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ABSTRACT Molecules diffusing on nonplanar membranes, which have different amounts of corrugation in different
directions, may experience dissimilar diffusion coefficients in each direction. Smith et al. (1979, Proc. Natl. Acad. Sci.
US A, 716:5641-5644) measured diffusion anisotropy on fibroblast cell membranes in which the ratio of the diffusion
coefficients, in different directions, was 0.27. In the present work we calculate the effect of anisotropic corrugation on
the rate of diffusion of molecules on membranes. We find that part of the anisotropy reported by Smith et al. (1979,
Proc. Natl. Acad. Sci. USA, 76:5641-5644) can be explained by the membrane nonplanarity, and we present the way of

calculating this geometric factor.

INTRODUCTION

Molecules can have the ability to move laterally on biologi-
cal membranes (1). A quantitative approach to measuring
the lateral mobility of molecules on membranes is fluores-
cence photobleaching recovery (FPR) (2—6). The probed
molecules in these experiments are either naturally or
artificially marked with a fluorescent dye. Using laser
light, small areas on the membrane are bleached. The
bleached molecules move out of the areas in which they are
initially localized and unbleached molecules move into the
bleached areas. There exist two techniques of FPR. The
first is spot FPR (4, 5), in which a circular area is bleached
and the fluorescence recovery in it is measured vs. time.
The more recent technique is that of pattern FPR (6), in
which a number of areas are bleached on the membrane
with a periodical pattern created by passing the bleaching
beam through a Ronchi ruling. From the measured fluo-
rescence intensity in the bleached areas at different times,
a diffusion constant is calculated. In the usual interpreta-
tion of the results, membranes are considered as planar
surfaces. The difficulty is, however, that in many cases
biological membranes are not planar, but rather have blebs
and microvilli.

In previous work (reference 8) we have calculated the
effect of nonplanarity (in the form of microvilli) on the
measured diffusion coefficient by spot photobleaching
recovery. For spot FPR and for a model surface of A4 cos kx
cos ky (k = 10x um~") we obtained the following results:
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Considering the surface (with microvilli length of 1 um) to
be planar results in a diffusion coefficient smaller than the
real one by about a factor of 2. Because of the tortuous
shape of the spot boundary, changing the length of the
microvilli from small (0.5 um) to longer (1, 2 um) ones
does not change the rate in which the bleached molecules
leave the spot. These considerations are valid for short
times, i.e., when the diffusion out of the bleached spot is
dominated by molecules that were initially located in the
neighborhood of the spot boundary. On the other hand,
these calculations may represent experimental situations in
which the diffusion coefficient is calculated from the half
decay time, as is usually done in spot FPR. Experimental
results of Dragsten et al. (9) and of Wolf et al. (10) are
compatible with these calculations.

In this work we consider the effect of membrane nonpla-
narity on the measured diffusion coefficients using pattern
FPR. One of the advantages of this method is that it can be
used to measure diffusion coefficients along different
directions on the cell surface. Smith et al. (7) found, by this
method, that the diffusion of succinyl-concanavalin A
receptors on the surfaces of adherent mouse fibroblast
cells, having parallel stress fibers, is anisotropic. They have
shown that the diffusion coefficient in the direction parallel
to the direction of the cytoplasmic stress fibers, Dy,
appears to be approximately four times larger than that in
the direction perpendicular to these fibers, D,,,. There are
many possible reasons why the diffusion is slow in the
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direction perpendicular to the stress fibers. One such
mechanism is the possible existence of cytoplasmic struc-
tures parallel to the stress fibers, which will slow down
large scale motion in the transverse direction of membrane
proteins that extend into the cytoplasm and interact with
these structures. This is a physical effect. On the other
hand, the geometry of the membrane shape affects the
diffusion differently in each direction. If the membrane is
folded in the direction perpendicular to the stress fibers,
then the lateral diffusion of membrane proteins projected
on a plane will appear to be slower in the direction
perpendicular to the stress fibers than in the parallel
direction. This will create an apparent diffusion anisotro-
py. In the following sections we calculate the possible effect
of nonplanarity on the measured diffusion coefficient and
apply the results to a membrane that is folded in one
direction and therefore has a diffusion anistropy if the
surface is considered to be a plane (this is assumed in FPR
procedures). Then we examine what part of the diffusion
anisotropy can be explained by geometric anisotropy in
addition to other physical effects.

LARGE SCALE DIFFUSION ON A PLANAR
PERIODIC ONE-DIMENSIONAL MANIFOLD

We consider a surface that can be described as a plane
which is corrugated in one direction. The corrugation is in
the direction perpendicular to the direction of the stress
fibers in the mouse fibroblasts on which the diffusion
measurements were done by Smith et al. (7). We choose
the corrugated and the noncorrugated directions to be x
and y, respectively. The diffusion problem on this surface
can be split into a simple linear diffusion along the
noncorrugated direction y, and a one-dimensional diffusion
on a curved line lying in the plane xz. In the forthcoming
paragraphs we discuss the diffusion problem along this
curved direction.

The curved line in the xz plane can be described by the
equation:

z =f(x). (2a)

It is assumed that f(x) is a continuous function of x and is
periodic with a period 2. Because of the topological equiva-
lence of any reasonable curve to a straight line, the problem
of diffusion on a curved line can be transformed to the
solution of a regular one-dimensional diffusion equation:

C,=DC,, (2b)

where C, = 3C/dt, C,, = 3°C/as*, D is the diffusion
coefficient along the curved line, and s is the natural
parameter of the line, i.e., the length of the line measured
from some arbitrary point (say x = 0). In this case,

s= f ey, (2¢)
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where f, = df/dx. Substituting Eq. 2¢ into Eq. 2b yields
the following diffusion equation:

Ct = D[Cxx/(l +f§) - Cx./:t,/:u/(l +fzzr)2] ’ (2d)

where f,, = 8*f/dx?, C, = dC/dx and C,, = 3*C/ax>.
This equation corresponds to Eq. .14 of reference 8. We
would like to compare the diffusion along the curved line
J(x) to a diffusion along a straight line by transforming
Eq. 2d to a diffusion equation of a form C, = D4C,, and
compare D with D. It can be shown (Aizenbud, B. M.,
and N. D. Gershon, manuscript to be submitted for
publication) that for such a line and in large scale experi-
ments (where the measurement scale is much larger than £
or the results are averaged over a scale comparable with
the period, as it is in FPR measurements) the diffusion
equation 2d can be replaced by:

C,=DgC,,, (2e)
where
Dy = (2/L)'D (2f)

and L is the actual length of the line contained in one
period:

L-f s ryna. ()"
Thus the ratio of the diffusion coefficients in the curved
and planar directions, D,,,,/ Dy, is given by

Dyw/Dioe = Dg/D = (R/L)?, (2h)

where only the geometrical effect is included in D,,,. This
relation can be obtained simply if we restrict our consider-
ation to steady state processes (Hardt [11] and Aizenbud,
B. M., and N. D. Gershon, manuscript to be submitted for
publication. This supplemental material can be obtained
from the authors upon request). As is demonstrated in the
next section, this relation is useful in determining how a
nonplanarity of a surface along one axis changes the
observed diffusion.

GEOMETRICAL FACTOR
OF ANISOTROPY

In this section we take the result (Eq. 2h), apply it to
diffusion along a periodic line, and calculate the diffusion
anisotropy on a model surface that results from corruga-
tion of the membrane in only one direction. To estimate the
effective diffusion coefficient, we have to calculate L, the

'Cohen et al. (12) considered one-dimensional diffusion with a periodic
diffusion coefficient. They showed that at large scales (compared with the
period of the diffusion coefficient) the diffusion process can be described
in terms of an effective diffusion coefficient D.q, such that 1/Dg4 =
{1/DY), where the angular brackets denote an average. The problem
considered here cannot be transformed to theirs.
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length of the line contained in one period. This result can
then be applied to calculate the ratio of the diffusion
coefficients in two perpendicular directions in a surface
that is wavy in one direction (Fig. 1), as observed on a
projection of the surface on a plane. FPR measurements
are performed over relatively large areas of the membrane,
and therefore these results can be used to estimate the
effect of nonplanarity in one direction on the observed
diffusion anisotropy in such surfaces.

We consider a membrane that is curved and periodic
only along the x direction (Fig. 1) and can be described
by

z =asinkx, (3a)

where a is the amplitude and k is the wave vector (k =
27 /). Then the length of the cross section along x of one
period is according to Eq. 2¢

L= [*[1 + (aky cos® kx]" dx
- (/k) [T+ @) cosulPdu,  (3b)

where u = kx. It then follows that

2
Dion/ Dpa = (47%) / [_[z' [1 + (ak)? cos® u]'*du

= «%/(4(1 + (ak)’] EMak/[1 + (ak)'}'),  (3¢)

where E is a complete elliptic integral of the second kind.
(Notice that our E(z) corresponds to E(z?) of reference
13.) From this relation (Eq. 3c) the dependence of the
anisotropy, Dye/ Dray 0N the surface wavelength, €, and on
the amplitude, a, can be calculated. The results are given in
Fig. 1 and in Table I. We see from Fig. 1 that the
dependence of the anisotropy on the amplitude (for fixed

Dslow / Dfast

Wavelength Amplitude

FIGURE 1 The dependence of diffusion anisotropy, Dyow/Dsuas o0 the
amplitude and wavelength of the corrugated surface—z = a sin kx. Dyo
is the diffusion coefficient along the corrugated axis, x and Dy, is the
diffusion constant along the noncorrugated axis, y. The amplitude of the
corrugation is 4, and its wave vector (2x/wavelength) is k.
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TABLE 1
THE DEPENDENCE OF D,../Dpe ON a, THE
AMPLITUDE OF THE CORRUGATION FOR THE
SURFACE z = a sin kx

ak Dyons/ Dpen
0.0 1.000
0.1 0.995
0.2 0.980
0.3 0.957
0.4 0.927
0.5 0.890
0.6 0.850
0.7 0.807
08 0.763
09 0.719
1.0 0.676
2.0 0.353
30 0.202
40 0.127
5.0 0.086
6.0 0.062
7.0 0.047
8.0 0.036
9.0 0.029
10.0 0.023

wavelength) looks hyperbolic. Also, it is clearly illustrated
in this figure that the dependence of the amplitude on the
wavelength is linear (for a given anisotropy), for example,
for an anisotropy 0.25 and for a corrugated surface height
of ridges = 0.4 x €. ‘
The result of Eq. 3¢ can be easily generalized to any
periodic function that can be described by the equation

2(x) = a f(kx) . (3d)
Here a is the amplitude, k is 2x/%, where % is the

wavelength. It is easy to show that

L- j; 11 + [akf " (kx)]22 dx
— /) [T ek e e

and therefore

2

Djou/ Dt = 47 / (_[2'{1 + [akf ()12 du) - 3D

Of course when Ak — 0, Dy, /Dgpy — 1, and when Ak —
©, Dyow/Daw — 0. For a fixed value of K, Dyou/Dias
decreases hyperbolically when a increases. Therefore, Fig.
1 describes qualitatively any surface described by Eq. 3d.

DISCUSSION

A central question in this work is the influence of nonpla-
narity on diffusion anisotropy. Given the results of “Large
Scale Diffusion on a Planar Periodic One-Dimensional

545




1)

Manifold” and “Geometrical Factor of Anisotropy,” we
can answer this question and see, for example, what part of
the anisotropy observed by Smith et al. (7) can be
explained by nonplanarity.

Smith et al. (7) obtained for the ratio of the diffusion
coefficients in the perpendicular and the parallel direc-
tions, Dyow/Dps the value of 0.27. From relation 2h it
follows that if the whole anisotropy is due to nonplanarity,
the length of the membrane in the corrugated direction (x
in Fig. 1) has to be about twice as long as in the
noncorrugated one (y in Fig. 1). If the surface in the
corrugated direction can be described by a simple sin kx
function, then, as mentioned in the previous section, the
height of the ridges should be 0.4 times the wavelength.
This means, for example, that for an amplitude a = 0.04
pm, the wavelength € should be 0.1 um and for a = 0.08
um, £ = 0.2 um. Under the usually employed experimental
conditions in electron microscopy, there is no evidence for
such pronounced corrugation (14 and Triche, T., private
communication).

Another possible source of anisotropy is that the surface
is smooth, but is curved in the slow direction like an arc. In
order to produce an anisotropy of 0.25, for example, the
length of the arc has to be about twice as long per unit
increment in the x direction as in the fast direction. If the
arc can be represented by a half circle with a diameter of
10 um, D,/ Dpy is only 0.4.

From these considerations it is clear that corrugation
alone cannot explain the amount of diffusion anisotropy
obtained by Smith et al (7). Thus, in addition to possible
corrugation perpendicular to the direction of the stress
fibers, there should be contributions from other effects,
mentioned by Smith et al. (7), i.e., some of the diffusing
proteins might be excluded from elongated regions that are
above the stress fibers due to interactions with cytoplasmic
structures, or due to variations in lipid composition.

Dr. Gershon wishes to acknowledge the valuable discussion he had with
Dr. Richard Cone in which Dr. Cone introduced him to the simple but
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Figure 1.
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