Glycocalyx is a highly charged layer of membrane-bound biological molecules attached to a cell membrane. This layer functions as a barrier between a cell and its surrounding. Glycocalyx also serves as a mediator for cell-cell interactions and protects a cell membrane from the direct action of physical forces and stresses allowing the membrane to maintain its integrity. Glycocalyx is also involved in development and progression of many diseases. Glycocalyx is composed of glycosaminoglycans, proteoglycans and other glycoproteins bearing acidic oligosaccharides and terminal sialic acids. Most glycocalyx associated proteins are transmembrane that can be linked to the cytoketosol. This linkage not only restricts their position and constitutes the foundation of the glycocalyx structure, but it also allows signal transduction from the external to the internal parts of a cell. Here we focus on the endothelial cells’ glycocalyx.

The aim of this project is to employ Molecular Dynamics simulations to gain insight into the molecular structure and functions of the glycocalyx. This choice is justified by the fact that experimental studies of the glycocalyx are to a large extent restricted by its dynamic and soft nature driven by thermal fluctuations, implying that the glycocalyx has no unique state or structure but it instead is expected to fluctuate significantly in time. Only recent progress in the development of molecular simulation techniques and the availability of larger computer resources have fostered studies of complex biological systems such the glycocalyx itself.

1,258 Pos Board B182
Bacterial Signal Indole Modifies the Physicochemical Properties of Lipid Membranes
Catalin Chimerei, Silvia M. Hernandez Ainsa, Jehangir Cama, David K. Summers, Ulrich F. Keyser.
University of Cambridge, Cambridge, United Kingdom.
Indole is a biological molecule produced by more than 85 bacterial species. It acts as an inter-cellular signal, influencing multiple aspects of bacterial physiology and has proved to be an important factor in the transition to stationary phase. It also promotes resistance to a range of drugs and toxins and is involved in preventing plasmid instability. Aspects of bacterial ecology and host-pathogen interactions which respond to indole include biofilm formation and the expression of virulence factors.

As indole is widely affecting cellular organisms here we study the effect of indole on the physicochemical properties of the lipid membrane. We use the intrinsic fluorescence of the indole molecule to show that indole is freely diffusing through the lipid membrane barrier. Using electrophysiology we show that the indole is able to collapse membrane potential. We also show that the rate of mitochondrial oxygen consumption increases when the indole concentration is raised from 0 to 1mM. Therefore our results demonstrate that indole is capable of lowering the energetic barrier for proton permeation across lipid membranes. Concluding from these results to obtain an enhanced protonophoric activity we proposed a point mutation on the indole molecule 4F-indole. Confirming our interpretation on the mechanistic details of indole induced proton transport, 4F-indole is two time more efficient in uncoupling the oxidative phosphorylation in isolate mitochondria. Further using light spectroscopy we find the partition coefficient for indole into lipids in aqueous environment. Then using differential scanning calorimetry we show that indole modifies the phase transition of Escherichia coli cell membranes. These findings offer an explanation for the multiple roles that indole has in membrane biology, bacterial cell cycle control and potentially for the design of antibiotics that target the cell membrane.

1290-Pos Board B183
Critical Temperatures in Plasma Membrane Vesicles are Dependent on the Cell Cycle
Erin M. Gray, Sarah Veatch.
University of Michigan, Ann Arbor, MI, USA.
Giant plasma membrane vesicles (GPMVs) isolated from RBL-2H3 cells appear uniform at physiological temperatures, contain coexisting liquid-ordered and liquid-disordered phases at low temperatures, and experience micron-sized critical fluctuations close to their critical temperature. We observe a broad distribution of critical temperatures in GPMVs isolated from a dish of seemingly identical cells even though each individual vesicle has a well defined critical temperature. In addition, we observe that the average transition temperature of GPMVs isolated from a population of cells is inversely proportional to the surface density of cells growing in the culture dish. Since it is known that cellular doubling times are reduced in more densely plated cells due to contact inhibition, we hypothesized that critical temperatures are linked...