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Mechanism of direct degradation of IjBa by 20S proteasome

Beatriz Alvarez-Castelao, José G. Castaño*
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Abstract IjBa regulates activation of the transcription factor
NF-jB. NF-jB is activated in response to several stimuli, i.e.
proinflamatory cytokines, infections, and physical stress. This
signal dependent pathway involves IjBa phosphorylation, ubiqui-
tylation, and degradation by 26S proteasome. A signal indepen-
dent (basal) turnover of IjBa has also been described. Here, we
show that IjBa can be directly degraded by 20S proteasomes.
Deletion constructs of IjBa allow us to the determine that N-ter-
minal (DN 1–70) and C-terminal regions (DC 280–327, removing
the PEST region) of IjBa are not required for IjBa degrada-
tion, while a further C-terminal deletion including part of the
arm repeats (DC2 245–327) almost completely suppress the deg-
radation by 20S proteasome. Binding and competition experi-
ments demonstrate that the degradation of IjBa involves
specific interactions with a2(C3) subunit of the proteasome. Fi-
nally, p65/relA (not itself a substrate for 20S proteasome) inhib-
its the degradation of IjBa by the proteasome. These results
recapitulate in vitro the main characteristics of signal indepen-
dent (basal) turnover of IjBa demonstrated in intact cells.
� 2005 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

The ubiquitin-proteasome system is responsible for the deg-

radation of most part of proteins in eukaryotic cells. This sys-

tem is involved in a series of cellular functions including:

degradation of bulk proteins, cell cycle, cell differentiation,

apoptosis, DNA repair, antigen presentation, vesicle transport

and regulation of signal transduction pathways and transcrip-

tion. The widely accepted pathway implies the targeting of

proteins to degradation by specific covalent linkage of a poly-

ubiquitin chain to the protein substrate. The multi-ubiquity-

lated protein can then be degraded by the 26S proteasome

[1,2]. The degradation of transcription factors seems to follow

this ubiqutin-proteasome pathway. Nevertheless, ubiquityla-

tion of transcription factors in some cases is also required

for full activation of the transcription factor [3,4]. Ubiquityla-

tion and limited proteolysis by the proteasome is also impli-

cated in the generation of some active transcription factors:

the generation of transcriptionally competent NF-jB isoforms

p52 and p50 from their respective precursors p100 and p105
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[5,6]; and SPT23 and MGA2, yeast homologues of NF-jB,
also require ubiquitylation and proteasome partial proteolytic

processing to generate the active transcription factor followed

by ubiquitin removal [7,8].

An emerging pathway of protein degradation requires no

prior ubiquitylation of the protein substrate for its degrada-

tion by the proteasome. A classical example of this pathway

is ornithine decarboxylase that is directly degraded by 26S

proteasome after binding to antizyme [9], and more recently

by 20S proteasome in antizyme independent, NAD(P)H qui-

none oxidoreductase 1 (NQO1) dependent pathway [10]. Di-

rect degradation by 20S proteasome have also been

documented for some proteins with little secondary structure,

like: myelin basic protein [11], p21 [12], synuclein [13–15], tau

[16,17], or even with tertiary structure like Cot kinase [18].

Some transcription factors have been shown to be degraded

by the proteasome without requirement of prior ubiquityla-

tion: IjBa [19–21], c-fos [22], and more recently p53 by

NQO1 regulated pathway [23]. Finally, 20S proteasome have

also been shown to produce limited proteolysis of GRK2 [24]

and initiation factors eIF4G and eIF3a without need of prior

ubiquitylation [25].

The classical pathway of signal-induced activation of NF-jB
is initiated by activation the IjBa kinases (IKK1 and IKK2)

by pro-inflamatory cytokines. The phosphorylation of IjBa
at serines 32 and 36 targets IjBa to polyubiquitylation by

Ubc5/SCF (beta-TrCP1) and then to degradation by the 26S

proteasome [6,26–28]. Apart of this signal dependent pathway

of degradation of IjBa, several reports have analyzed the ‘‘so-

called’’ signal-independent (basal) pathway of degradation

that is also mediated by the proteasome [19–21,29,30]. Here,

we show that IjBa can be directly degraded by the 20S protea-

some, this degradation is likely to be mediated, at least in part,

by interaction with a2(C3) proteasomal subunit and can be

negatively modulated by the association of IjBa with p65/

RelA. These results recapitulate in vitro the main facts of basal

turnover of IjBa in intact cells.
2. Materials and methods

2.1. In vitro coupled transcription–translation
The different constructs were in vitro transcribed with T7 RNA

polymerase, and translated in the presence of 35S methionine/cysteine
(Amersham) using the TNT system (Promega) according to the manu-
facturer instructions. IjBa and p65 constructs were provided by Dr.
Ulrich Siebenlist (NIAID, National Institutes of Health, Bethesda,
MD, USA). Dr. Allan Israel (Institut Pasteur, Paris, France) and
Dr. Claus Scheidereit (Max Delbruck Center for Molecular Medicine,
Berlin, Germany). Proteasomal alpha subunits were also transcribed
and translated in vitro using the TNT system (Promega) from their
ation of European Biochemical Societies.
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respective cDNA clones (some of these cDNA clones were provided by
Dr. Keiji Tanaka, Department of Molecular Oncology, Tokyo Metro-
politan Institute of Medical Science, Tokyo, Japan).

2.2. Protein purification
Rat liver proteasome was purified as described [31,32]. Recombinant

GST-IjBa was obtained from induced bacterial cultures, purified on
glutathione sepharose and cleaved by thrombin digestion as described
[33]. The full length cDNAs encoding for C3, C8, and C9 subunits [11]
were subcloned form the pT7-7 vector into the pET15B (Nde1/Sal1)
and the recombinant proteins were purified by Ni-affinity chromatogra-
phy and dialyzed against 25 mM Tris–Cl, pH 7.5, 50 mMNaCl, insolu-
ble proteins were removed by centrifugation at 100000 · g for 30 min.

2.3. In vitro degradation assays
Degradation reactions contained in a final volume of 20 ll: 20 mM

HEPES, pH 7.4, 2 mM EDTA, 1 mM EGTA, 1 ll of the respective
35S-labeled labeled protein (or 0.5 lg of purified recombinant IjBa,
0.7 lM) and 0.5–1 lg of purified rat liver proteasome (35–70 nM).
Reactions were incubated at 37 �C for the times indicated and stopped
with concentrated SDS–PAGE sample buffer. Control reactions con-
tained 25 lM MG132 or 10 lM lactacystin (proteasome inhibitors),
or no proteasome (control for endogenous degradation). Samples after
boiling for 5 min were loaded onto 10% SDS–PAGE. Gels were
stained, destained, dried under vacuum, and exposed to X-ray film
at �70 �C for 14–24 h when required. Quantitation was performed
using the Quantity-one software (Biorad). Immunoblot of IjBa degra-
dation were performed as described [34]. Degradation reactions of
IjBa in the presence of proteasomal subunits contained 0.4–2 lg
(average final concentrations based on 25000 average molecular mass:
0.8–4 lM) of the indicated recombinant subunit in the degradation
mixtures described above.

2.4. Immunoprecipitation assays
In vitro transcribed and translated IjBa (5 ll) was mixed with 10 ll

of each of the in vitro transcribed and translated proteasomal alpha
subunits in a buffer containing in a final volume of 250 ll: 50 mM
Tris–Cl, pH 7.5, 100 mM NaCl, and 0.1% NP40. After centrifugation
for 10 min at 14000 · g at 4 �C, to remove any protein aggregates, the
mix was incubated for 2 h at room temperature. Anti-IjBa antibodies
(5 ll) bound to protein-A Sepharose (Santa Cruz Biotechnology, sc-
847) were added and incubation continued for 3 h at 4 �C with shak-
ing. The immunoprecipitates were collected by centrifugation for 10 s
at 10000 · g and washed 3 times with 1 ml of 50 mM Tris–Cl, pH
7.5, 100 mM NaCl, and 0.1% NP40. The final pellet was resuspended
in SDS–PAGE sample buffer, loaded onto 12% SDS–PAGE and the
gels were processed for autoradiogaphy as described above.
Fig. 1. Time course of the degradation of IjBa by 20S proteasome. Recom
proteasome for the times indicated and the products analyzed by SDS–PA
transferred and immunobloted with anti-IjBa antibodies (Iblot). C60, is a con
a control lane to display the subunit composition of the 20S proteasome use
3. Results

3.1. Degradation of IjBa by 20S proteasome

Purified recombinant IjBa is directly degraded by 20S pro-

teasome in a time-dependent manner (Fig. 1). This degradation

is also dependent on the amount of 20S proteasome and

blocked by the presence of 10 lM lactacystin (data not

shown). It is worth to note the appearance of transient protein

intermediates when the degradation reaction was developed

with anti-IjBa antibodies (see also Fig. 1), suggesting an endo-

proteolytic cleavage of IjBa by the proteasome. Similar results

were obtained when IjBa was obtained by in vitro transcrip-

tion/translation (Fig. 2), and again it was noticed the transient

appearance of IjBa intermediates, suggestive of endoproteo-

lytic cleavage. The degradation of in vitro transcribed/trans-

lated IjBa was unaffected by ATP removal (addition of 2

units of hexokinase and 10 mM glucose), or by inclusion of

an ATP regenerating system (10 mM creatine phosphate and

5 units of creatine phosphokinase), indicating that ATP is

not required for degradation in this assay, as it is also the case

with the previously shown assay with purified recombinant

IjBa (data not shown). Due to the fact that IjBa degradation

is modulated by phosphorylation, we studied the degradation

of an IjBa construct with two point mutation (Ser 32 and

36 to alanine). This construct is also degraded by the 20S pro-

teasome (Fig. 2), indicating that phosphorylation of those Ser

residues are not involved in the in vitro degradation of IjBa.
To delineate the region of IjBa required for degradation by

20S proteasome, the degradation of deletion constructs of

IjBa were studied. The results presented in Fig. 3 indicate that

the N-terminus of IjBa (construct IjBa DN 1–70) is not re-

quired for degradation. Deletion of the PEST sequence located

in the C-terminus (IjBa DC 280–327) do not significantly af-

fect the degradation rate of this construct (Fig. 3), while fur-

ther deletion from the C-terminus (Fig. 3), to include a

region of the arm-repeats (arm repeat VI), almost completely

suppress the degradation of this IjBa construct (DC2 245–

327). These in vitro results are in perfect agreement with the

results obtained with the same constructs by Krappmann

et al. [19] for the basal turnover of IjBa in intact cells.
binant IjBa 0.5 lg (0.7 lM) was incubated with 1 lg (70 nM) of 20S
GE and either directly stained with Coomassie blue (stained gel), or
trol reaction incubated for 60 min without 20S proteasome. 20S lane, is
d for the assay.



Fig. 2. Time course of the degradation of in vitro transcribed and translated IjBa by 20S proteasome. IjBa wild type and IjBa (S32,36) mutant were
in vitro transcribed and translated. Equal amounts of both labeled proteins were incubated for the times indicated and analyzed by SDS–PAGE and
autoradiography. Control reactions (Lacta 60) were performed in the presence of lactacystin 10 lM for 60 min.
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3.2. Proteasomal subunits involved in the recognition of IjBa
To study the mechanism of recognition of IjBa by the pro-

teasome, we postulate that the initial interaction should take

place with proteasomal alpha subunits. To get an insight into

which alpha subunit may be involved, we performed in vitro

transcription and translation of the 7 different alpha proteaso-

mal subunits and incubate those products with in vitro tran-

scribed and translated IjBa, and the mixtures, after

incubation, were subjected to immpunoprecipitation with
Fig. 3. Degradation of deletion constructs of IjBa by 20S proteasome.
N- and C-terminal deletion constructs of IjBa were obtained by
in vitro transcription and translation and subjected to degradation by
20S proteasome. Upper part of the figure shows a representative
autoradiogram of the results obtained. Lower part of the figure shows
the quantification of the degradation of the different constructs, results
are referred to the amount of protein present at time 0 (identical values
were observed in the absence of proteasome or in the presence of
10 lM lactacystin after incubation for 60 min, not shown), values
represented are means ± S.D. from three different experiments.
anti-IjBa antibodies. Fig. 4A shows the products of the

in vitro transcription and translation of the 7 alpha proteaso-

mal subunits. Fig. 4B shows the results of the immunoprecip-

itation experiments, clearly demonstrating that IjBa associates

with a2(C3) subunit. If these results are correct, one would ex-

pect that recombinant a2(C3) subunit should inhibit the degra-

dation of IjBa. We purified recombinant a2, a3 and a7
Fig. 4. Binding of IjBa to proteasomal alpha subunits. A, shows an
autoradiogram of the in vitro transcribed and translated proteasomal
alpha subunits used in the immunoprecipitation experiments. B, shows
the autoradiogram of immunoprecipitation experiments with anti-
IjBa antibodies of incubation mixtures that contained the different
proteasomal alpha subunits (10 ll) as indicated and identical input of
in vitro transcribed IjBa (5 ll), see Section 2 for full experimental
details.



Fig. 5. Effect of different proteasomal alpha subunits on the degra-
dation of IjBa by 20S proteasome. Upper part shows representative
autogradiograms of time course of the degradation of IjBa by 20S
proteasome in the absence or in the presence of recombinant a2, a3,
and a7 proteasomal subunits. Lower part shows the quantification of
the time-course of degradation, results are referred to the amount of
protein present at time 0, values represented are mean ± S.D. from
three different experiments.
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proteasomal subunits and checked their effect on the degrada-

tion of IjBa by 20S proteasome. Fig. 5 clearly shows that a2
subunit, but not a3 or a7, is able to almost completely inhibit

the degradation of IjBa by the 20S proteasome. Furthermore

inhibition of IjBa by a2 subunit is dose-dependent with half-

maximal inhibition at 1 lM, and no inhibition was found with

up to 4 lM of protesomal a3 or a7 subunits (data not shown).

These results indicate that proteasomal a2 (C3) subunit is

implicated in the recognition of IjBa by 20S proteasome.
Fig. 6. Effect of p65 on the degradation of IjBa by 20S proteasome.
A, shows a representative autoradiogram of a time-course of the
incubation of p65 with 20S proteasome. B, shows a representative
autoradiogram of the degradation of IjBa by 20S proteasome in the
absence (an equal amount of mock lysate was added to have a similar
protein load in these control reactions as in the next set of reactions
with p65), or in the presence of rabbit reticulocyte lysate containing
p65.
3.3. Effect of p65 on the degradation of IjBa by 20S proteasome

We have shown that IjBa can be directly degraded by

20S proteasome, but within the cells IjBa is associated with

c-Rel family of transcription factors, mainly p65/RelA. As a

consequence, it is interesting to study the degradation of p65

by the proteasome and its possible effect on the degradation

of IjBa. Fig. 6A shows that p65 is not significantly de-

graded by incubation with 20S proteasome. When degrada-

tion of IjBa was studied in the presence of equal amounts

of lysates containing or not containing in vitro transcribed/

translated p65, we observed that the presence of p65

(Fig. 6B) greatly reduced the degradation of IjBa by the

proteasome (70 ± 10% inhibition, from three different exper-

iments). These results clearly indicate that association of

IjBa with p65 clearly interfere with the direct degradation

of IjBa by 20S proteasome.
4. Discussion

We have shown that IjBa, either recombinant or as product

of in vitro transcription and translation, is degraded by the 20S

proteasome. This degradation seems to proceed by binding of

IjBa through its ankyrin repeats (ankyrin repeat VI is essen-

tial) to the a2(C3) subunit of the proteasome, as can be specif-

ically inhibited by recombinant a2(C3) subunit, but not by

recombinant a3 and a7 subunits. Trying to further delineate

the region of a2(C3) responsible for binding to IjBa using

C-terminal or N-terminal deletion constructs of a2(C3) have
failed, likely indicating that the binding sites on the a2(C3)
are not restricted to a single linear sequence of the polypeptide.

This situation is similar to the degradation of p21 by 20S pro-

teasome, where full length a7 inhibits the degradation of p21,

but smaller constructs (with N or C-terminal deletions) were

ineffective [35].

IjB protein family regulate NF-jB activation by sequester-

ing NF-jB in the cytoplasm. IjBa is the key regulator of ra-

pid signal-induced activation of NF-jB. The classical

pathway is initiated with the activation of the IjBa kinases

(IKK1 and IKK2) by pro-inflamatory citokines. The rapid

phosphorylation of IjBa at serines 32 and 36 targets IjBa
to polyubiquitylation by Ubc5/ SCF (beta-TrCP1) and then

to degradation by the 26S proteasome, the degradation of

IjBa exposed NFjB�s nuclear localization signal and allow-

ing NF-jB to translocate to the nucleus where activates tran-

scription of many genes, including IjBa [6,26–28]. Apart of

this signal dependent pathway of degradation of IjBa, sev-
eral reports have analyzed the so-called signal-independent

(basal) pathway of degradation [19,20,29,30]. From the stud-

ies by Krappmann et al. [19], it was concluded that basal

turnover of IjBa does not require Ser 32 and 36 phosphor-

ylation nor ubiquitylation of IjBa, as mutations of Ser 32

and 36 to Ala and of all Lys of IjBa to Arg, do not prevent

its signal-independent degradation in transfected cells. Simi-

larly, Pando and Verma [30] concluded that phosphorylation

of Ser-32 and 36 is not required for the signal-independent

turnover of IjBa. The in vitro data of IjBa degradation pre-

sented here perfectly agree with the above mentioned studies

performed in cells and extend previous observation of IjBa
degradation by 20S proteasome [20]. Furthermore, we report

here that p65 is not a direct substrate of the 20S proteasome,

but nevertheless protects IjBa from being degraded by the



B. Alvarez-Castelao, J.G. Castaño / FEBS Letters 579 (2005) 4797–4802 4801
proteasome, likely by binding of IjBa to p65 through its

ankyrin repeats, prediction made on the basis of the X-ray

structure of the complex [36,37]. These in vitro results are

also in agreement with the reports of Krappmann et al.

[19] and Pando and Verma [30], demonstrating that p65 pre-

vents signal independent IjBa degradation [19]; and that free

IjBa (mutC or S3236AmutC, unable to bind to NF-jB) is at
least 5 times more rapidly degraded in the absence of exter-

nal signals when compared with NF-jB-bound IjBa [30]. As

a consequence the in vitro degradation data presented here

recapitulate those obtained in studies of IjBa degradation

under signal-independent (basal) conditions in intact cells.

Previous and present works allows to conclude that signal

independent (basal) degradation of IjBa can be directly med-

iated by 20S proteasome through specific interaction of IjBa
with the a2(C3) proteasomal subunit and its rate of degrada-

tion is controlled by the association of IjBa with p65.
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