h^{-2H} \, dt \right)^{1/2}.
\]
Hence the assertion follows.

5.4. Preliminaries for the Proof of Theorem 2

Let
\[
Y(t) = x_0 + \int_0^t a(\tau, X(\tau)) \, d\tau - \int_0^t \sigma'(\tau) B^H(\tau) \, d\tau = X(t) - \sigma(t) B^H(t), \quad t \in [0, 1].
\]
Moreover, define for a discretization \(0 = t_0 < t_1 < \cdots < t_n = 1\) an approximation \(\hat{Y}\) of \(Y\) by
\[
\hat{Y}(t) = \hat{X}^E(t) - \sigma(t_j) B^H(t_j) \frac{t_{j+1} - t}{t_{j+1} - t_j} - \sigma(t_{j+1}) B^H(t_{j+1}) \frac{t - t_j}{t_{j+1} - t_j},
\] (8)
for \(t \in [t_j, t_{j+1}]\).

The asymptotic behavior of the eigenvalues \(\lambda_k, k = 1, 2, \ldots, \) of the Karhunen–Loéve expansion of \(\sigma(t) B^H(t), t \in [0, 1]\), is given by
\[
\lim_{k \to \infty} k^{2H+1} \cdot \lambda_k = \|\sigma\|^2_{1/(H+1/2)} \cdot \frac{\Gamma(2H + 1) \sin(\pi H)}{\pi^{1+2H}}.
\]
See [10, Propositions 2.2 and 2.3]. Note that
\[
\lim_{n \to \infty} n^{2H} \sum_{k>n} \lambda_k = \|\sigma\|^2_{1/(H+1/2)} \cdot \frac{\Gamma(2H) \sin(\pi H)}{\pi^{1+2H}}.
\] (9)

5.5. Proof of Theorem 2

(i) We first establish the lower bound. Let \(\hat{X}_n, n = 1, 2, \ldots, \) be an arbitrary sequence of approximation methods. Moreover fix \(H < \alpha < 1\) and denote by \(\hat{Y}_n\) the approximation of \(Y\) given by (8), based on the discretization
\[
t_i, [n^\alpha] = \frac{i}{[n^\alpha]}, \quad i = 0, 1, \ldots, [n^\alpha].
\] (10)
Define
\[
\hat{V}_n = \hat{X}_n - \hat{Y}_n.
\]
Hence we have
\[
\left(\int_0^1 \mathbb{E} |X(t) - \hat{X}_n(t)|^2 \, dt \right)^{1/2} \geq \left(\int_0^1 \mathbb{E} |\sigma(t) B^H(t) - \hat{V}_n(t)|^2 \, dt \right)^{1/2} - A_n
\]
with
\[
A_n = \left(\int_0^1 \mathbb{E} |Y(t) - \hat{Y}_n(t)|^2 \, dt \right)^{1/2}.
\]
Denoting by $Y_n\text{lin}$ the linear interpolation of Y based on discretization (10), we get

$$A_n \leq \left(\int_0^1 \mathbb{E}|Y(t) - Y_n\text{lin}(t)|^2 \, dt \right)^{1/2} + \left(\int_0^1 \mathbb{E}|Y_n\text{lin}(t) - \hat{Y}_n(t)|^2 \, dt \right)^{1/2}.$$

Since

$$Y_n\text{lin} - \hat{Y}_n = X_{\lfloor n^\nu \rfloor}^\text{lin} - \hat{X}_{\lfloor n^\nu \rfloor}^E$$

and

$$\mathbb{E}|Y(t) - Y(s)|^2 \leq c \cdot |t - s|^2$$

for $s, t \in [0, 1]$, it follows by (7)

$$A_n \leq c \cdot n^{-\nu}.$$

Hence we obtain

$$\liminf_{n \to \infty} n^H \cdot \left(\int_0^1 \mathbb{E}|X(t) - \hat{X}_n(t)|^2 \, dt \right)^{1/2} \geq \liminf_{n \to \infty} n^H \cdot \left(\int_0^1 \mathbb{E}|\sigma(t)B^H(t) - \hat{V}_n(t)|^2 \, dt \right)^{1/2}.$$

Setting

$$\hat{V}_n^* = \hat{V}_n / \sigma,$$

it remains to show that

$$\liminf_{n \to \infty} n^H \cdot \left(\int_0^1 \mathbb{E}|B^H(t) - \hat{V}_n^*(t)|^2 \cdot \sigma(t)^2 \, dt \right)^{1/2} \geq \gamma_H \cdot \|\sigma\|_1/(H + 1/2).$$

Note that \hat{V}_n^* is an approximation of B^H using at most $m(n) = n + \lfloor n^\nu \rfloor$ bounded linear functionals that are applied to B^H. Moreover, approximating B^H in the mean square weighted L^2-norm with weight function σ^2 from finitely many bounded linear functionals, which are applied to B^H, defines a linear problem with a Gaussian measure in the sense of Traub et al. [19, Chapter 6.5]. Therefore, sequential selection of the functionals does not help and it holds

$$\int_0^1 \mathbb{E}|B^H(t) - \hat{V}_n^*(t)|^2 \cdot \sigma(t)^2 \, dt \geq \sum_{k > m(n)} \lambda_k,$$

see [19, Chapter 6.5], and the references therein. Since $\lim_{n \to \infty} m(n)/n = 1$, the proof of the lower bound is completed by (9).

(ii) We have

$$\int_0^1 \mathbb{E}|B^H(t) - \hat{V}_n^*(t)|^2 \cdot \sigma(t)^2 \, dt = \sum_{k > n} \lambda_k,$$

for

$$\hat{V}_n^* = \sum_{k=1}^n \int_0^1 B^H(\tau)\sigma(\tau)\tilde{\xi}_k(\tau) \, d\tau \cdot \frac{\tilde{\xi}_k}{\sigma},$$
where \(\xi_1, \xi_2, \ldots \) denote an orthonormal set of eigenfunctions corresponding to the eigenvalues \(\lambda_1, \lambda_2, \ldots \) of the Karhunen–Loève expansion of \(\sigma(t)B^H(t), \) \(t \in [0, 1] \). Fix \(H < \alpha < 1 \) and set
\[
\hat{X}^\dagger_n = \hat{Y}_n + \hat{V}^\dagger_{m^*(n)}, \quad n = 1, 2, \ldots,
\]
with \(\hat{Y}_n \) given as in (i) and \(m^*(n) = n - \lceil n^2 \rceil \). For this sequence of approximations it follows
\[
\lim_{n \to \infty} n^H \cdot e(\hat{X}^\dagger_n) = \gamma_H \cdot \|\sigma\|_1 / (H+1/2),
\]
which completes the proof.

5.6. Discussion of the Proof of Theorem 2

The lower bound is established by reducing the approximation problem for the stochastic differential equation to a weighted approximation problem for \(B^H \), for which the minimal error is strongly asymptotic equivalent to
\[
v_n = \gamma_H \cdot \|\sigma\|_1 / (H+1/2) \cdot n^{-H}.
\]
Since \(v^2_n \) is a convex sequence, i.e.,
\[
v^2_n \leq \frac{v^2_{n-1} + v^2_{n+1}}{2},
\]
and \(v_n \) satisfies
\[
\lim_{n \to \infty} \frac{v_n}{v_{n+1}} = 1,
\]
varying cardinality does not help for the approximation of \(B^H \). See [19, Chapter 6.5], and the references therein. Thus, the lower bound in Theorem 2 also holds, if \(n \) sequentially selected bounded linear functionals on average are allowed.

References