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1. Introduction

In this paper we establish the uniform Cα bound of the solutions for the following two parabolic
systems for κ ∈ (0,+∞):⎧⎨⎩

∂ui
∂t − di�ui = f i(ui) − κui

∑
j �=i bi ju j, in Ω × (0,+∞),

ui = ϕi, on ∂Ω × (0,+∞),

ui = φi, on Ω × {0},
(1.1)
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and

⎧⎪⎨⎪⎩
∂ui
∂t − di�ui = f i(ui) − κui

∑
j �=i bi ju2

j , in Ω × (0,+∞),

ui = ϕi, on ∂Ω × (0,+∞),

ui = φi, on Ω × {0}.
(1.2)

Here Ω ⊂ R
n (n � 1) is an open bounded domain with smooth boundary, i, j = 1,2, . . . , K , K � 2;

di > 0 and bij > 0 are constants (in (1.2), we also assume the symmetric condition bij = b ji ); ϕi are
given nonnegative Lipschitz continuous functions on ∂Ω × (0,+∞); and φi are given nonnegative
Lipschitz continuous functions on Ω , which satisfy φi(x) = ϕi(x,0) for x ∈ ∂Ω . They also satisfy the
segregated property φiφ j = 0 and ϕiϕ j = 0 for i �= j. f i are given Lipschitz functions, that is, ∃C > 0,

∣∣ f i(u) − f i(v)
∣∣ � C |u − v|.

The first system (1.1) arises from population dynamics, known as the Volterra–Lotka competing
system, and the second system (1.2) has its origin in Bose–Einstein condensation. K is the number of
the species in (1.1) and is the number of hyperfine spin states in (1.2). For more background, see [7,8,
10,14] and references therein. Of course, in real applications, the most interesting cases are n = 2,3.
However, we do not assume this restriction on the dimension. This is possible by our conditions on
f i and the uniform bound on the solutions.

As κ → +∞, uniformly bounded solutions of (1.1) or (1.2) converge to a limiting configurations in
some weak sense, (u1, u2, . . . , uK ). The limit satisfies a separation condition (see [8]), that is, different
components have separated supports:

uiu j ≡ 0, for i �= j.

The uniform Hölder regularity in related problems have been studied by many authors. In [8,14],
Susanna Terracini and her coauthors proved the uniform Hölder regularity of solutions to the elliptic
analogue of (1.1) and (1.2). Although they only state the result for dimension n � 3, it’s essentially
true in any dimension, as pointed out in their paper. In [2], Caffarelli, Karakhanyan and F. Lin also
proved these estimate for (1.1), both in the elliptic case and the parabolic case (see also [6]). However,
their result is a local one, only concerning the interior regularity. We will prove a global result and
the proof is different from the one in [2]. In fact, our method mainly follows the blow up method,
developed by Susanna Terracini and her coauthors in [8,14]. This method is a blow up analysis and
needs us to prove some Liouville type theorems. This can be achieved by some monotonicity formulas
of Alt–Caffarelli–Friedman type.

The original Alt–Caffarelli–Friedman monotonicity formula is only stated for the case of two
phases, see [1] and [4, Chapter 12]. In the first section, we generalize this monotonicity formula
to the case of multi phases. This can be seen as the analogue to the elliptic case in [8]. For (1.2), as in
the elliptic case [14], we also need another monotonicity formula of Almgren type. This monotonicity
formula was first introduced in [15], where it was used to prove a unique continuation property for
parabolic equations, after the ideas of Garofalo and Lin [13].

Now let’s give our settings. With minor assumptions on f i (for example, if we take the classical
logistic model f i(u) = aiu − u2), for fixed κ , the existence of global solutions uκ of both systems (1.1)
and (1.2) can be guaranteed. Moreover, uκ are nonnegative and Lipschitz continuous on Ω × [0,+∞)

(but the Lipschitz constants may depend on κ ). We also assume that, ∃C > 0 independent of κ , such
that

∑
i ui,κ � C .

The main result of this paper is the following uniform regularity result:
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Theorem 1.1. For any α ∈ (0,1), there exists a constant Cα independent of κ , such that if uκ is a solution of
(1.1) or (1.2), then

max
i

sup
Ω×(0,+∞)

|ui,κ (x, t) − ui,κ (y, s)|
dα((x, t), (y, s))

� Cα.

Here the parabolic distance is defined as

d
(
(x, t), (y, s)

) := max
{|t − s|, |x − y|2} 1

2 .

In this paper, we denote the parabolic dilating as follows: if X = (x, t), then for λ > 0

λX = (
λx, λ2t

)
.

We also denote Q := Ω × (0,+∞), Q R(x, t) = B R(x) × (t − R2, t). The Gaussian measure on R
n ,

dμ = e− |x|2
4 dx. With this measure we have the space L2(Rn,dμ) and the Sobolev space H1(Rn,dμ).

d(x, t) := d((x, t), (0,0)) is the distance to the origin. In Sections 3 and 5, we sometimes denotes H as
a half space of R

n , for example, with the form {x1 > t} for some t ∈ R.
In Section 2, we establish some monotonicity formulas and Liouville theorems. In Section 3, we

perform the blow up procedure and prove Theorem 1.1 for the case of (1.1). In Section 4, we establish
the Almgren monotonicity formula. In Section 5, by utilizing this monotonicity formula, we deal with
the last case for (1.2) and finish the proof of Theorem 1.1.

2. The monotonicity formula

In this section, we prove some monotonicity formulas and use them to prove some Liouville
type theorems, These results are generalizations of the corresponding results in the elliptic case (cf.
[8, Section 7] and [14, Section 2]).

Define the kernel

G(x, t) = 1

(4π |t|) n
2

e− |x|2
4|t|

and

β(h) := 2 inf
vi v j=0, if i �= j

h∑
i=1

∫
Rn |∇vi(y)|2G(y,1)dy∫

Rn v2
i (y)G(y,1)dy

.

By the isoperimetric inequality in Gaussian space, we have β(2) = 2 (see [4, p. 232], the last part of
the proof of Theorem 12.11) and β(h) > 2 for h > 2 (similar to the elliptic case, see [8, p. 557] and
[9, Proposition 5.1]). This can also be compared to the corresponding quantity in the elliptic case
defined in [8] and [14].

We also denote

Gi(x, t) = G

(
x√
di

, t

)
,

which satisfies, in {t > 0} (
∂

∂t
− di�

)
Gi = 0.
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Theorem 2.1. Assume in R
n × (−∞,0], ui (1 � i � h) are continuous functions satisfying⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂ui
∂t − di�ui � 0,

ui � 0,

uiu j = 0, if i �= j,

ui(0,0) = 0.

(2.1)

Assume ∀i and t ∈ (−∞,0),
∫

Rn |ui(x, t)|2Gi(x, t)dx < +∞. Then

J (t) = 1

tβ(h)

h∏
i=1

0∫
−t

∫
Rn

∣∣∇ui(x, s)
∣∣2

Gi(x, s)dx ds

is a nondecreasing function on (0,+∞).

Proof. Denote v(x, s) = u(x,−s) for s ∈ (0, t), then

J (t) = 1

tβ(h)

h∏
i=1

t∫
0

∫
Rn

|∇vi|2Gi dx ds. (2.2)

So

J ′(t)
J (t)

= −β(h)

t
+

h∑
i=1

∫
Rn |∇vi(x, t)|2Gi(x, t)dx∫ t

0

∫
Rn |∇vi(x, s)|2Gi(x, s)dx ds

. (2.3)

By noting that

∂vi

∂s
+ di�vi � 0, (2.4)

we can integrate by parts to get

t∫
0

∫
Rn

∣∣∇vi(x, s)
∣∣2

Gi(x, s)dx ds

= −
t∫

0

∫
Rn

vi(x, s)�vi(x, s)Gi(x, s) + vi(x, s)∇vi(x, s)∇Gi(x, s)dx ds

� 1

di

t∫
0

∫
Rn

∂vi

∂s
vi(x, s)Gi(x, s)dx ds +

t∫
0

∫
Rn

v2
i (x, s)

2
�Gi(x, s)dx ds

� 1

di

t∫ ∫
n

∂

∂s

(
v2

i (x, s)

2

)
Gi(x, s)dx ds + 1

di

t∫ ∫
n

v2
i (x, s)

2

∂Gi

∂s
(x, s)dx ds
0 R 0 R
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= 1

di

t∫
0

∫
Rn

∂

∂s

(
v2

i (x, s)

2
Gi(x, s)

)
dx ds

� 1

2di

∫
Rn

v2
i (x, t)Gi(x, t)dx.

Substituting this into (2.3) we get

J ′(t)
J (t)

� −β(h)

t
+ 2

h∑
i=1

di

∫
Rn |∇vi(x, t)|2Gi(x, t)dx∫

Rn v2
i (x, t)Gi(x, t)dx

. (2.5)

Define the rescaling

vi(x) = vi(
√

ditx, t).

Since ∇vi(x) = √
dit∇vi(

√
ditx, t), by replacing x = √

dit y, we get

di

∫
Rn |∇vi(x, t)|2Gi(x, t)dx∫

Rn v2
i (x, t)Gi(x, t)dx

= 1

t

∫
Rn |∇vi(y)|2G(y,1)dy∫

Rn v2
i (y)G(y,1)dy

.

Because vi have disjoint supports, we have

h∑
i=1

∫
Rn |∇vi(y)|2G(y,1)dy∫

Rn v2
i (y)G(y,1)dy

� β(h)

2
.

Substituting this into (2.5), we get J ′(t) � 0. �
Corollary 2.2. If (ui) is a solution to (2.1), and there exist constants bij > 0 such that(

∂

∂t
− di�

)
ui −

∑
j �=i

bi j

b ji

(
∂

∂t
− d j�

)
u j � 0. (2.6)

If each ui has sublinear growth, that is, ∃α ∈ (0,1) and C > 0

ui(x, t) � C
(
1 + d(x, t)

)α
,

then ∀i, ui ≡ 0.

Proof. As in the proof of the monotonicity formula, we have

0∫
−t

∫
Rn

|∇ui |2Gi(x, s)dx ds � 1

2di

∫
Rn

u2
i (x,−t)Gi(x, t)dx. (2.7)

Take any two distinct i, j, we know

J (t) = 1

t2

[ 0∫ ∫
n

|∇ui|2Gi(x, s)dx ds

][ 0∫ ∫
n

|∇u j|2G j(x, s)dx ds

]

−t R −t R
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is nondecreasing for t > 0. By (2.7) and the sublinear growth of ui at infinity, we can bound this
quantity by

J (t) � 1

t2

[ ∫
Rn

u2
i (x,−t)

2di
Gi(x, t)dx

][ ∫
Rn

u2
j (x,−t)

2d j
G j(x, t)dx

]

� C
1

t2

[ ∫
Rn

(|x|2 + t
)α

Gi(x, t)dx

][ ∫
Rn

(|x|2 + t
)α

G j(x, t)dx

]

� C
1

t2

[
tα

∫
Rn

(|y|2 + 1
)α

Gi(y,1)dx

][
tα

∫
Rn

(|y|2 + 1
)α

G j(y,1)dx

]2

� Ct2α−2.

Since 2α − 2 < 0,

lim
t→+∞ J (t) = 0.

Because J (t) is nondecreasing in t , we must have for ∀t > 0

J (t) = 0.

So there is one term in J (t) vanishing. For example, if

0∫
−t

∫
Rn

|∇ui|2Gi(x, s)dx ds = 0,

then ui is a function of t only. By the first inequality of (2.1) and (2.6), we see in the open set {ui > 0},(
∂

∂t
− di�

)
ui = 0.

Noting that ui(0,0) = 0, then we must have ui ≡ 0. Since we can choose i, j arbitrarily, there is at
most one component, assuming to be u1, nonvanishing. Finally by (2.6), we get(

∂

∂t
− d1�

)
u1 = 0 in R

n × (−∞,0]. (2.8)

Then the standard Liouville theorem for the heat equation implies that u1 is a constant function,
too. �
Lemma 2.3. Assume in Rn × (−∞,0], ui (1 � i � M) are smooth and satisfy

{
∂ui
∂t − di�ui = −ui

∑
j �=i u j, (2.9)
ui � 0.
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Then for any 2 � h � M, ∀β ′ < β(h) and t large enough

J (t) = 1

tβ ′

h∏
i=1

0∫
−t

∫
Rn

(
di|∇ui |2 + u2

i

∑
j �=i

u j

)
Gi(x, s)dx ds

is a nondecreasing function of t.

Proof. Denote v(x, s) = u(x,−s) for s ∈ (−t,0), then

J (t) = 1

tβ ′

h∏
i=1

t∫
0

∫
Rn

(
di|∇vi |2 + v2

i

∑
j �=i

v j

)
Gi(x, s)dx ds. (2.10)

We can calculate as in the previous lemma:

J ′(t)
J (t)

= −β ′

t
+

h∑
i=1

∫
Rn (di|∇vi |2 + v2

i

∑
j �=i v j)Gi(x, t)dx∫ t

0

∫
Rn (di|∇vi |2 + v2

i

∑
j �=i v j)Gi(x, s)dx ds

. (2.11)

By noting that

∂vi

∂s
+ di�vi = vi

∑
j �=i

v j, (2.12)

after integration by parts we have

t∫
0

∫
Rn

(
di|∇vi|2 + v2

i

∑
j �=i

v j

)
Gi(x, s)dx ds

= −
t∫

0

∫
Rn

di
[
vi(x, s)�vi(x, s)Gi(x, s) + vi(x, s)∇vi(x, s)∇Gi(x, s)

]
dx ds

+
t∫

0

∫
Rn

v2
i

∑
j �=i

v j Gi(x, s)dx ds

=
t∫

0

∫
Rn

∂vi

∂s
vi(x, s)Gi(x, s)dx ds + di

t∫
0

∫
Rn

v2
i (x, s)

2
�Gi(x, s)dx ds

=
t∫

0

∫
Rn

∂

∂s

(
v2

i (x, s)

2

)
Gi(x, s)dx ds +

t∫
0

∫
Rn

v2
i (x, s)

2

∂Gi

∂s
(x, s)dx ds

=
t∫ ∫

n

∂

∂s

(
v2

i (x, s)

2
Gi(x, s)

)
dx ds
0 R
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=
∫
Rn

v2
i (x, t)

2
Gi(x, t)dx − v2

i (0,0)

2

�
∫
Rn

v2
i (x, t)

2
Gi(x, t)dx.

Substituting this into (2.11) we get

J ′(t)
J (t)

� −β ′

t
+ 2

h∑
i=1

∫
Rn(di |∇vi|2 + v2

i

∑
j �=i v j)Gi(x, t)dx∫

Rn v2
i (x, t)Gi(x, t)dx

. (2.13)

Define the rescaling

vi(x) = vi(
√

ditx, t).

Since ∇vi(x) = √
dit∇vi(

√
ditx, t),

∫
Rn(di |∇vi|2 + v2

i

∑
j �=i v j)Gi(x, t)dx∫

Rn v2
i (x, t)Gi(x, t)dx

= 1

t

∫
Rn (|∇vi(y)|2 + tv2

i (y)
∑

j �=i v j(y))G(y,1)dy∫
Rn v2

i (y)G(y,1)dy
.

Because vi � 0, we claim that

lim
t→+∞

h∑
i=1

∫
Rn (|∇vi(y)|2 + tv2

i (y)
∑

j �=i v j(y))G(y,1)dy∫
Rn v2

i (y)G(y,1)dy
� β(h)

2
.

If this is true, then our lemma can be easily seen.
Assume this claim is wrong, then there exists a positive constant ε > 0, a sequence tk → +∞ and

vi,k ∈ H1(Rn,dμ) such that

h∑
i=1

∫
Rn (|∇vi,k(y)|2 + tk v2

i,k(y)
∑

j �=i v j,k(y))G(y,1)dy∫
Rn v2

i,k(y)G(y,1)dy
� β(h)

2
− ε. (2.14)

By renormalization, we can assume
∫

Rn v2
i,k(y)G(y,1)dy = 1. Note that, by differentiation and the

equation of v2
i , we have

∫
Rn

v2
i (y)G(y,1)dy =

∫
Rn

v2
i (x, t)Gi(x, t)dx

is nondecreasing in t , so it has a uniform lower bound for t � 1. Then, vi,k are uniformly bounded
in H1(Rn,dμ). So we can assume, after passing to a subsequence of k, vi,k converges to vi weakly
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in H1(Rn,dμ). By the compactness embedding of H1(Rn,dμ) into L2(Rn,dμ), vi,k converges to wi
strongly in L2(Rn,dμ), so ∫

Rn

w2
i (y)G(y,1)dy = 1.

Moreover ∫
Rn

∣∣∇wi(y)
∣∣2

G(y,1)dy � lim inf
k→+∞

∫
Rn

∣∣∇vi,k(y)
∣∣2

G(y,1)dy. (2.15)

(2.14) also implies ∫
Rn

v2
i,k(y)

∑
j �=i

v j,k(y)G(y,1)dy → 0, (2.16)

so wi w j = 0 for i �= j. Then (2.14) and (2.15) contradict the definition of β(h). �
Lemma 2.4. Assume in Rn × (−∞,0], ui (1 � i � M) satisfy{

∂ui
∂t − di�ui = −ui

∑
j �=i u2

j ,

ui � 0.
(2.17)

Then for any 2 � h � M, ∀β ′ < β(h) and t large enough

J (t) = 1

tβ ′

h∏
i=1

0∫
−t

∫
Rn

(
di |∇ui|2 + u2

i

∑
j �=i

u2
j

)
Gi(x, s)dx ds

is a nondecreasing function of t.

Proof. Denote v(x, s) = u(x,−s) for s ∈ (0, t), then

J (t) = 1

tβ ′

h∏
i=1

t∫
0

∫
Rn

(
di|∇vi|2 + v2

i

∑
j �=i

v2
j

)
Gi(x, s)dx ds. (2.18)

We can calculate as in the previous lemma

J ′(t)
J (t)

= −β ′

t
+

h∑
i=1

∫
Rn (di |∇vi|2 + v2

i

∑
j �=i v2

j )Gi(x, t)dx∫ t
0

∫
Rn(|∇vi |2 + v2

i

∑
j �=i v2

j )Gi(x, s)dx ds
. (2.19)

By noting that

∂vi

∂s
+ di�vi = vi

∑
j �=i

v2
j , (2.20)

after integration by parts we have
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t∫
0

∫
Rn

(
di|∇vi |2 + v2

i

∑
j �=i

v2
j

)
Gi(x, s)dx ds

= −
t∫

0

∫
Rn

di
[
vi(x, s)�vi(x, s)Gi(x, s) + vi(x, s)∇vi(x, s)∇Gi(x, s)

]
dx ds

+
t∫

0

∫
Rn

v2
i

∑
j �=i

v2
j Gi(x, s)dx ds

=
t∫

0

∫
Rn

∂vi

∂s
vi(x, s)Gi(x, s)dx ds +

t∫
0

∫
Rn

di
v2

i (x, s)

2
�G(x, s)dx ds

=
t∫

0

∫
Rn

∂

∂s

(
v2

i (x, s)

2

)
Gi(x, s)dx ds +

t∫
0

∫
Rn

v2
i (x, s)

2

∂Gi

∂s
(x, s)dx ds

=
t∫

0

∫
Rn

∂

∂s

(
v2

i (x, s)

2
Gi(x, s)

)
dx ds

=
∫
Rn

v2
i (x, t)

2
Gi(x, t)dx − v2

i (0,0)

2

�
∫
Rn

v2
i (x, t)

2
Gi(x, t)dx.

Thus

J ′(t)
J (t)

� −β ′

t
+ 2

h∑
i=1

∫
Rn (di|∇vi |2 + v2

i

∑
j �=i v2

j )Gi(x, t)dx∫
Rn v2

i (x, t)Gi(x, t)dx
. (2.21)

Define the rescaling

vi(x) = vi(
√

ditx, t).

Since ∇vi(x) = √
dit∇vi(

√
ditx, t),∫

Rn (di|∇vi |2 + v2
i

∑
j �=i v2

j )Gi(x, t)dx∫
Rn v2

i (x, t)Gi(x, t)dx
= 1

t

∫
Rn (|∇vi(y)|2 + tv2

i (y)
∑

j �=i v2
j (y))G(y,1)dy∫

Rn v2
i (y)G(y,1)dy

.

Because vi � 0, as in the previous lemma, we still have

lim
t→+∞

h∑
i=1

∫
Rn(|∇vi(y)|2 + tv2

i (y)
∑

j �=i v2
j (y))G(y,1)dy∫

Rn v2
i (y)G(y,1)dy

� β(h).

This is similar to the previous lemma. �
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Corollary 2.5. If ui is a solution to (2.9) or (2.17), and it has sublinear growth, that is, ∃α ∈ (0,1)

ui(x, t) � C
(
1 + d(x, t)

)α
,

then each ui is a constant function.

Proof. We only prove the first case and the second case is similar.
As in the proof of the monotonicity formula, we have

0∫
−t

∫
Rn

(
di|∇ui |2 + u2

i

∑
j �=i

u j

)
Gi(x, s)dx ds �

∫
Rn

u2
i (x,−t)

2
Gi(x, t)dx. (2.22)

Take any two distinct i, j, and ε > 0 small, we know

J (t) = 1

t2−2ε

( 0∫
−t

∫
Rn

(
di|∇ui |2 + u2

i

∑
j �=i

u j

)
Gi

)( 0∫
−t

∫
Rn

(
d j|∇ui |2 + u2

i

∑
j �=i

u j

)
G j

)

is nondecreasing for t large. Using (2.22), we can bound this quantity by

1

t2−2ε

( ∫
Rn

u2
i (x,−t)

2
Gi(x, t)dx

)( ∫
Rn

u2
i (x,−t)

2
G j(x, t)dx

)

� C
1

t2−2ε

[ ∫
Rn

(|x|2 + t
)α

G(x, t)dx

][∫
Rn

(|x|2 + t
)α

G j(x, t)dx

]

� C
1

t2−2ε

[
tα

∫
Rn

(|y|2 + 1
)α

G(y,1)dx

][
tα

∫
Rn

(|y|2 + 1
)α

G j(y,1)dx

]

� Ct2α−2+2ε.

So if we choose ε such that 2α − 2 + 2ε < 0, then

lim
t→+∞ J (t) = 0.

Since for t large, J (t) is nondecreasing in t , we must have for t large

J (t) = 0.

So there is one term in J (t) vanishing. For example, if

0∫
−t

∫
Rn

(
di|∇ui |2 + u2

i

∑
j �=i

u j

)
Gi(x, s)dx ds = 0, (2.23)

then ui is a function of t only. Moreover, if ui �= 0, then by the maximum principle ui > 0 everywhere
and thus for ∀ j �= i, u j ≡ 0.
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Since we can choose i, j arbitrarily, without loss of generality, we can assume ∀i > 1, ui ≡ 0. Now
u1 satisfies the heat equation (

∂

∂t
− d1�

)
u1 = 0 in R

n × (−∞,0]. (2.24)

Then the standard Liouville theorem for heat equation implies that u1 is a constant function. �
3. Blow up

Before going into the blow up procedure, we first give some preliminary results. Recall the defini-
tion of the heat kernel

G(x, t) = t− n
2 e− |x|2

4t .

Lemma 3.1. Assume u is a continuous nonnegative function on R
n × [0,+∞), satisfying ∂u

∂t − �u � 0 in the
distributional sense and u = 0 on R

n × {0}. Moreover, assume ∀t � 0,∫
Rn

u2(x, t)G(x, t)dx < +∞.

Then u ≡ 0.

Proof. By convolution with a mollifier ρ ∈ C∞
0 (Rn) and integration in the time t (changing u to∫ t+1

t u(x, τ )dτ ), we can assume u is smooth enough. ∀T > 0, take H(x, t) = G(x, T − t), then for
t ∈ (0, T ), we can differentiate to get

d

dt

∫
Rn

u2(x, t)H(x, t)dx =
∫
Rn

2uut H + u2 Ht

�
∫
Rn

2u�uH − u2�H

�
∫
Rn

2u�uH − �u2 H

= −
∫
Rn

2|∇u|2 H

� 0.

So ∀t ∈ (0, T ),
∫

Rn u(x, t)2 H(x, t)dx = 0. Thus u ≡ 0. �
The following lemma is taken from [10, Lemma 5.7].

Lemma 3.2. If in the parabolic cylinder Q 2R , u satisfies the following⎧⎪⎨⎪⎩
∂u
∂t − �u � −Mu,

u � 0,

u � A,

(3.1)
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then

sup
Q R

u � C1(n)Ae−C2(n)RM
1
2
,

where C1(n) and C2(n) depend on the dimension n only.

In order to prove the uniform Hölder bounds, we assume on the contrary, that there exists a
sequence of solutions uκm such that κm → +∞ (in the sequel, we will abbreviate this subindex m),
but

Lκ := max
i

sup
X,Y ∈Ω×[0,+∞), X �=Y

|ui,κ (X) − ui,κ (Y )|
dα(X, Y )

→ +∞.

We can take Xκ = (xκ , tκ ), Yκ = (yκ , sκ ) ∈ Ω × [0,+∞) such that

Lκ

2
= |ui,κ (Xκ ) − ui,κ (Yκ )|

dα(Xκ , Yκ )
. (3.2)

Without loss of generality we can assume sκ � tκ . Since uκ is uniformly bounded, we must have
d(Xκ , Yκ ) → 0.

Take a rκ > 0, which will be determined later (but at least it is uniformly bounded). Define

ũκ (X) := 1

Lκrα
κ

uκ (Xκ + rκ X), (3.3)

which is still defined on a cylindrical domain Q̃ κ := 1
rκ

(Q − Xκ ) = Ω̃κ × (−Tκ ,+∞). (Here Tκ � 0.)
Firstly, simple calculation shows

max
i

sup
X,Y ∈Ω×[0,+∞), X �=Y

|̃ui,κ (X) − ũi,κ (Y )|
dα(X, Y )

� 1. (3.4)

If we denote Ỹκ := 1
rκ

(Yκ − Xκ ), we have

|̃ui,κ (Ỹκ ) − ũi,κ (0)|
dα(Ỹκ ,0)

= 1

2
. (3.5)

If uκ is a solution to (1.1), then ũκ satisfies

∂ ũi,κ

∂t
(X) − di�ũi,κ (X) = r2−α

κ

Lκ
f i
(
ui,κ (Xκ + rκ X)

) − Mκ ũi,κ (X)
∑
j �=i

bi j ũ j,κ (X). (3.6)

Here Mκ = κ Lκ r2+α
κ . If uκ is a solution to (1.2), then ũκ satisfies

∂ ũi,κ

∂t
(X) − di�ũi,κ (X) = r2−α

κ

Lκ
f i
(
ui,κ (Xκ + rκ X)

) − Mκ ũi,κ (X)
∑
j �=i

bi j ũ
2
j,κ (X). (3.7)

Here Mκ = κ L2
κ r2+2α

κ .
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Note that ∣∣∣∣ r2−α
κ

Lκ
f i
(
ui,κ (Xκ + rκ X)

)∣∣∣∣ � Cr2
κ |̃ui,κ |. (3.8)

Here C is the Lipschitz constant of f i .

Remark 3.3. Because the boundary values of ui,κ are fixed Lipschitz functions, for X, Y ∈ Ω̃κ × {−Tκ }
or X, Y ∈ ∂Ω̃κ × (−Tκ ,+∞), we have a constant C > 0 such that

∣∣̃ui,κ (X) − ũi,κ (Y )
∣∣ � 1

Lκ rα
κ

Crκd(X, Y ). (3.9)

Because Lκ → +∞ and rκ is bounded, the boundary values of ũi,κ (minus a constant) will converge
to 0 locally uniformly.

Remark 3.4. Consider the solution Φi of{
∂Φi
∂t − di�Φi = f i(Φi), in Q ,

Φi = ui,κ , on ∂p Q .
(3.10)

By the comparison principle, we have ui,κ � Φi . We can define

Φ̃i,κ (X) := 1

Lκrα
κ

Φi(Xκ + rκ X).

Because Φi are Lipschitz continuous, Φ̃i,κ (minus a constant) will converge to 0 locally uniformly. This
gives a control on ũi,κ .

Lemma 3.5. If rκ → 0, d(Xκ ,Yκ )
rκ

� C and Mκ � 0, then ũκ (0) is bounded.

Proof. Assume by the contrary, Nκ := ũ1,κ (0) → +∞. We will only treat the first case, i.e., uκ satis-
fying (3.6). The second case is similar.

Claim. ∀R > 0, ‖Mκ ũ1,κ
∑

i �=1 ũi,κ‖L∞(Q R (0)∩Q̃ κ ) → 0.

Because ũκ is uniformly Hölder continuous, we have

ũ1,κ (X) � Nκ − Rα, in Q R(0) ∩ Q̃ κ . (3.11)

In particular, on Q R(0) ∩ ∂p Q̃ κ , ũ1,κ > 0 and
∑

i>1 ũi,κ ≡ 0 (because they have disjoint supports on
the boundary).

Take a standard cut-off function η ∈ C∞
0 (Q R(0)), such that η ≡ 1 on Q R−1(0) and | ∂η

∂t | + |�η| � 4.
Multiplying the equation of ũi,κ (i > 1) by η and integrating by parts (noting the boundary condition
of ũi,κ ), we get ∫ ∫

Q R (0)∩(∂Ω̃κ×(0,+∞))

∂ ũi,κ

∂ν
η +

∫ ∫
Q R (0)∩Q̃κ

ũi,κ

(
−∂η

∂t
− di�η

)
+ Mκ ũi,κ

∑
j �=i

ũ j,κη

� Cr2
κ

∫ ∫
Q (0)∩Q̃

ũi,κη. (3.12)
R κ
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Here ν is the outward unit normal vector field to ∂Ω̃κ . Since

∂ ũi,κ

∂t
− di�ũi,κ � Cr2

κ ũi,κ , (3.13)

and ũi,κ = 0 on Q R(0) ∩ (∂Ω̃κ × (0,+∞)), by comparing with the solution Φi of{
∂Φi
∂t − di�Φi = Cr2

κΦi, in Q̃ κ ,

Φi = ũi,κ , on ∂p Q̃ κ ,
(3.14)

we get a constant C > 0 independent of κ such that on Q R(0) ∩ (∂Ω̃κ × (0,+∞))∣∣∣∣∂ ũi,κ

∂ν

∣∣∣∣ � C . (3.15)

By noting that
∑

j �=i ũ j � ũ1 (because i �= 1) and using (3.11),

∫ ∫
Q R (0)∩Q̃κ

Mκ

(
Nκ − Rα

)̃
ui,κη � Cr2

κ

∫ ∫
Q R (0)∩Q̃κ

ũi,κη + C Rn+2 + 4
∫ ∫

(Q R (0)\Q R−1(0))∩Q̃κ

ũi,κ .

For κ large, we have Mκ (Nκ − Rα) − Cr2
κ > 0, thus

[
Mκ

(
Nκ − Rα

) − Cr2
κ

] ∫ ∫
Q R−1(0)∩Q̃κ

ũi,κ � C Rn+2 + 4
∫ ∫

(Q R (0)\Q R−1(0))∩Q̃κ

ũi,κ .

Since ũi,κ is Hölder continuous with constant 1, we get∫ ∫
(Q R (0)\Q R−1(0))∩Q̃κ

ũi,κ �
∫ ∫

(Q R−1(0)\Q R−2(0))∩Q̃κ

ũi,κ + C Rn+1.

Combing these, we get for κ and R large

∫ ∫
Q R−1(0)∩Q̃κ

ũi,κ � C
Rn+2

Mκ (Nκ − Rα)
. (3.16)

By (3.13) and the boundary condition, standard parabolic estimate shows

sup
Q R−2(0)∩Q̃κ

ũi,κ � C
Rn+2

Mκ (Nκ − Rα)
. (3.17)

In Q R−2(0), we can substitute (3.11) into (3.6) to get

∂ ũi,κ − �ũi,κ � −[
Mκ

(
Nκ − Rα

) − Cr2−α
κ

]̃
ui,κ . (3.18)
∂t
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Now we can use Lemma 3.2 to get

sup
Q R

2
(0)∩Q̃κ

ũi,κ � C1(n)
Rn+2

Mκ (Nκ − Rα)
e−C2(n)RM

1
2
κ (Nκ−Rα)

1
2
, (3.19)

and the claim can be easily seen.
Define

û1,κ (X) := ũ1,κ (X) − ũ1,κ (0).

We have û1,κ (0) = 0, and it is Hölder continuous with constant 1, and

|̂ui,κ (Ỹκ ) − ûi,κ (0)|
dα(Ỹκ ,0)

= 1

2
. (3.20)

Moreover, by the claim, it satisfies

∂ û1,κ

∂t
− d1�û1,κ = εκ ,

where εκ → 0 uniformly on any Q R(0) ∩ Q̃ κ .
From this equation, we can defer from standard parabolic estimate that û1,κ are uniformly Lips-

chitz continuous. This fact, combing with (3.20), implies that ∃C > 0,

d(Ỹκ ,0) � C . (3.21)

On the other hand, the assumption of the lemma says

d(Ỹκ ,0) � C . (3.22)

After passing to a subsequence, û1,κ converges to a continuous function ũ uniformly on compact
sets. û satisfies the equation

∂ û

∂t
− d1�û = 0.

By (3.21) and (3.22), we can assume limκ Ỹκ = Ỹ . (3.20) can be passed to the limit, which is

|̂u(Ỹ ) − û(0)|
dα(Ỹ ,0)

= 1

2
. (3.23)

In particular, û is not a constant function.
û is defined on the domain Q ∞ , which could be of four types.

1. Q ∞ = R
n × (−∞,+∞).

In this case, since û is a positive solution to the heat equation, it must be a constant function by
the Liouville theorem. This contradicts (3.23).
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2. Q ∞ = R
n × [−t0,+∞).

In this case, by Remark 3.3 we have the initial value condition

û ≡ const. on R
n × {−t0}.

We claim that t0 > 0. In fact, if t0 = 0, then because Ỹ := (̃y, s) ∈ Q ∞ and s � 0 (from our
construction), we must have s = 0. Now the initial value condition and (3.23) contradicts each
other, and the claim is proven.
By this claim and the growth rate of û at infinity, we can use the uniqueness of initial value
problem for the heat equation to conclude that û ≡ const. This contradicts (3.23), too.

3. Q ∞ = H × (−∞,+∞).
Here H is a half space, for example {x1 � t} for some t ∈ R. In this case, by Remark 3.3 we have
the boundary condition

û ≡ const. on ∂ H × (−∞,+∞).

After an odd extension of û − c to R
n × (−∞,+∞), we can use Liouville theorem again to obtain

a contradiction.
4. Q ∞ = H × [−t0,+∞).

This case can be treated similarly. Since we have the initial-boundary value condition, we can use
the uniqueness result, too. �

Lemma 3.6. If uκ satisfy (3.6), then κ Lκd2+α(Xκ , Yκ ) → +∞. If uκ satisfy (3.7), then κ L2
κd2+α(Xκ , Yκ ) →

+∞.

Proof. We will only treat the first case, i.e., uκ satisfying (3.6). The second case is exactly the same.
Assume by the contrary, ∃C > 0 such that κ Lκd2+α(Xκ , Yκ ) � C .

Take rκ such that

Mκ = κ Lκ r2+α
κ = 1.

Then limκ→+∞ rκ = 0 and (
d(Xκ ,Yκ )

rκ
)2+α � C . So we can use Lemma 3.5 to conclude that ũκ (0) is

uniformly bounded.
Our choice of rκ implies the equation of ũκ is

∂ ũi,κ

∂t
− di�ũi,κ = r2−α

κ

Lκ
f i
(
ui,κ (Xκ + rκ X)

) − ũi,κ

∑
j �=i

bi j ũ j,κ . (3.24)

First, from this equation we can derive a uniform Lipschitz estimate of ũi,κ . Thus, as in the previous
lemma, (3.21) is still valid. By our choice of rκ , (3.22) holds too.

After passing to a subsequence, ũi,κ converges to a continuous function ûi uniformly on compact
sets. ûi satisfies the equation

∂ ûi

∂t
− di�ûi = −ûi

∑
j �=i

bi j û j. (3.25)

By (3.21) and (3.22), as in the previous lemma we can assume limκ Ỹκ = Ỹ . (3.20) can be passed to
the limit, which is
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|̂u(Ỹ ) − û(0)|
dα(Ỹ ,0)

= 1

2
. (3.26)

In particular, û is not a constant function.
û is defined on the domain Q ∞ , which could be of four types.

1. Q ∞ = R
n × (−∞,+∞).

In this case, since û is a positive solution to (3.25). By Corollary 2.5 it must be a constant function.
This contradicts (3.26).

2. Q ∞ = R
n × [−t0,+∞).

In this case, by Remark 3.3 we have the initial value condition

û ≡ const. on R
n × {−t0}.

Similar to the previous lemma we still have t0 > 0. Now we can use the uniqueness of initial
value problem for the equation of û to conclude that û ≡ const., which contradicts (3.26), too.

3. Q ∞ = H × (−∞,+∞) for some half space H .
In this case, by Remark 3.3 we have the boundary condition: for constants ci � 0,

ûi ≡ ci on ∂ H × (−∞,+∞).

By the separation condition on the boundary, for i �= j, cic j = 0, so there is only one ci which is
nonzero. By Remark 3.4 (after passing to the limit), there is only one nonvanishing component
of û. In particular, the right-hand side of (3.25) is 0. Thus we are reduced to Case 3 in the
previous lemma, and we can use Liouville theorem again to obtain a contradiction.

4. Q ∞ = H × [−t0,+∞) for some half space H .
This case can be treated similarly. Since we have the initial-boundary value condition, we can use
the uniqueness result, too. �

Now we come to the proof of our main result. Firstly, we prove the case (1.1).

Proof. From the previous lemma, we must have κ Lκd2+α(Xκ , Yκ ) → +∞. We take rκ = d(Xκ , Yκ ).
Thus after the blow up, we have

d(Ỹκ ,0) = 1. (3.27)

We also have limκ→+∞ rκ = 0 and limκ→+∞ Mκ = +∞. Then by Lemma 3.5 we know ũκ (0) are
uniformly bounded.

Simple calculation shows that ũκ satisfies the following parabolic inequalities.⎧⎨⎩
∂ ũi,κ
∂t − di�ũi,κ � Cr2

κ ũi,κ ,(
∂
∂t − di�

)̃
ui,κ − ∑

j �=i
bi j
b ji

(
∂
∂t − d j�

)̃
u j,κ � Cr2

κ

(̃
ui,κ − ∑

j �=i
bi j
b ji

ũ j,κ
)
.

(3.28)

After passing to a subsequence, ũi,κ converges to a continuous function ûi uniformly on compact
sets, which is defined on the domain Q ∞ .

By (3.27), we can assume (after passing to a subsequence again) that Ỹκ → Ỹ which satisfies
d(Ỹ ,0) = 1. So after passing to the limit in (3.5), we get

|̂u(Ỹ ) − û(0)|
dα(Ỹ ,0)

= 1

2
. (3.29)

In particular, û is not a constant function.
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∀K � Q ∞ , we know if κ is large, K � Q̃ κ . Then we can take a smooth function η ∈ C∞
0 (Q̃ κ ) and

η ≡ 1 on K . Multiplying the equation of ũi,κ , (3.6), by η and integrating by parts, we get∫ ∫
Q̃κ

ũi,κ

(
−∂η

∂t
− di�η

)
+ Mκ ũi,κ

∑
j �=i

ũ j,κη � Cr2
κ

∫ ∫
Q̃κ

ũi,κη. (3.30)

Because ũi,κ are uniformly bounded on any compact set (by the boundedness of ũκ (0) and the uni-
form Hölder continuity) and Mκ → +∞, we get

lim
κ→+∞

∫ ∫
K

ũi,κ

∑
j �=i

ũ j,κ = 0. (3.31)

So the limit û satisfies

ûi û j = 0, if i �= j. (3.32)

(3.28) can be passed to the limit, so in the distributional sense ûi satisfies⎧⎨⎩
∂ ûi
∂t − di�ûi � 0,(
∂
∂t − di�

)̂
ui − ∑

j �=i
bi j
b ji

(
∂
∂t − d j�

)̂
u j � 0.

(3.33)

Q ∞ could be of four types.

1. Q ∞ = R
n × (−∞,+∞).

In this case, since û is a positive continuous solution to (3.33), by Corollary 2.2 it must be a
constant function. This is a contradiction.

2. Q ∞ = R
n × [−t0,+∞).

In this case, by Remark 3.3 we have the initial value condition

ûi ≡ ci on R
n × {−t0},

for some constants ci � 0. From the segregation condition (3.32) and the continuity of ûi , we
have

cic j = 0, if i �= j.

Similar to Lemma 3.5 we still have t0 > 0. If there is one ci > 0, then for j �= i, c j = 0. Since each
û j is globally Hölder continuous, Lemma 3.1 implies û j ≡ 0 for j �= i. Combining both inequalities
in (3.33) we know

∂ ûi

∂t
− �ûi = 0.

Now we can use the uniqueness of initial value problem for the heat equation to conclude that
ûi ≡ const. If all of ci = 0, then by Lemma 3.1, ∀i, ûi ≡ 0. This is again a contradiction.

3. Q ∞ = H × (−∞,+∞) for some half space H .
In this case, by Remark 3.3 we have the boundary condition

ûi ≡ ci, on ∂ H × (−∞,+∞).
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From the segregation condition (3.32) and the continuity of ûi , we have

cic j = 0, if i �= j.

If there is one ci > 0, then for j �= i, c j = 0. Similar to the previous lemma, by Remark 3.4, we see
û j ≡ 0 for j �= i. Then by combining both inequalities in (3.33) we have

∂ ûi

∂t
− �ûi = 0.

Then we can use Liouville theorem (after odd extension to R
n × (−∞,+∞)) again to obtain

that ûi ≡ const. This is a contradiction. If all of ci = 0, we can get a contradiction directly from
Remark 3.4.

4. Q ∞ = H × [−t0,+∞) for some half space H .
This case can be treated similarly. Since we have the initial-boundary value condition, we can
use results similar to Lemma 3.1 (we can replace the Gaussian kernel with the heat kernel on
H × [−t0,+∞)) and the uniqueness result of the initial-boundary value problem for the heat
equation in H × [−t0,+∞), too. �

Remark 3.7. If we consider the case of (1.2), in Cases 2 and 4 above, we can still prove that ûi is
a constant function, although we do not know whether ûi satisfies the heat equation a priori. For
example, in Case 2, without loss of generality, we can assume ûi = ci > 0 on the boundary. Since ûi
is globally Hölder continuous, ∃ε > 0 such that ûi > 0 in the time interval [−t0,−t0 + ε). Because
ûi satisfies the heat equation when ûi > 0, we can apply the uniqueness of initial-boundary value
problem for the heat equation to conclude that ûi ≡ ci in the time interval [−t0,−t0 + ε). Then we
can extend further to get that ûi ≡ ci in the whole time interval [−t0,+∞).

4. Almgren monotonicity formula

In this section, we establish a monotonicity formula of Almgren type. This monotonicity formula is
standard and it has been indicated in [3]. But here we mainly consider local solutions (also intended
for the applications in [11]), so the calculation is a little involved. We will present the calculation in
full details.

4.1. Definitions

Note that (1.2) and (3.7) has a gradient structure. For example, under suitable boundary condi-
tions, (3.7) is the gradient flow of the following functional.∫

Rn

1

2

∑
i

di |∇ũi,κ |2 + Mκ

∑
i �= j

ũ2
i,κ ũ2

j,κ −
∑

i

F i,κ (̃ui,κ ). (4.1)

Here Fi,κ (s) = ∫ s
0

r2−α
κ
Lκ

f i(Lκ rα
κ t)dt .

In the following of this section, we assume uκ = (ui,κ ) are a sequence of uniformly Hölder contin-
uous solutions of (1.2) in Q 1(0) := B1(0) × (−1,0), and as κ → +∞, uκ converges to u uniformly in
Q 1(0). For simplicity, we assume in (1.2), di = 1. The general case can be easily changed if we change
the heat kernel as in Section 2. Note that for any fixed κ < +∞, uκ is smooth. The limit functions u
satisfies (see [3, (3.14)]) ⎧⎪⎨⎪⎩

∂ui
∂t − �ui = f i(ui) − μi, in Q 1(0),

ui � 0, in Q 1(0),

u u = 0, in Q (0).

(4.2)
i j 1
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Here μi is a Radon measure supported on ∂{ui > 0}. This implies(
∂ui

∂t
− �ui

)
ui = f i(ui)ui . (4.3)

Define the backward heat kernel for t < 0:

G(x, t) = (
4π |t|)− n

2 e− |x|2
4|t| . (4.4)

Take a ϕ ∈ C∞
0 (B 1

2
(0)). For any fixed (x0, t0) ∈ Q 1

2
(0) and t ∈ (0, 1

2 ), define

Dκ (t) =
∫
Rn

[
1

2

∑
i

∣∣∇ui,κ (x0 − x, t0 − t)
∣∣2 +

∑
i

F i
(
ui,κ (x0 − x, t0 − t)

)

+ κ

4

∑
i �= j

u2
i,κ (x0 − x, t0 − t)u2

j,κ (x0 − x, t0 − t)

]
ϕ2(x0 − x)G(x, t)dx, (4.5)

Hκ (t) :=
∫
Rn

1

2

∑
i

u2
κ,i(x0 − x, t0 − t)ϕ2(x0 − x)G(x, t)dx. (4.6)

Concerning the limit function u, we have a similar definition,

D(t) =
∫
Rn

[
1

2

∑
i

∣∣∇ui(x0 − x, t0 − t)
∣∣2 +

∑
i

F i
(
ui,κ (x0 − x, t0 − t)

)]
ϕ2(x0 − x)G(x, t)dx, (4.7)

H(t) :=
∫
Rn

1

2

∑
i

u2
i (x0 − x, t0 − t)ϕ2(x0 − x)G(x, t)dx. (4.8)

Then we have the following monotonicity formula.

Theorem 4.1. For t ∈ (0, 1
2 ), ∃C > 0 independent of (x0, t0) ∈ Q 1

2
, such that

eCt t D(t)

H(t)
+ Ct

is nondecreasing in t.

4.2. Calculations

Now let’s compute D ′
κ (t). In the calculation of monotonicity formula we will simply take (x0, t0)

as the origin (0,0).
Denote

Dκ (t) =
∫

n

[
1

2

∣∣∇uκ (x,−t)
∣∣2 + F

(
uκ (x,−t)

) + Hκ

(
uκ (x,−t)

)]
ϕ2(x)G(x, t)dx. (4.9)
R
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Here we abbreviate the index i, and Hκ (uκ ) = κ
4

∑
i �= j u2

i,κu2
j,κ . Concerning u, we denote D(t) as

D(t) =
∫
Rn

[
1

2

∣∣∇u(x,−t)
∣∣2 + F

(
u(x,−t)

)]
ϕ2(x)G(x, t)dx. (4.10)

Firstly, by changing the coordinates through

x = t
1
2 y,

we get

Dκ (t) =
∫
Rn

[
1

2

∣∣∇uκ

(
t

1
2 y,−t

)∣∣2 + F
(
uκ

(
t

1
2 y,−t

)) + Hκ

(
uκ

(
t

1
2 y,−t

))]
ϕ2(t

1
2 y

)
G(y,1)dy.

So, if we denote

ut
κ (y) = uκ

(
t

1
2 y,−t

)
,

we have

Dκ (t) =
∫
Rn

[
1

2
t−1

∣∣∇ut
κ (y)

∣∣2 + F
(
ut

κ (y)
) + Hκ

(
ut

κ (y)
)]

ϕ2(t
1
2 y

)
G(y,1)dy.

Now we can compute the derivative.

D ′
κ (t) =

∫
Rn

t−1∇ut
κ (y) · ∇ ∂ut

κ

∂t
(y)ϕ2(t

1
2 y

)
G(y,1) − 1

2
t−2

∣∣∇ut
κ (y)

∣∣2
ϕ2(t

1
2 y

)
G(y,1)

+ ∂ Hκ

∂uκ

∂ut
κ

∂t
(y)ϕ2(t

1
2 y

)
G(y,1) + ∂ F

∂uκ

∂ut
κ

∂t
(y)ϕ2(t

1
2 y

)
G(y,1)

+
[

1

2
t−1

∣∣∇ut
κ (y)

∣∣2 + F
(
ut

κ (y)
) + Hκ

(
ut

κ (y)
)]

t− 1
2 ϕ

(
t

1
2 y

)∇ϕ
(
t

1
2 y

) · yG(y,1).

(4.11)

Through integration by parts, the term involving ∇ut
κ (y) · ∇ ∂ut

κ
∂t (y) can be transformed into

−
∫
Rn

�ut
κ (y)

∂ut
κ

∂t
(y)ϕ2(t

1
2 y

)
G(y,1) + ∂ut

κ

∂t
(y)∇ut

κ (y) · ∇G(y,1)ϕ2(t
1
2 y

)

+ ∂ut
κ

∂t
(y)∇ut

κ (y) · ∇(
ϕ2(t

1
2 y

))
G(y,1).

Note that
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∇G(y,1) = − y

2
G(y,1),

∂

∂t
ut

κ (y) = 1

2
t− 1

2 y · ∇uκ

(
t

1
2 y,−t

) − ∂uκ

∂t

(
t

1
2 y,−t

)
,

�ut
κ (y) = t�uκ

(
t

1
2 y,−t

)
,

and the equation for uκ is

∂uκ

∂t
− �uκ + ∂ Hκ

∂uκ
= ∂ F

∂uκ
.

Substituting these into (4.11), we have

D ′
κ (t) =

∫
Rn

−t−1�ut
κ (y)

∂ut
κ

∂t
(y)ϕ2(t

1
2 y

)
G(y,1)

− t−1 ∂ut
κ

∂t
(y)∇ut

κ (y) · ∇G(y,1)ϕ2(t
1
2 y

)
− t−1 ∂ut

κ

∂t
(y)∇ut

κ (y) · ∇(
ϕ2(t

1
2 y

))
G(y,1) − 1

2
t−2

∣∣∇ut
κ (y)

∣∣2
ϕ2(t

1
2 y

)
G(y,1)

+ ∂ Hκ

∂u

∂ut
κ

∂t
(y)ϕ2(r

1
2 y

)
G(y,1) + ∂ F

∂u

∂ut
κ

∂t
(y)ϕ2(r

1
2 y

)
G(y,1)

+
[

1

2

∣∣∇uκ

(
t

1
2 y,−t

)∣∣2 + F
(
ut

κ (y)
) + Hκ

(
uκ

(
t

1
2 y,−t

))]
t− 1

2 ϕ
(
t

1
2 y

)∇ϕ
(
t

1
2 y

) · yG(y,1)

=
∫
Rn

−�uκ (x,−t)

[
1

2
t−1x · ∇uκ (x,−t) − ∂uκ

∂t
(x,−t)

]
ϕ2(x)G(x, t)

+ 1

2
t−1x · ∇uκ (x, t)

[
1

2
t−1x · ∇uκ (x,−t) − ∂uκ

∂t
(x,−t)

]
ϕ2(x)G(x, t)

− 2

[
1

2
t−1x · ∇uκ (x,−t) − ∂uκ

∂t
(x,−t)

]
∇uκ (x,−t) · ∇ϕ(x)ϕ(x)G(x, t)

− 1

2
t−1

∣∣∇uκ (x, t)
∣∣2

ϕ2(x)G(x, t)

+
(

∂ Hκ

∂uκ
(x,−t) + ∂ F

∂u

)[
1

2
t−1x · ∇uκ (x,−t) − ∂uκ

∂t
(x,−t)

]
ϕ2(x)G(x, t)

+
[

1

2

∣∣∇uκ (x,−t)
∣∣2 + Hκ

(
uκ (x,−t)

)]
t−1ϕ(x)x · ∇ϕ(x)G(x, t)

=
∫
Rn

[
1

2
t−1x · ∇uκ (x,−t) − ∂uκ

∂t
(x,−t)

]2

ϕ2(x)G(x, t)

− 2

[
1

2
t−1x · ∇uκ (x,−t) − ∂uκ

∂t
(x,−t)

]
∇uκ (x,−t) · ∇ϕ(x)ϕ(x)G(x, t)
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+
[

1

2

∣∣∇uκ (x,−t)
∣∣2 + F

(
uκ (x,−t)

) + Hκ

(
uκ (x,−t)

)]
t−1ϕ(x)x · ∇ϕ(x)G(x, t)

−
∫
Rn

1

2
t−1

∣∣∇uκ (x, t)
∣∣2

ϕ2(x)G(x, t). (4.12)

As κ → +∞, since we have the weak convergence of ∇uκ and ∂uκ
∂t , after passing to the limit in the

above formula (similar to the local energy inequality, cf. [16, Section 3]), we get

D ′(t) �
∫
Rn

[
1

2
t−1x · ∇u(x,−t) − ∂u

∂t
(x,−t)

]2

ϕ2(x)G(x, t)

− 2

[
1

2
t−1x · ∇u(x,−t) − ∂u

∂t
(x,−t)

]
∇u(x,−t) · ∇ϕ(x)ϕ(x)G(x, t)

+
[

1

2

∣∣∇u(x,−t)
∣∣2 + F

(
u(x,−t)

)]
t−1ϕ(x)x · ∇ϕ(x)G(x, t)

−
∫
Rn

1

2
t−1

∣∣∇u(x, t)
∣∣2

ϕ2(x)G(x, t). (4.13)

In particular

d

dt

(
t D(t)

)
�

∫
Rn

t

[
1

2
t−1x · ∇u(x,−t) − ∂u

∂t
(x,−t)

]2

ϕ2(x)G(x, t)

− 2t

[
1

2
t−1x · ∇u(x,−t) − ∂u

∂t
(x,−t)

]
∇u(x,−t) · ∇ϕ(x)ϕ(x)G(x, t)

+
[

1

2

∣∣∇u(x,−t)
∣∣2 + F

(
u(x,−t)

)]
ϕ(x)x · ∇ϕ(x)G(x, t)

+ F (u)ϕ2(x)G(x, t). (4.14)

These inequalities are understood in the integral sense.

Remark 4.2. Because f is Lipschitz, ∃C > 0, |F (u)| � C |u|2. So∫
Rn

|∇u|2ϕ2(x)G(x, t) − F
(
u(x)

)
ϕ2(x)G(x, t) � −C

∫
Rn

|u|2ϕ2(x)G(x, t). (4.15)

That is, D(t) � −C H(t).

4.3. Take (x0, t0) as the origin (0,0), and denote

H(t) :=
∫
Rn

1

2

∑
i

u2
i (x,−t)ϕ2(x)G(x, t)dx. (4.16)

We compute its derivative. By (4.2),
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H ′(t) =
∫
Rn

−u(x,−t)
∂u

∂t
(x,−t)ϕ2(x)G(x, t) + 1

2

∣∣u(x,−t)
∣∣2

ϕ2(x)
∂G

∂t
(x, t)

=
∫
Rn

−u(x,−t)�u(x,−t)ϕ2(x)G(x, t) + 1

2

∣∣u(x,−t)
∣∣2

ϕ2(x)�G(x, t)

−
∫
Rn

f
(
u(x,−t)

)
u(x,−t)ϕ2(x)G(x, t)

=
∫
Rn

−u(x,−t)�u(x,−t)ϕ2(x)G(x, t)

+
∫
Rn

u(x,−t)�u(x,−t)ϕ2(x)G(x, t) + ∣∣∇u(x,−t)
∣∣2

ϕ2(x)G(x, t)

+ 2
∫
Rn

ϕ(x)u(x,−t)∇u(x,−t)∇ϕ(x)G(x, t)

+
∫
Rn

∣∣u(x,−t)
∣∣2(

ϕ(x)�ϕ(x) + ∣∣∇ϕ(x)
∣∣2)

G(x, t)

−
∫
Rn

f
(
u(x,−t)

)
u(x,−t)ϕ2(x)G(x, t).

By integrating by parts, the third term can be transformed into:

2
∫
Rn

ϕ(x)u(x,−t)∇u(x,−t)∇ϕ(x)G(x, t)

= 1

2

∫
Rn

∇∣∣u(x,−t)
∣∣2∇ϕ2(x)G(x, t)

= −1

2

∫
Rn

∣∣u(x,−t)
∣∣2[

�ϕ2(x)G(x, t) + ∇ϕ2(x)∇G(x, t)
]

= −
∫
Rn

∣∣u(x,−t)
∣∣2

[∣∣∇ϕ(x)
∣∣2 + ϕ(x)�ϕ(x) − ϕ(x)

x · ∇ϕ(x)

2t

]
G(x, t).

Thus

H ′(t) =
∫
Rn

∣∣∇u(x,−t)
∣∣2

ϕ2(x)G(x, t) +
∫
Rn

∣∣u(x,−t)
∣∣2

ϕ(x)
x · ∇ϕ(x)

2t
G(x, t)

−
∫
Rn

f
(
u(x,−t)

)
u(x,−t)ϕ2(x)G(x, t). (4.17)

The following lemma follows the proof of Lemma 1 in [12].
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Lemma 4.3. ∀t ∈ (− 1
2 ,0),

∫
B1(0)

|u(x, t)|2 dx has a uniform lower bound.

Proof. By the Cauchy–Schwarz inequality and the Lipschitz property of f , we have

H ′(t) � −
∫
Rn

∣∣u(x,−t)
∣∣2

ϕ(x)

∣∣∣∣ x · ∇ϕ(x)

2t

∣∣∣∣G(x, t) − C H(t). (4.18)

Because u is bounded, and ϕ ∈ C∞
0 (B1), ϕ ≡ 1 on B 1

2
, we get a constant C > 0 such that

d

dt

(
eCt H(t)

)
� −Ce− 1

Ct . (4.19)

Now writing the dependence on (x0, t0) explicitly, and integrating in t ∈ (0, s), we get

C

∫
Rn

∣∣u(x, t0 − t)
∣∣2

ϕ2(x)G(x − x0, t)dx �
∣∣u(x0, t0)

∣∣2 − Ce− 1
Ct .

Integrating this inequality over x0 ∈ B 1
2

and recalling that
∫

Rn G(x − x0, t)dx0 = 1, we get

C

∫
B1

∣∣u(x, t0 − t)
∣∣2

dx �
∫

B 1
2

∣∣u(x0, t0)
∣∣2

dx0 − Ce− 1
Ct .

Thus if we assume
∫

B 1
2

|u(x,0)|2 dx > 0, then the claim follows. �

4.4. For simplicity, denote v(x, t) := u(x0 + x, t0 − t). Define N(t) := t D(t)
H(t) . We have

N ′(t) = (t D(t))′H(t) − t D(t)H ′(t)
H(t)2

,

and (
t D(t)

)′
H(t) − t D(t)H ′(t)

�
( ∫

Rn

t

[
x · ∇v

2t
+ vt

]2

ϕ2G + I1

)( ∫
Rn

1

2
|v|2ϕ2G

)

− t

( ∫
Rn

1

2
|∇v|2ϕ2G + F (v)ϕ2G

)( ∫
Rn

|∇v|2ϕ2G + I2

)

= t

2

( ∫
Rn

[
x · ∇v

2t
+ vt

]2

ϕ2G

)( ∫
Rn

|v|2ϕ2G

)
− t

2

( ∫
Rn

|∇v|2ϕ2G

)2

+ I1

( ∫
Rn

1

2
|v|2ϕ2G

)
− t I2

( ∫
Rn

1

2
|∇v|2ϕ2G

)
. (4.20)

Here
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I1 =
∫
Rn

−2t

[
x · ∇v

2t
+ vt

]
∇v · ∇ϕϕG +

[
1

2
|∇v|2 + F (v)

]
ϕx · ∇ϕG + F (v)ϕ2G, (4.21)

I2 =
∫
Rn

|v|2ϕ x · ∇ϕ

2t
G −

∫
Rn

f (v)vϕ2G. (4.22)

With the equation of v in mind, after integration by parts, we have

∫
Rn

v vtϕ
2G =

∫
Rn

v�vϕ2G + f (v)vϕ2G

= −
∫
Rn

|∇v|2ϕ2G + v∇v∇Gϕ2 + v∇v∇ϕ2G +
∫
Rn

f (v)vϕ2G. (4.23)

Because ∇G = x
2t G , we get

∫
Rn

|∇v|2ϕ2G = −
∫
Rn

v

(
vt + x · ∇v

2t

)
ϕ2G −

∫
Rn

2vϕ∇v∇ϕG +
∫
Rn

f (v)vϕ2G. (4.24)

Substituting this into (4.20), we get

(
t D(t)

)′
H(t) − t D(t)H ′(t) � − t

2
I3 + I1

( ∫
Rn

1

2
|v|2ϕ2G

)
− t I2

( ∫
Rn

1

2
|∇v|2ϕ2G

)

− t

(∫
F (v)ϕ2G

)(∫
|∇v|2ϕ2G + I2

)
,

where

I3 =
( ∫

Rn

2vϕ∇v∇ϕG

)2

+
( ∫

Rn

f (v)vϕ2G

)2

+ 2

( ∫
Rn

v

(
vt + x · ∇v

2t

)
ϕ2G

)( ∫
Rn

2vϕ∇v∇ϕG

)

− 2

( ∫
Rn

v

(
vt + x · ∇v

2t

)
ϕ2G

)( ∫
Rn

f (v)vϕ2G

)

− 2

( ∫
Rn

2vϕ∇v∇ϕG

)( ∫
Rn

f (v)vϕ2G

)
. (4.25)

Substituting (4.24) into the above formula, we get
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I3 =
( ∫

Rn

2vϕ∇v∇ϕG

)2

+
( ∫

Rn

f (v)vϕ2G

)2

− 2

( ∫
Rn

|∇v|2ϕ2G + 2vϕ∇v∇ϕG − f (v)vϕ2G

)( ∫
Rn

2vϕ∇v∇ϕG

)

− 2

( ∫
Rn

|∇v|2ϕ2G + 2vϕ∇v∇ϕG − f (v)vϕ2G

)( ∫
Rn

f (v)vϕ2G

)

− 2

( ∫
Rn

2vϕ∇v∇ϕG

)( ∫
Rn

f (v)vϕ2G

)
. (4.26)

By the Cauchy–Schwarz inequality, we have

|I3| �
( ∫

Rn

|∇v|2|∇ϕ|2G

)( ∫
Rn

v2ϕ2G

)
+ C

( ∫
Rn

v2ϕ2G

)2

+ C

( ∫
Rn

|∇v|2ϕ2G + v2|∇ϕ|2G + v2ϕ2G

)( ∫
Rn

v2ϕ2G + |∇v|2|∇ϕ|2G

)

+ C

( ∫
Rn

|∇v|2ϕ2G + v2|∇ϕ|2G + v2ϕ2G

)( ∫
Rn

v2ϕ2G

)

+ C

( ∫
Rn

v2|∇ϕ|2G + |∇v|2ϕ2G

)( ∫
Rn

v2ϕ2G

)
. (4.27)

Because ∀t ,
∫

B1
|v|2 � C , we get

∫
Rn

v2|∇ϕ|2G � C

∫
B 1

2
\B 1

4

v2t− n
2 e− 1

64t � Ct− n
2 e− 1

64t . (4.28)

Because ∀t ,
∫

B1
|∇v|2 � C , we also have

∫
Rn

|∇v|2|∇ϕ|2G � C

∫
B 1

2
\B 1

4

|∇v|2t− n
2 e− 1

64t � Ct− n
2 e− 1

64t . (4.29)

Moreover, recalling the definition of D(t) and H(t), we get

|I3| � Ct− n
2 e− 1

64t
[

H(t) + D(t)
] + C H(t)2 + C H(t)D(t). (4.30)

Concerning I1, we have



E.N. Dancer et al. / J. Differential Equations 251 (2011) 2737–2769 2765
|I1| =
∫
Rn

−2t

[
x · ∇v

2t
+ vt

]
∇v · ∇ϕϕG +

[
1

2
|∇v|2 + F (v)

]
ϕx · ∇ϕG + F (v)ϕ2G

� C

∫
Rn

∣∣∣∣ x · ∇v

2
+ tvt

∣∣∣∣|∇v||∇ϕ|ϕG + (|∇v|2 + |v|2)ϕ|∇ϕ|G + |v|2ϕ2G

� C

[
t− n

2 e− 1
64t + H(t) + t− n

2 +1e− 1
64t

∫
Rn

|vt |2ϕ
]
. (4.31)

While I2 can be controlled by

|I2| =
∫
Rn

ϕv∇v∇ϕG +
∫
Rn

|v|2(ϕ�ϕ + |∇ϕ|2)G −
∫
Rn

f (v)vϕ2G

� Ct− n
2 e− 1

64t + C H(t). (4.32)

Combing all of these together, we get

N ′(t) � −Ct
t− n

2 e− 1
64t [H(t) + D(t)] + H(t)2 + H(t)D(t)

H2(t)

− C
t− n

2 e− 1
64t + H(t) + t− n

2 +1e− 1
64t

∫
Rn |vt |2ϕ

H(t)
− Ct

(t− n
2 e− 1

64t + H(t))D(t)

H2(t)

− Ct H(t)[D(t) + C H(t) + Ct− n
2 e− t

64 ]
H2(t)

. (4.33)

Noting that

H(t) � t− n
2 e− 1

64t

∫
B 1

2

|v|2 � 1

C
t− n

2 e− 1
64t ,

thus

N ′(t) � −C − C N(t) − Ct

∫
Rn

|vt |2ϕ2G. (4.34)

For t ∈ (0,1),

d

dt

(
eCt N(t)

)
� −CeCt − CeCtt

∫
Rn

|vt |2ϕ � −C − Ct

∫
Rn

|vt |2ϕ.

Thus

eCt N(t) + Ct + C

t∫
0

s

∫
Rn

∣∣∣∣∂v

∂t
(x, s)

∣∣∣∣2

ϕ(x)dx ds

is a nondecreasing function of t .
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Remark 4.4. Because | ∂v
∂t |2 is locally integrable on R × (0,+∞), the last term can be controlled by t:

t∫
0

s

∫
Rn

∣∣∣∣∂v

∂t
(x, s)

∣∣∣∣2

ϕ(x)dx ds � Ct.

Remark 4.5. Because | f (v)| � C |v|, we have |F (v)| � C |v|2. Thus∣∣∣∣ ∫
Rn

F (v)ϕ2G

∣∣∣∣ � C H(t).

For t ∈ (0,1), if we replace the constant C in the second term by a larger C̃

eCt N(t) + C̃t + C

t∫
0

s

∫
Rn

∣∣∣∣∂v

∂t
(x, s)

∣∣∣∣2

ϕ(x)dx ds

is still a nondecreasing function of t and is nonnegative.

Now for X = (x, t) ∈ Q 1, we can define

Θ(X; u) := lim
t→0+ N(t; X, u).

In the following, if no ambiguity appears, we often omit u or X in Θ(X; u) and N(t; X, u), writing as
Θ(X) and N(t).

5. Completion of the proof

In this section we consider the second case, (1.2). The main difference is, now we do not have
the second inequalities of (3.33). As pointed out in Remark 3.7, this only affects the proof when
Q ∞ = R

n × (−∞,+∞) or Q ∞ = H × (−∞,+∞) for some half space H .
If Q ∞ = R

n × (−∞,+∞), now we can’t apply Corollary 2.2. However, if we check the proof of
Corollary 2.2 carefully, we still have the partial result that there is at most one component, say û1,
which may not be a constant function. By Lemma 3.2, in the open set {̂u1 > 0},

∂ û1

∂t
− �û1 = 0.

If {̂u1 > 0} = R
n × (−∞,+∞), because û1 is a globally Hölder continuous function, û1 must be a

constant function. This is a contradiction. Therefore, {̂u1 = 0} is not empty. Without loss of generality,
we can assume

û1(0,0) = 0.

We will use the monotonicity formula of Almgren type to exclude this possibility, because this mono-
tonicity formula will give the growth rate at infinity.

If Q ∞ = H × (−∞,+∞), similar to the treatment of Case 3 in the case of (1.1), we can still get
that there is only one nonvanishing component of û, say û1. After odd extension to the whole space,
we can still apply the Almgren monotonicity formula to get a contradiction. In the following, we only
treat the case of Q ∞ = R

n × (−∞,+∞).
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Similar to the calculation in the previous section, we have an Almgren type monotonicity formula
for the limit û. That is, for t > 0, if we define

D(t; x0, t0) :=
∫
Rn

∑
i

di
∣∣∇ûi(x − x0, t0 − t)

∣∣2
Gi(x, t)dx,

H(t; x0, t0) :=
∫
Rn

∑
i

∣∣̂ui(x − x0, t0 − t)
∣∣2

Gi(x, t)dx,

and

N(t; x0, t0) = t D(t)

H(t)
.

Here Gi(x, t) is defined in Section 2. Then N(t; x0, t0) is a nondecreasing function of t . In particular,

Θ(x0, t0) = lim
t→0+ N(t; x0, t0)

is well defined. Note that here we need not localize as in the previous section, thus these formulas
have clean forms.

Firstly, due to the global Hölder continuity of û1, we have the following result.

Lemma 5.1. ∀(x0, t0) ∈ {̂u1 = 0}, N(t; x0, t0) ≡ α
2 .

Proof. By (4.17), direct calculation shows

t
d

dt
log H(t; x0, t0) = 2N(t; x0, t0). (5.1)

First assume ∃τ > 0 such that N(τ ; x0, t0) � α
2 − δ for a constant δ > 0. By the monotonicity of

N(t; x0, t0), ∀t � τ ,

N(t; x0, t0) � α

2
− δ.

Substituting this into (5.1), we get

H(t; x0, t0)

t2α−2δ

is nonincreasing in t ∈ (0, τ ). In particular, ∃C1 > 0 such that

H(t; x0, t0) � C1t2α−2δ. (5.2)

However, since û is Cα continuous, and û(x0, t0) = 0, we have∣∣̂u(x + x0, t0 − t)
∣∣ �

(|x| + |t| 1
2
)α

.

Substituting this into the definition of H(t; x0, t0), we get for some constant C > 0,

H(t; x0, t0) � Ct2α. (5.3)

This contradicts (5.4) for t > 0 small.
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Next assume ∃τ > 0 such that N(τ ; x0, t0) � α
2 + δ for a constant δ > 0. By the monotonicity of

N(t; x0, t0), ∀t � τ ,

N(t; x0, t0) � α

2
+ δ.

Substituting this into (5.1), we get

H(t; x0, t0)

t2α+2δ

is nondecreasing in t ∈ (τ ,+∞). In particular, ∃C2 > 0 such that

H(t; x0, t0) � C2t2α+2δ. (5.4)

However, since û is global Cα continuous, and û(x0, t0) = 0, we have

∣∣̂u(x + x0, t0 − t)
∣∣ �

(|x| + |t| 1
2
)α

.

Substituting this into the definition of H(t; x0, t0), we get for some constant C > 0,

H(t; x0, t0) � Ct2α. (5.5)

This contradicts (5.4) for t > 0 large. �
By the method of Section 6.1 in [11] (see (6.24) therein), this lemma implies, ∀(x0, t0), if

û1(x0, t0) = 0, then ∀λ > 0,

û
(
λx + x0, t0 − λ2t

) = λα û(x + x0, t0 − t). (5.6)

Proposition 6.3 in [11] also implies {̂u1 = 0} forms a self-similar linear subspace of R
n × (−∞,+∞)

(for the notation, see Definition 8.4 in [5]). By [5], either {̂u1 = 0} = R
d × R or {̂u1 = 0} = R

d × {0}.
By [11, Proposition 6.3], û = (̂u1,0, . . . ,0) is homogeneous of degree α with respect to (0,0). That

is, ∀λ > 0,

û1
(
λx, λ2t

) = λα û1(x, t).

If we denote w(x) = û1(x,−1), then it satisfies⎧⎪⎨⎪⎩
�w − x

2 · ∇w + α
2 w = ν, in R

n,

w � 0, in R
n,

w(�w − x
2 · ∇w + α

2 w) = 0, in R
n.

(5.7)

Here ν is a positive Radon measure supported on ∂{w > 0}. In particular, by integration by parts
(using the third equation of (5.7)) we have

α

2
=

∫
Rn |∇w(x)|2e− |x|2

4 dx∫
n w(x)2e− |x|2

4 dx
. (5.8)
R
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In other words, α
2 is the first eigenvalue of the above quadric form in H1

0({w > 0}, e− |x|2
4 dx). We also

need to note that w is global Hölder continuous and it is not a constant function. We show this is
impossible.

If {̂u1 = 0} = R
d × {0}, then w > 0 strictly on R

n . Then ν = 0. Take a test function η ∈ C∞
0 (Rn)

such that, η ≡ 1 in B R(0), η ≡ 0 outside of B R+1(0), and

|�η| + |∇η| � 16.

Multiplying the equation of w with ηe− |x|2
4 and integrating by parts, we get

α

2

∫
Rn

w(x)η(x)e− |x|2
4 dx =

∫
Rn

w(x)

(
�η − x

2
· ∇η

)
e− |x|2

4 dx. (5.9)

If we take R large enough, the right-hand side can be arbitrarily small. So we must have w ≡ 0. This
is a contradiction.

If {̂u1 = 0} = R
d × R, then {w = 0} = R

d . If d � n − 2, then the set {w = 0}, which is the sup-
port of the measure ν , has capacity 0. So ν = 0 again, and we can get a contradiction as above. If
d = n − 1, without loss of generality, we can assume {w = 0} = {x1 = 0}. Then {w > 0} has exactly
two components, {x1 > 0} and {x1 < 0}. However, direct calculation shows that f (x) = |x1| is the
first eigenfunction on {w > 0}, with eigenvalue 1

2 > α
2 . This contradicts the uniqueness of the first

eigenfunction and the proof is finished.
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