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In our search [14] to find a unified approach to characteristics of vector 
fields on finite- and infinite-dimensional manifolds we studied the notion 
of a Fredholm vector field on Banach manifolds M with special differentiable 
structures. If X is a Fredholm vector field on M with a finite number of zeros 
we defined the Euler characteristic x(X). F or bounded Hilbert submanifolds 
M of finite codimension of a Hilbert space H and a special class of Fredholm 
vector fields the Euler characteristic was shown to be independent of X and 
equal to x(M) the Euler characteristic of M. 

The attempt in [14] to apply the theory to the geodesic problem failed. 
In this paper we abandon special differentiable structures and speak only of 
Fredholm vector fields with respect to a connection on M. 

The index theory of such vector fields applies to the study of many intrinsically 
nonlinear problems [e.g., harmonic mappings between finite-dimensional 
Riemannian manifolds, geodesics (see Section 6), and to simply connected 
minimal surfaces spanning a fixed curve I’ C Iw3 [17]]. 

In addition this theory is related to the theory of the degree of Fredholm 
maps on Banach manifolds as developed in [3]. The degree of Fredholm maps, 
which includes the Leray-Schauder degree, also applies to intrinsically non- 
linear problems in analysis. By intrinsically nonlinear we mean the study 
of solutions to systems of nonlinear partial differential or integral equations 
on spaces of mappings which are not linear or affine. 

1. PRELIMINARIES ON FUNCTIONAL ANALYSIS 

Most of the results in this section are well known and unless otherwise 
stated can be found in Palais [8]. 

Let E, F be Banach spaces and Z(E, F) d enote the linear continuous maps 
from E to F. If F = E we denote Z(E, F) by Z(E). 
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DEFINITION. C E Y(E, F) is compact if for any bounded set B C E, C(B) 

is compact in F. Denote the linear space of compact linear maps by C(E, F) 
or C(E) if F = E. 

PROPOSITION I. C(E, F) is a closed subspace of 9(E, F). 

DEFINITION. T E P(E, F) is linear Fredholm if 

(i) dim Ker T < 00, 

(ii) dim Coker T = dimF/T(E) < 30, 

(iii) Range T is closed. 

Actually (i) + (ii) 3 (iii) b u most authors assume (iii) in order to avoid t 

proving it. Let P(E, F) C P(E, F) denote the subset of Fredholm maps. 
By the index of a linear Fredholm map T we mean 

ind T = dim Ker T - dim Coker T. 

PROPOSITION 2. S(E, F) is open in P’(E, F) and ind: 9(E, F) + Z is 
continuous and therefore constant on components of P(E, F). 

DEFINITION. Let Z&E) = (T 1 T = I + C, 1 the identity, C E C(E)). I f  

T E A?c(E) then T is Fredholm of index zero. 
Let GS(E) denote the general linear group of E; i.e., the set of invertible 

linear maps in Z’(E). Wh en E is a Hilbert space Kuiper showed in [5] that 
GZ(E) is contractible as a topological space. Since that time most of the function 
spaces in analysis (e.g., Holder spaces, Sobelev spaces) have been shown to 
have contractible general linear groups. This of course implies that tangent 

bundles of Banach manifolds are trivial which means, in some sense, G-Y(E) 
is too big a group for much of finite-dimensional topology to go through in 
co dimensions. Thus we introduce a Lie subgroup GZc(E) of GZ(E), the 
so-called Fredholm group. 

DEFINITION. Let G9JE) = Ye(E) n Gg(E). 

PROPOSITION 3. GZc(E) is a Lie subgroup of GP(E) which, if E has a Schauder 
basis, has the homotopy type of GLZ’(C.Q) = 1 im inf G&Z’(n), the direct limit of the 
general lineargroup of R” (for detaih see [3, IO]). InparticuZar, rO(GYc(E)) = 2, , 
the integers mod 2. Thus Ggc(E) has two components, which remains true if E 
does not have a Schauder basis. 1 

Let Ggc+(E) be the component of the identity in Ggc(E) and G-Y-(E) 
the other component. We would like to give an example of an element in 
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Ggc-(E). Write E = E,, x R w h ere R is a one-dimensional subspace of E. 
Define JE G,Epc(E) by 

Jb Y) = (~9 -Y), (X,Y)EJ% x R. 

Then J E Ggc-(E). 
It is easy to see that GYO(E) is not open on GZ(E). For the development 

of vector field theory on Banach manifolds we need a slightly larger set than 
Ggc(E), one which will have two components, which contains Ggc(E), and 
yet is open in GLZ(E). Let Y(E) C G9(E) be th e maximal starred neighborhood 
of the identity in G,Ep(E). Formally 

Y(E) = {T E GY(E) 1 (tT + (1 - t)1) E G9(E) Vt E [0, l]}. 

PROPOSITION 4. Y(E) is open in G9(E) and T E Y(E) zfl T-l E 9’(E). 

Proof. Since the unit interval is compact we can find an E > 0 so that 
if for any 2 E [0, l] 

II A - (tT + (1 - W < E 

then A E GlY(E). Pick FE GZ(E) with I/ T - T ]I < E. Then F?(E Y(E) 
which proves openness. 

Suppose (tT + (1 - t)l) E G-!?(E) f  or all t E [0, I]. Then T{tI + (1 - t)T-l) E 
GLY(E). Setting s = 1 - t, we see that (1 - s)l + ST-~ E G9(E) which 
implies that T-l E Y(E). 1 

PROPOSITION 5. Y(E) is contractible onto the identity. 

DEFINITION. Let W(E)={AlA = T+C, TEY(E) and CECQ} and 
let GB(E) = W(E) r\ G-F(E). 

It follows at once that PC(E) C B(E) and GL$(E) C Gg(E). 
We shall call J%(E) the Rothe set of E and G.%?(E) the invertible members 

of the Rothe set. 

PROPOSITION 6. W(E) is open in 5?(E) and hence G92(E) is open in Gp(E). 

Proof. Let A E W(E). We must show that there is an E > 0 so that whenever 
I/ S - A 11 < E, SE 9(E). Now A = T + C, T E 9(E), C E C(E). Since Y(E) 
is open in G9(E) there is an E > 0 so that whenever 11 T - T 11 < E, T E 9’(E). 
Let SELF(E) with I/S--A/ICE. Set T=((s-A)+T. Then S= 
(S--AA)+A=T’+C~~~~~I/T-T~~<E.T~~ST(EY(E)~~~SEW(E). a 

We have already observed that GB(E) 3 Ggc(E) and that G,Ep,(E) has two 
components, and we would like to show this also holds for G%‘(E). To do 
this we shall show that G92(E) is homotopically equivalent to Gpc(E). 
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PROPOSITION 7. The quotient space G.%?(E)/C(E) is a contractible paracompact 
space. 

Proof. It is paracompact because it is an open subset of the quotient of 
Banach spaces which is a Banach space and hence it is metrizable and therefore 
paracompact. To see that it is contractible consider the canonical projection 
map V: G%‘(E) + G.%‘(E)/C(E). Obviously CT is surjective. Let A E GB(E). 
Then 

A = T f C, T E Y(E), C E C(E). 

The homotopy (t, A) + (tT + (1 - t)I)(I + T-W), 0 < t < 1 is not well 
defined on G&!(E) but the projection of this homotopy onto G%?(E)/C(E) 
is well defined, continuous, and contracts GS(E)/C(E) to a point. 1 

PROPOSITION 8. rr: Y(E) + S(E)/C(E) as a trivial vector bundle over the 
space L?(E)/C(E). 

Proof. The result follows from a theorem of Bartle and Graves which 
can be found in [6, Proposition 7.21. 1 

Consider the map w G%‘(E) -+ GB(E)/C(E). Since GB(E)/C(E) is open 
in S(E)/C(E), by Proposition 9 the triple (n, G&%(E), G9(E)/C(E)) admits 
local sections. n-l[T] can be identified with GgC(E) which acts transitively 

on n-l[T]. Thus the existence of local sections implies that (.rr, GB(E), 
GS?(E)/C(E)) is in fact a principle bundle. Since GB(E)/C(E) is a contractible 
paracompact space this implies that this bundle is trivial. Thus we have 

PROPOSITION 9. The tr$le (7~, GL@(E), GS?(E)/C(E)) is a trivial principle 
bundle with JLiber Ggc(E) over the contractible base space G%‘(E)/C(E). Therefore 

GB(E) - (GB(E)/C(E)) x Ggc(E) 

where w denotes bundle equivalence. 1 

As immediate corollaries we have 

COROLLARY 1. GB(E) is homotopically equivalent to GZO(E). 

COROLLARY 2. G%‘(E) has two components which we shall denote by G92+(E) 
and G%-(E). 

2. A REVIEW OF THE BROUWER DEGREE OF A FREDHOLM MAP 

In discussing the degree of a Fredholm map we shall be following [3, 41. 
This degree is an extension of the Leray-Schauder degree using some simple 
techniques of differential topology. An elementary discussion of the finite- 
dimensional theory can be found in Milnor’s book [7]. 

607/28/z-5 
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DEFINITION. A “@-structure” or “Fredholm structure,” M,,, modeled on 
E on a manifold M consists of a maximal atlas {(ed , vi)} for M, q~: %i + E 
such that when defined, the derivative, D(p), 0 &)(x) E GZO(E). The structure 
M, is said to be “orientable” if there is a subatlas of {ei , vi)} with D(vi 0 pi’)(x) E 
G,Epc+(E). A maximal subatlas will be called an “orientation” of M, . 

If M is connected, any orientable @-structure on M will admit precisely 
two orientations. M will be called “completely orientable” if it admits a @- 
structure and if every such structure that it admits is orientable. Each @-structure 
M, on M gives rise to a class ~(n/r,) in the first singular cohomology group 
W(M, 2,) of M with the property that M, is orientable iff v(M,) = 0. It 
can be shown that if M admits Cr partitions of unity, r 3 3 and CL?(E) is 
contractible then M is completely orientable iff HI(M; 2,) = 0, however, 
we shall not need this fact for our theory. 

DEFINITION. Let M and N be smooth Banach manifolds. A Cl map 
f: M- N is Fredholm if Dfz: T&f + T,(,)N is linear Fredholm for each 
x E M. By the index off we mean the index of Dfi . If M is connected this 
does not depend on x. If M is not connected, we shall assume the index to be 
the same for all components. A Fredholm map of index n will be called a @, 
map. 

DEFINITION. A map f: M -+ N is a “proper map” if the inverse image of 
any compact set in N is compact; it is u proper if M can be written as the 
countable union of closed subsets M = (Ji M3 with f 1 Mj a proper map. 
Recall from [12] that a Fredholm map is locally proper; thus a Fredholm 
map with separable domain is necessarily a proper. We shall rely strongly 
on Smale’s infinite-dimensional version of Sard’s theorem. The following 
generalization is due to Quinn: 

THEOREM 1 (Smale-Sard). Suppose that f: M + N is a C’, u-proper 
Fredholm map between Banach manifolds where Y > max(ind f, 0). Then the 
set % of regular values off is a Baire subset of N. If f is proper 27 is open and 
dense. 1 

Suppose that M, N are manifolds with @-structures M, , N, modeled in E. 
A Cr map f: M -+ N will be called a @(I)-m(lp from M, to N, if 

Wi of 0 Y?)(F+)) E -K(E) 

forallxEMandcharts#i,v,ofM,, N, for which it is defined. A @(I) map 
is necessarily a $-map. If I > 2 and M, , N, have orientations and if f is 
proper we may apply Smale’s theorem to obtain an oriented degree for f just 
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as in the finite-dimensional case; namely, take a regular value y off in N and 
let degf be the algebraic number of points in f-‘(y) 

deaf = C w of% 
eef-‘(Y) 

(1) 

where sgn DfiE = fl depending on whether D(& 0 f 0 q~;‘)(&x)) lies in 
GZc+(E) or GL$-(E) for oriented charts &, pi at f(x), x. If f-l(y) = 4, 
degf = 0. This Brouwer degree gives an invariant of f under proper CT 
homotopies through proper @(I)-maps of M, into N, . 

The following theorem shows that Q0 maps are often @(I) maps for some 
@-structure. Its proof can be found in [3, 43. 

THEOREM 2 (Pull Back Theorem). (i) A Qo-mupf: M -+ E induces a unique 
@-structure {M, f}, on M modeled on E, with respect to which f is a @O-map 
into E with its trivial structure. 

(ii) If M, is a @-structure on M modeled on E and zf M admits Cr partitions 
of unity there is a CT @,,-map f: M + E with {M, fX = M, . 1 

Theorem 2 has several extensions, in particular the range space E off in (i) 
could be replaced by any manifold with a @-structure. However, for most 

. . 
apphcations to analysis it suffices to consider the case of maps whose range 
is a Banach space. In fact, from the analysis point of view the Brouwer degree 
is, in effect, also a local theory, a theory which gives the local degree of a 
Palais-Smale vector field (cf. Section 3). 

It follows from Theorem 2 that one may obtain an oriented degree for a 
proper Cr dj,-map f: M -+ E, r 3 2 by considering it as a @(I)-map on {M, f}, , 
provided the latter is orientable. In general one would have to use some theorem 
like the vanishing of IP(M; 2,) to guarantee that {M, f}, is orientable. This 
is a major point of departure between our vector field theory and the general 
Fredholm theorem. As we shall see further on, the maps f we will be considering 
will naturally induce an “orientation” on M. 

This degree for @,-maps f: M + E will not, however, be an invariant of 
proper homotopies through @a-maps. For example, suppose E is an infinite- 
dimensional Hilbert space and T E G-f.?-(E). Then deg T = -1, although 
GS?(E) is connected and so T is homotopic in G9(E) to the identity map, 
which as degree + 1. However, as mentioned earlier, the degree is a proper 
homotopy invariant through @(I)-maps and we shall use this fact. 

A more direct extension of the Leray-Schauder degree occurs when one 
has a closed domain B of E (or M) whose boundary will be denoted by aB, 
together with a point y of E and a proper CT @,-map f: B, aB ---f E, E - {y>, 
r > 2. In the same way as before, given orientability, we can define an integer 
deg( f, aB, y) by looking at the inverse image of a regular value off lying on 
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the component of y in E -f(aB). Iff is an identity plus compact field and B is 
bounded in E, this reduces to the Leray-Schauder degree. 

This degree has been used by many people to obtain existence and uniqueness 
theorems in partial differential and integral equations. But for intrinsically 
nonlinear problems the Leray-Schauder theory is insufficient. We are interested 
in a globalization of this theory which can aid us in obtaining theorems on 
the number of solutions to intrinsically nonlinear partial differential equations 
(e.g., the Plateau problem) and integral equations. 

We shall now introduce the notion of a Rothe map and the degree of such 
a map. A C2 function f: B + E, B a domain in E, is Rothe if for each x E B C E 
the Frechet derivative Df(x) E W(E). Rothe maps are clearly Fredholm of 
index zero, and moreover we have 

THEOREM 3. A Rothe map f induces in a natural way a unique oriented 
@-structure B, on B”, the interior of B, with respect to which f is a @(I)-map. 

Proof. Let x0 E B”. Then Df(x,) = T + C where T E Y(E) and C is 
compact linear. Consequently we can find a linear operator SE S(E) with 
finite-dimensional range so that Of (x0) + S E Gg+(E). Consider the map 
‘p: ‘2% -+ E defined by p)(x) = f  (x) + S(x). Then @(x0) is an isomorphism 
and by the inverse function theorem v restricted to some open ball % is a 
diffeomorphism onto WC E with Drp(x) E G%‘+(E) and inverse v-l: W -+ E. 
Thus v is a chart for Bo about x0 . Do this for each x0 of B” and we obtain 
an atlas for Bo consisting of such charts. Then 

f  0 y-l(w) = ‘p 0 v-l(w) + s 0 p-l(w) 

= w + SolJ-yw) 

which shows that f  is a D(l)-map with respect to the atlas B, . Next we show 
that B, is an orientation for B”. Suppose now that at two points x0, x1 E B” 
there are neighborhoods I’, , V, about x0, xi and charts ‘p. , vl: V, , Vi -+ E 
in B, chosen as above. Then 

and thus 

foc$ =I+S,O~~,~ =I+k,, 

fo& =I+S,oc$ =I+k, 

(I+ koho = (I + klh 
giving 

thus z/ = y. o v;l is of the form identity plus finite dimensional and hence 
for all w E vi( V, r\ Vi), D+(w) = D(v, o v;‘)(w) E Ggc(E), which implies that 
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this atlas is a C structure for Bo. The following lemma is all that is required 
to finish the proof of Theorem 3. 

LEMMA. For all w E q+( V, n V,) we have that 

D$(w) E GZc+(E). 

Proof. W(w) = k&) 0 D&(w) = [of (4 + WDf (4 + &I = [T + Co] 
[T + CJl = [I + C,T-I][1 + C,T-l]-l where T E Y(E) and C, , C, are 
compact linear with (T + C’s) E Gg+(E) and [T + C,] E G92+(E) which 

implies that (I + C,,T-l) E GPG+(E) and (I + C,T-l) E Ggc+(E). Since GYc+(E) 
is a group it follows that 

DY+) E G%+(E). I 

Let f:  B, 3B -+ E, E - {y} be a proper Rothe map. Since f is proper f (aB) 
is closed and y  E Lo, 0 the open component of y  in E - f (8B). Let B, be the 
orientable C structure on Bo given by Theorem 3. 0 as an open submanifold 

of E inherits a natural orientation. Let M = f-‘(O) and let MQ be the oriented 
@-structure on M induced by B, . Then f: M + 0 is a proper @(I)-map from 
M, to 0, and therefore has a Brouwer degree, degf given by formula 1 of 
this section. We shall denote this degree by 

des(f, By Y> 

which is the degree of a Rothe map. 
From what we have stated in this section and from the standard properties 

of degree it follows that deg(f, B, y) has the properties: 

(i) I f  x E 0 then deg(f, B, z) = deg(f, B, y). 

(ii) I f  deg(f, B, y) # 0 then there exists an x E B” with f (x) = y. 
(iii) I f  r-l(y) = Urzl Ci where the Ci are disjoint compact sets and if 

Ci C 4Yto, qi n %!j = 4, i # j, then 

deg(f, B, Y) = c de&f, ai , Y). 
z 

This is the additivity property of degree. 

(iv) (Invariance under homotopy.) If  ft: B, aB - E, E - (y}, 0 < t < I 
is a homotopy of Rothe maps then 

deg(fo , & Y) = deg(f, , B, -19. 

When y  is a regular value a very nice interpretation can be given of this 
d egree, an interpretation which is already implicit in what we have done. 
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If y is regular, let x, ,..,, xlc be the finite number of points in @O in f-l(y). Then 

d&f, 4 Y> = 1 sgn Wh) 

where sgn Df(xJ = +l if Df(xi) E G99+(E) and sgn Df(xJ = -1 if Df(xJ E 
G&‘-(E). 

3. FRRDHOLM AND PALAIS-SMALE VECTOR FIELDS 

Let X: M -+ TM be a CT, r > 1 vector field on a Crfl Banach manifold, 
modeled on a space E. How can we define X to be Fredholm ? If we fix p E M 
and look at DXt,,: T,M --f T,(,,(TM) we see that, since T,M is linearly 
isomorphic to E and T,(,,(TM) is isomorphic to E x E, OX(p) could not 
possibly be linear Fredholm if dim E = co. Thus this definition does not work. 

Now let r,~: 9 -+ 0 C E be a coordinate patch about p E M. Consider the 
principle part Xm: 0 --+ E of X in this coordinate system. One can ask that 
this be nonlinear Fredholm. But it is not hard to see that this notion depends 
on the coordinate mapping v and thus is not intrinsic. To see this suppose 
X(p) # 0, then by the flow box theorem [l] there is a coordinate patch 
v: % + 0 about p such that for x E 0, XV(x) = ~1 where ZI is some fixed vector. 
Thus DXv(x) = 0 which is not Fredholm if dim E = co. 

In [14] the author defined a notion of Fredholm vector fields on manifolds 
with special structures and then unsuccessfully tried to apply this notion to 
intrinsically nonlinear problems in analysis. 

In the paragraphs below we define the notions of Fredholm and Palais- 
Smale vector fields on M with respect to a connection K on M. It is our con- 
tention that the latter class of vector fields arise naturally in analysis and they 
have as their zeros long studied objects of geometry and analysis, as, for example, 
geodesics, harmonic maps between finite-dimensional Riemannian manifolds, 
and simply connected minimal surfaces. We, begin our study with the notion 
of a connection. 

For the exposition of connections on bunles we follow Eliasson [2] and 
the reader is referred to that source. Let ?r: 5 + M be a Banach bundle of 
class C7 with fiber E over a paracompact Banach manifold M (possibly with 
boundary). Let )\: Tt + [ denote the tangent bundle to the bundle t with 
canonical projection map h. 

A local trivialization of r is given by a bundle equivalence 
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where + is a chart for M. Q2, = @ 1 W”(P) is a linear isomorphism of E, = 

h(p) onto +(p) x E E E. 

DEFINITION. A connection map K for the bundle 5 is a bundle map K: 

Tf - 6 over the map r. Thus we have the commutative diagram 

which implies that K maps the fiber T,[ linearly into E,,A(z) . 
In addition we assume that for any local trivialization (a, 4, @) of 7~: 5 + M 

there is a Cr map r,: +(@) -+ L?(E x F; E), the E valued bilinear maps on 

E x F, which gives the local representative of K, K, = Qi o K 0 T@-l by the 
formula 

K&G P,Y> rl) == CT rl + r&4 . (Y, PI)- 

It follows that K is of class Cz. The map r, is the local connector for K 
with respect to the chart $. When M is Cr+l, [ = TM the local connector r, 
corresponds to the classical Christoffel symbols and in finite dimension we have 
[r,(x)(y, ,?q = ,q&) yw. 

If  5 = TM we say that K is symmetric if locally there is a chart 4 so that 
r,(x): E x E + E is a symmetric bilinear map. It is easy to check that this 
property is independent of the choice of coordinate chart +. It follows easily 

that if M admits a partition of unity of class 0-l then there exists a Cr-r 
connection map for 7~: 5 ---f M. 

A connection for a manifold M is defined to be a connection for its tangent 
bundle TM. The important thing about bundle connections from our point 

of view is that they occur naturally in the context of manifolds of maps. This 
was proved in great generality by Eliasson [2, Theorem 5.41 and by the author 
at a later date. It is this fact that motivated the present theory. 

“Roughly speaking” if X and Y are two finite-dimensional manifolds of 
class C* with Y admitting a connection K of class Cs-2 and 9 is a manifold 
of maps functor (e.g., LZkp, k > (dim X)/p, C”, C”*“) then K induces a P4 
connection 3(K) on the manifold of maps 9(X, Y). I f  K is symmetric then 
9(K) is also symmetric. 

Again let M be a differentiable Banach manifold with tangent bundle 7: 
TM + M. In addition let rr: 5 -+ M be a Banach vector bundle with a connec- 
tion map K on T[. Ifs: M -+ [ is a smooth section of 6, we define the covariant 
derivative of s to be the bundle map Vs: TM + f  defined by Vs(p) = K 0 h(p). 
Lls(p), the Frechet derivative of s at p, takes the fiber T,M linearly into T,(,$ 
and K maps T,(,)f into E, . Therefore Vs(p) is a linear map from T,M to E, . 
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DEFINITION. A C”, k < Y, section s of a CT bundle no 5 --+ M is said to be 
Fredholm with respect to a C1 connection K on 4 if for each p E M, Vs(p): 
T,M + ED is a linear Fredholm map. The Fredholm index of s at p is the 
Fredholm index of V’s(p). Thus 

ind Vs(p) = dim Ker V’s(p) - dim Coker Vs(p). 

if M is connected this is independent of p and we call this common integer 
the index of the Fredholm section s. If M is not connected we shall require 
the index to agree on all components of M. 

Remark 1. If p is a zero of a section s, s(p) = 0, then Vs(p): T,M -+ E, 
does not depend on the connection K. To see this note that in a local coordinate 
chart 4 with local representative s* of s 

WP)[hl = WP)PI + J-,(p)@, S”(P)). 

Consequently if s(p) = 0 

V~P)PI = WpPC 

Remark 2. The notion of Fredholm section depends strongly on the choice 
of connection K. A section may be Fredholm with respect to a connection 
Kl and yet not Fredholm with respect to another connection K, . However, 
we can define an equivalence relation on the space of connections in such a 
way that the property of being Fredholm for a section s is independent of 
the choice of representative connection in any equivalence class. To be more 
precise let Kl , K,: Tf -+ .$ be two connections for the bundle 5. Define the 
torsion Y(K, , K,): TE + 5‘ by Y(K, , K2) = Kl - K, . Let rr#: Y;(t) -+ M 
be the bundle of maps over M with fiber over p, n;‘(p) consisting of bilinear 
maps on E, = rr-r(p) with values in E, . 

The torsion tensor Y(K, , Kg) can be interpreted as a section of 5&(t). 
In local coordinates 4: % +E, XE#%), (h,k)EE x E 

%(Kl, K&4(4 k) = r,‘(x)@, k) - r,2(4(h, k) 

where r,l and rb2 are the local connectors of Kl and K2 . We say that Y(K, , K,) 
is left completely continuous (or left compact) if for every p E M and every 
fixed k E E, the linear correspondence 

h * -VG > KdPW> kl E -W,) 

is in addition a compact linear map. 
Kl is equivalent to K,(K, N K,) if Y(K, , K,) is left compact. If ,.$ = TM 

and Kl and K2 are symmetric then Y(K, , K,) is a symmetric tensor and 
there is no distinction between left compact and right compact. The following 
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proposition follows immediately from the invariance of Fredholm linear maps 
under additive translations by linear compact maps. 

PROPOSITION. Ij KI - K, then a section s: M + 5 is Fredholm with respect 

to KI i f f  it is Fredholm with respect to I& . 

We conclude this section with the definitions of Palais-Smale and Rothe 
vector fields. 

DEFINITION. A Ci vector field X on a C’ manifold M with a Cz connection K 

is Palais-Smale or simply PS with respect to K if for each p E M the covariant 
derivative VX(p) of X at p is an element of Gdip,( T,M). Thus Palais-Smale 
vector fields are Fredholm vector fields of index zero. 

DEFINITION. A Rothe vector field X is one for which VX(p) E .%‘(T,M) 
for every p E M. These are also Fredholm of index zero. 

DEFINITION. A Cl vector field X on a Banach manifold M is ZPS if whenever 
X(p) = 0 the Frechet derivative X,(p) E zc(T,M). 

Thus a ZPS vector field is one which is Palais-Smale on its zero set. It is 
clear that a PS vector field is a ZPS field. The author is unaware of a vector 
field arising naturally in an intrinsically nonlinear problem which is ZPS 
but not PS with respect to some connection. 

A Cl vector field is Z-Fredholm of index n (resp. Z-Rothe, or ZR) if whenever 
X(p) = 0, X,(p) is linear Fredholm of index 71 (resp. X*(p) E W(T,M)). 

We are now prepared to introduce the Euler characteristic of ZPS vector 
fields. 

4. THE EULER CHARACTERISTIC OF ZPS VECTOR FIELDS 

Let M be a CT+l, r > 2 paracompact manifold (perhaps with boundary) 
modeled on a space E which admits an equivalent C2 norm. Thus M admits 
C2 partitions of unity. 

Let X: M + TM be a C2 ZPS vector field with a jinite number of isolated 
zeros p, ... p, in the interior of M. 

Let vi: &!i --f 0 with &pi) = 0 E E. Then X’s, the principal part of X in 
the coordinate system vi, is a map X” *: 0 - E with derivative DXQ$O) E 
Ggc(E). For a sufficiently small closed ball Bi about 0, X@s: Bi --f E is a proper 
Rothe map (this follows from the fact that L%(E) is open in z(E)), and hence 
has a local degree deg(X”i, Bi , 0). A s in finite dimensions one checks, using 
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the homotopy property of degree, that this does not depend on the coordinate 
patch vi . We define the Euler characteristic x(X) by the formula 

x(X) = c deg(Xmi, Bi , 0) 

and if X has no zeros we set x(X) = 0. 
If  X is a ZR field with finitely many zeros then formula (1) also defines 

the Euler characteristic for X. 

DEFINITION. A vector field X: M -+ TM is proper if the set of zeros of X 
form a compact subset of M. 

If  the zeros of a proper vector field are isolated then there are only finitely 
many of them. If in addition the vector field is ZPS (or ZR) and the zeros 
are in the interior of M the Euler characteristic x(X) is defined. 

DEFINITION. A zero p of a C1 vector field X is nondegenerate if X,(p) = 
DX(p): T,M? is an isomorphism. 

It is easy to see that nondegenerate zeros are isolated. In many applications 
to analysis one is given a family of PS vector fields {Xa}a.a depending on a 
parameter space (Z (e.g., C!? could be a space of boundary conditions, a space 
of connections, and so on). In [16] su ff i  cient conditions are given when, for 
an open dense set (or Baire subset) of G?, X, has nondegenerate zeros. 

When a proper ZPS (ZR) vector field has only nondegenerate zeros one 
can give a particularly simple interpretation of the Euler characteristic. Let p 
be a nondegenerate zero of X. Then for E = T,M, DX(p) E G.%(E). Define 

if DX(p) E G&?+(E), 
if DX(p) E G&?-(E). 

The Euler characteristic is then given by the formula 

x(X> = c w D-Y P>. 
sazeros(x) 

We would now like to show that given a proper ZPS field X with isolated 
zeros in the interior of M we can perturb it slightly to produce a proper ZR 
field Y which 

(a) has nondegenerate zeros, 

(b) equals X outside an arbitrarily small neighborhood of the zeros and 

(4 x(Y) = x(x)- 
To see this it clearly suffices to consider the case X has only one isolated 

zero p of X. Let v: Q -+ E be a coordinate neighborhood of p containing 
no other zero of X with v(p) = 0, v(e) = B,. a ball of radius Y centered at 0 
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in E and such that XQ: B -+ E is a proper Rothe map (cf. Section 2). Thus 

Xv(O) = 0 and inf3eEB,--B ,2 11 XW(x)lI = 7 > 0. 
Let y: E --+ R be a C5 function, 0 < y  < 1, which equals one on Brj2 and 

is zero outside B, . By the Smale-Sard theorem [l] of Section 2 given E, 
~/2 > E > 0, we can find a regular value y  E E for XQ with 11 y  /I < E. Define 
YQ: B, -+ E by Y”(x) = Xv(x) - y(x)y and the C* vector field Y on M by 

qcM- @, 
x = y(q), q E 021. (3) 

If  E is sufficiently small DYq(x) E B(E) w K lm h’ h pl ies that Y is Z-Rothe. Note 
also that Y(q) # 0 if q 6% and Y(q) = 0 in 3% iff  for x = v(q), XQ(~) = y. 

Since y  is a regular value and YQ: B, -+ E is still nonlinear Fredholm of index 

zero (1’~ is a finite-dimensional perturbation of 9~) this implies that all zeros 
of Eig in B, (and hence all zeros of Y in M) are nondegenerate. 

Now (t, x) --j tX*(x) + (1 - t) Y Q x IS a homotopy between X0 and YQ ( ) . 

which has no zeros on aB, . Thus by the homotopy property of degree 

deg(Xm, B, , 0) = deg(Ym, B, , 0) which immediately implies that x(X) = 
x(Y). Let us state this result formally as 

THEOREM 1. Let X: M + TM be a C2 ZPS vector field with -a jinite number 
of isolated zeros in the interior of M. Then given an arbitrarily small neighborhood @ 
of the zeros of X there exists a proper C2 Rothe jield Y with the properties 

(a) Y has a finite number of isolated nondegenerate zeros, 

(b) Y equals X outside ?@, 

(4 x(X) = x(Y)* I 

Let V&.JM), W(M), 9%‘*(M), .9$(M), FO*(M) be the spaces of C* proper 
ZPS fields, proper ZR fields, proper ZR fields with nondegenerate zeros, 

proper Z-Fredholm fields of index 0, and those with nondegenerate zeros, 
respectively. Using the techniques of Theorem I we can prove a somewhat 
stronger version of the result. 

THEOREM 2. If  XE V&(M) with zeros in the interior of M then given 
any neighborhood % of the zeros of X there exists a YE 9?*(M) with Y = X 
on M - ~2. If  %V is sufficiently small x(Y) is independent of all choices made. 
We can take this to be the deJnition of x(X). l 

Along the same lines but less interesting from the point of view of degree 
theory one can also show that if 

THEOREM 3. If  XE~~(M), with zeros in the interior of M, then given any 
neighborhood i%! of the zeros of X there exists a YE F”*(M) with Y = X on 
nf - a. 1 
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Let us now move on to an investigation of how the Euler characteristic 
behaves under homotopy. 

DEFINITION. Let 7~ ,,: &I--+ [0, l] be a C3 smooth fiber bundle over the 
unit interval with r;‘(t) = Aft a C2 Banach manifold. 

Two C2 proper ZPS vector fields X0: AZ,, -+ TM,, and X,: Ml -+ TM, are 

equivalent (X0 N X,) if there is a C2 proper vector field X: M -+ TM such 

that 

(i) Xt=XIMt:Mt--+TMt. 

Thus X, is a “vertical” family of vector fields (e.g., see [16]). Geometrically 

this means that X is a section of the vertical subbundle V( TM) of TM, where 
the fiber of v(TM) over m E TM is the kernel of the Frechet derivative h-,,(m) 
of z-~ at the point m. This can be naturally identified with TmM,O(m) . 

(ii) For each t, X, is ZPS. 

(iii) The zeros of X are in the interior of M. 

The following is the globalization of the property of invariance of degree 
under homotopy. 

THEOREM 4 (Invariance of the Euler characteristic under homotopy.) Suppose 

x0 - Xl . Then x(X,) and x(X,) are both dejiined and equal. 

Proof. That both x(X,,) and x(X,) are defined follows from Theorem 2. 
By the same theorem we can assume that both X0 and X, have nondegenerate 
zeros. Since X is proper we can apply the Smale-Sard theorem and simple 
transversality arguments to find a proper vertical ZR vector field Y on M and 
on E > 0 with 

(4 YIMt=XlMt, O<t<c, I-•E<t<l, 

(b) J’(M) h a(4 TM)); 

that is, Y, viewed as a section of the vertical subbundle v(TM) of TM, is trans- 

verse to the zero section of this bundle; and 

(c) the zeros of Y are in the interior of M. 

Identifying %“(w( TM)) with M we see that these conditions imply that 
Y(M) n M is a compact one-dimensional submanifold B of MO. We are 
interested only in those components of 9’ with boundary. Let {p, ,..., plc} 
be the zeros of X0 and {qr ,..., qm} be the zeros of X1 . Eachpj and qi is a boundary 
point of some component of 8. 

Since the zeros of X0 and X1 are nondegenerate it follows that 

x(X0) = c sgn DXo(PJ 
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and 

Applying the techniques developed in [3] based on geometric ideas due to 
Pontrjagin we see that 

(1) if pjI and pjz are boundary points of the same component .YljIi, of 9’ 
then sgn DX,(p,,) = -sgn DX,(p,,); 

(2) if qi, and qi, are boundary points of the same component .YiIi, of 9’ 
then sgn DXr(Q = -sgn DXr(qi,); 

(3) if pj and qi are boundary points of the same component of 9 then 
sgn DXo( pj) = sgn DX(p,). 

Putting (l), (2), and (3) together we can immediately conclude that 

x(X0) = x(Xd 

which concludes the proof of Theorem 4. 1 

5. THE EULER-H• PF THEOREM 

In this section we state conditions under which the Euler characteristic of 
a proper ZPS vector field on a manifold M is equal to the Euler characteristic 
of M. This of course would imply that the cohomology of M, Hi(M, $I), with 
rational coefficients, vanishes for sufficiently large i and hence the Euler 
characteristic would be defined. We shall have the blanket assumption that 
our manifold M is a C3 complete Finsler manifold (possibly with boundary) 

modeled on a real Banach space E with an equivalent C2 norm. 

DEFINITION. A set S C M is bounded if for all p, 4 E S SUP~,.~~~ p(p, Q) < 00 
where p is the distance function induced by the Finsler on M (for relevant 
definitions see [ 111). 

DEFINITION. A vector field x’: M - TM satisfies condition (CV) if when- 
ever {p,> is a bounded sequence in M and /I X(p& + 0 then there is a sub- 
sequence { pij} which converges. 

We have an immediate consequence of this definition, namely, 

PROPOSITION. Let X be a vector field on M satisfying condition (CV), and 
S CM any bounded set. Then the set of zeros of X in S is compact. Hence if the 
zeros of X in any closed set A are isolated then A contains at most finitely many 
of these zeros. 1 
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We wish now to define what it means for a vector field to behave like a gradient 
with respect to some scalar function. Let t --t up(t) denote the trajectory of X 
with initial condition p. Further let f: M -+ R be a C2 function. 

DEFINITION. We say that a Cl vector field X is gradient like for f if: 

(GO) X satisfies (CV). 

(Gl) X,(f) = Of (P>(XP> z 0 and equals zero only if p is simulta- 
neously a critical point off and a zero of X. 

This condition implies that f increases along the trajectories of X. 

(G2) Let p E M. The trajectory ug of X through p has a maximal domain 
(OL, j3) C Iw. Then as t + /I either 

(9 f h(t)) - + ~0 or 
(ii) j/ X(u,(t))ij + 0 and u9[0, /3) is bounded. 

Similarly as t --+ a: either 

(iii) ~(u~(t)) + --co or 

(iv) 11 X(u,(t))lI + 0 and uD(ol, 0] is bounded. 

(G3) (Regularity condition.) Let K(a, b) denote the zeros of X in 
f-l[a, b], --CO < a - b < co. Then K(a, b) is bounded. From condition 
(GO) and Proposition 1 it follows that K(a, b) is also compact. 

PROPOSITION 1. In axiom (G2), if, as t -+ /3, 11 X(up(t))]l -+ 0 and a,[O, ,9) 
is bounded then j3 = + co and uB(t) has a critical point as a limit point as t --F co. 

Similarly if, as t -+ o1,II X(uJt))lj -+ 0 and ~*(a, 0] is bounded, then 01 = -co 
and up(t) has a critical point as a limit point as t --f --co. 

Proof. Condition (GO) implies that if, as t + /3, 11 X(u,(t))lj -+ 0 with 
u,[O, #I) bounded, then up(t) has a limit point in M as t + /I. By Theorem 3.9 
of [ll] this is impossible unless fl = co. Since II X(u,(t))ll --+ 0 as t -+ j3, this 
limit point must be a zero of X and hence a critical point off. 

The proof for t + (Y is exactly the same. 1 

DEFINITION. Let f: M -+ R be C2 with X a Cl gradient-like vector field 
for f. A critical point p off is B-nondegenerate with respect to X if: 

(a) DX(p): T,M + T,,M, the Frechet derivative of X at p is symmetric 
with respect to the Hessian H,(f) = D2f (p): T,M x T,M + R. 

(b) DX(p) is an isomorphism with spectrum off the imaginary axis. 

(c) H,(f)(DX(p)u, u) > 0 if u # 0. 
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DEFINITION. Let p EM be the critical point of a C2 function f: M + R. 

By the index off at p we mean the dimension of the maximal subspace on 
which the Hessian H,(f) is a negative definite bilinear form (for details see 
[9, w 

The following theorem connects the local vector field index and the index 
of the zero of a ZPS vector field. 

THEOREM 1. Let X be a Cl ZPS vector jield which is gradient like with 
respect to f.  M + R. Let p be a B-nondegenerate critical point off in MQ with 
respect to X and set ,8 = index off at p. Then fi < 03 and 

sgn DX(p) = (-1)s. 

Proof. Let A = DX(p): T,MJ. W e shall show that T,M = T&W+ @ 
T,M- with H,(f) positive on T,M+ and negative on T,M- with dim Ta- = 
p < co. Moreover T,M+ is H,(f) orthogonal to TJK , each of these subspaces 
is invariant under A, and A 1 T,M+ has real spectrum to the right of the 
imaginary axis and A 1 T,M- has real compact discrete spectrum to the left 
of the imaginary axis. 

Since X is ZPS, A is invertible and of the form I + C. Therefore -1 is 
not an eigenvalue of C (recall all points in the spectrum of a completely con- 
tinuous operator except 0 are eigenvalues). Let A, ,..., h, be the real eigenvalues 
of C less than -1 with multiplicities /3r ,..., /Im. Recall (e.g., see Taylor [13]) 
that there is a least integer ni < 00 with Fi = Kernel&l + C)n~+r = 
Kernel(hJ + C)%i for all positive integers Y. By definition pi = dimF, < CO. 
Set /3* = Epi, T,M- = @Fi. Then /3* = dim T,M- < CO. Clearly T,M- 
is invariant under A and since T,M- is also finite dimensional it has an H,(f) 
orthogonal complement T,M- = T,M+ so that T,M = T,M- 0 T,M+ . 

Since A is symmetric with respect to H,(f) it follows that T,M+ is also 
invariant under A. 

LEMMA 1. Under the above circumstances the spectrum of A is real. 

Proof. Let E = T,M. By passing to the complexification of E and A we 
may view E as a Banach space over the complex field @. Suppose h E @ belongs 
to the spectrum of A. Then (A - 1) belongs to the spectrum of C, but all 
members of the spectrum of C (except 0) are eigenvalues. Thus if h # 1 belongs 
to the spectrum of A then h - 1 is an eigenvalue of C and hence X is an eigen- 
value of A. Since H,(f)(Au, u) > 0 for u # 0 (this still holds on the com- 
plexification space) it follows as in the Hilbert space case that h must be real. 
Thus the entire spectrum of A is real. 

LEMMA 2. If  h belongs to the spectrum of A 1 TpM+ then X > 0. 
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Proof. If h < 0 (A # 0) then h - 1 is an eigenvalue of C which is less 
than -1, but this is impossible since C has no eigenvalue less than -1 on 

TzJ4 - 
From Lemmas 1 and 2 we can conclude that the spectrum of A j T,M- = A- 

is real negative and the spectrum of A j T,M+ = A, is real positive. 

LEMMA 3. H,(f) p t is osi ive on T,M.+ and negative dejnite on T,M- . 

Proof. Using the operational calculus we can define square roots S, and S- 
of A+ and -A- which can be expressed as power series in A+ and A- , respec- 
tively. Thus S+2 = A+, Sm2 = -A- , and S, and S- are symmetric with 
respect to H,(f) and take T,M+ and T,M- isomorphically onto themselves. 

Let u E T,M+ , then u = S+v and 

%(f)(% 4 = K?(f>(s+v, s+v> 

= &,(f>(s+% v) = K,(f)(Av, 4 > 0 

whence H,(f) is positive on T,M+ . In a similar way we see that H,(f) is 
negative on T,M- but dim T,M- = /3* < co and so H,(f) is negative definite 
on T,M-. 

From Lemma 3 it follows easily that /3* = /3. The proof of Theorem 1 
will be completed once we show 

LEMMA 4. sgnVX(p) = (-l)a*. 

Proof. Consider the homotopy A, , 0 < T < 1 defined by A, 1 T,M, = 
(I + TC) 1 T,M+ and A, 1 T,M- = A. Then 7 -+ A, is a path in GZc(T,M) 
connecting A with a linear map which is the identity on T,M+ . Thus, whether 
or not A E Ggc+( T,M), depends only on A 1 T,M- . From the Jordan canonical 
form it follows that sgn det(1 + C 1 T,MJ = (-l)a*. Hence if (-1)” < 0, 
(I+ C) E G90-(TDM) and if (-l)B= > 0, (I+ C) E Ggc+(T,M). This proves 
the lemma and concludes the proof of the theorem. 1 

THEOREM 2. Let f :  M -+ R and X: M + TM be a proper Cl ZPS gradient- 
like vector field with f  having B-nondegenerate critical points in MO with respect 
to X. Then 

x(X> = c (- w CL% ’ (1) 
i 

where Ce, is the number of critical points of index j3i . If M has no boundary 

x(X) = x(M)- (2) 

I f  M has a boundary and X points outward along aM equality (2) still holds. 
Thus M has a well-defined Euler characteristic in either case. 
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Proof. Equality (1) follows directly from Theorem 1. Equality (2) is a 

consequence of the Morse theory as developed in [IS]. # 

In conclusion we apply Theorem 4 of Section 4 to obtain 

THEOREM 3 (Euler-Hopf). Let M be a complete C3 Banach-Fin&r manifold 
modeled on a Banach space E with an equivalent C2 norm. Suppose aM = 4 
and Y is a proper C2 ZPS vector jield which is equivalent to a proper C2 ZPS 
vector field X which is gradient like for f:  M + R where f has B-nondegenerate 
critical points with respect to X. Then 

X(Y) = x(X) = X(M)* (3) 

If aM # 4 and Y points outward along aM and is equivalent to a gradient-like 
X as above we again have equality (3). a 

Remark. In finite dimensions if M is compact with aM = $ Eq. (3) holds 

for all vector fields. But even in finite dimensions if the manifold M is not 
compact there is no guarantee that the Euler characteristic of a proper vector 
field will be the Euler characteristic of the underlying space without some 
further assumptions. For example, let M = R2, and X = grad f, where 
f(x, y) = $(x2 + y”). Then X(x, y) = (x, y) and X is clearly a proper vector 
field which is gradient like for f and has one nondegenerate zero (which is a 
B-nondegenerate critical point for f). Thus x(X) = x(W) = 1. 

Consider the constant vector field Y on [w2 given by Y(x, y) = (1,O). Y has 

no zeros and so x(Y) = 0 # x(M). 0 ne readily checks that Y is not equivalent 

to x. 

6. APPLICATIONS TO GEODESICS ON FINITE-DIMENSIONAL 
RIEMANNIAN MANIFOLDS 

Let V be a CT+k Riemannian manifold. By the Nash imbedding theorem 
we may assume that V is a Riemannian submanifold of W for some N. 

Denote by gk” (k 3 1) the Sobelev space of maps functor (these are maps 
whose kth derivatives are in _Ep,). Let P, Q be two points in V and A,P(P, Q) 
be the space of gkp paths which join P and Q. Specifically 

fl,“(P, Q) = {u: I + v  1 u E gk*(I, RN), o(o) = p, u(O) = Q}. 

Then M = A,p(P, Q) is a Cr Banach submanifold of Z,*(I, W) (see [19]), 
the gk” maps of the unit interval to lRN. If  p = 2 then Ak2(P, Q) is a Hilbert 
submanifold of gJc2(1, RN). The tangent space to A,P(P, Q) at a path (T, say 

607/28/z-6 
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d,p(P, Q),, , can be identified with the Ykp paths h: I + 5P’ with h(t) E T,(,) V 
and h(0) = 0 = h(1). Define the energy functional E: A,e(P, Q) -+ R by 

E(u) = 4 j-’ I/ u’(t)112 dt. 
0 

It is well known that E is CT smooth [9], and that the critical points of E are 
the geodesics joining P and Q parameterized by arc length. 

In [9] the functional E was studied in the case p = 2, K = 1. Define the 
vector field A: M + TM by the elliptic differential equation 

D?l(u) Du’ -=- 
at2 at (1) 

with h(o)(O) = 0, h(a)(l) = 0 and where D/at denotes covariant differentiation 
with respect to the unique symmetric connection induced by the Riemannian 
structure on v. I f  u E A,p(P, Q) = M then (1) uniquely defines a vector field 
A(u) over u and hence an element of A,P(P, Q). = TOM. 

In [15] it was shown in the case p = 2, k = 2 and in [9] for p = 2, K = 1 
that h is a Cr-l vector field whose zeros are the critical points of E and that h is 
gradient like for E. Thus, in particular, h,(E) = DE(u)(h(u)) 3 0 as the reader 
may easily verify. Using the same techniques as in [15] or by appealing to 

standard regularity results in linear elliptic systems one has in general that 
for any p, k > 1 Eq. (1) d e fi nes a Cr-l vector field on A,“(P, Q) whose zeros 
are geodesics parameterized by arc length and which is gradient like for 
E: A,p(P, Q) ---f R. 

The Riemannian connection on V induces a connection K on A,P(P, Q) 
(see remarks in Section 3). I f  /I: M -+ TM is a vector field the covariant 
derivative V/l(u): TOM -+ T,M with respect to K at a point u is characterized 
as follows. 

Let h E TOM be arbitrary and let s + uQ be a smooth path in M with a0 = u 
and (d/ds)us lszo = h; i.e., (d/ds)u,(t) Is=0 = k(t) for all t E [0, 11. Then 

The aim of this section is to show that if A: M + TM is the gradient-like 
vector field defined by (1) then h is PS with respect to the induced connection 
K on M. 

We shall show that h is PS on A,e(P, Q) in the case k > 2. With the introduc- 
tion of the more exotic ZE, sections of vector bundles our proof can be pushed 
through for k = 1 but we shall not do this. Using the methods of [15] a proof 
can be given in the case k = 1 which avoids the use of the Pa spaces. 

Consider a parameterized surface q: R2 + V and let /? be any vector field 
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along v. One can apply two covariant operators D/ax and Dlay to p, to obtain 
the relation on mixed partials 

(3) 

where R: TV x TV x TV + TV is the Riemann curvature tensor. 

PROPOSITION 1. The cwariant derivative VA(o): T,M? of the vector field h 
at a path 5 E M satisjies the second-order equation 

g{VA(cr)[h] - h} = R ($, h)($ - %) - ; IR (f , h) A/ 

=R(~,h)(~)-((a,,,,~R)(~,h,X) (4) 

-R($h)X-R($,$)h-2R(s,h)$ 

wbe vidddt denotes the covariant derivative of the Riemann curvature tensor 
in the direction daldt. 

Thus, in particular, if Da’jat = 0 [thus (r is a zero of A] 

$ (Vh(a)[h] - h) = $ {X,(a)[h] - h} = R ($ , h) 2 

where h,(o): T,M3 denotes the Frechet derivative of X at u. 

Proof. By (2) 

But 

g h(a) = g . 

Using (3) we get 

Setting s = 0 we get 

(5) 
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Moreover 

Letting s = 0 we obtain 

But applying a little elementary tensor calculus we get 

Making this substitution and equating (5) and (6) we obtain (4) concluding 
the proof of the proposition. a 

Let &p(P, Q). = {h: I -+ TV 1 h(t) E TOct) V, u E d,p(P, Q), h E Lkp). Thus 

(I^,p(P> Q>c, 3 ApP> QL . 

PROPOSITION 2. Suppose u E A,“(P, Q), k > 2, and h E A,P(P, Q)O . The 

linear map T: A,P(P, Q),, + dpz(P, Q)u de$ned by 

h * R 4, h f - (%atR) ($ , k A) ( 1 

-R($h)X-R($,g)X-2R($-,h)g 

is a compact map. 

Proof. We must show that if {h,} is a bounded sequence in A,S(P, Q),, 
then Th, has a convergent subsequence in (I:-_,(P, Q)O. The basic reason 
why this is true is that T is a linear map into AiP2 but only the first derivatives 
of h appear in the expression for T. 

Rather then prove this for all the terms above we shall consider only one. 
The proof for the rest is more or less the same. First let us look at the case 
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k = 2. Consider h, -+ R(Du’/at, h,)X for fixed O. Since {hn} is bounded in 
&P(P, Q) there is a subsequence (say {h,}, again) which converges to 
h E /la”(P, Q) in supremum norm. Thus sup, (1 h,(t) - h(t)11 + 0 as n ---f CO. 

Here /I h(t)11 = (h(t), h(t))‘/” where ( , ), is the Riemannian inner product 

on T,l’. Now if u E A,P(P, Q), R(Du’/at, h,)h E Rp(P, Q), . All that remains 
to prove is that R(Da’/at, h,)X + R(Du’/at, h)h in the norm of (fp(P, Q), . 
Let the C,‘s below denote constants: 

II i R g , h*(t)) h(t) - R (g , h(t)) h(t) j! 

= 11 R (g,  h , ( t )  -  h ( t ) )  x ( t )  11 G  Co (1% (1 l II hvdt) - WI * II WI. (7) 

But supt II W < G II h lb2;pz’ 7 the z2P norm of h which in turn is bounded by 
some constant C, which depends on (J (recall D2h/at2 = Da//at). Therefore (7) 
is bounded by 

cl&72 II II $ 11 h,(t) - WI. 

Setting C,C, =G C, , raising (7) to the pth power and integrating we get 

!I, ! ‘Rg 
0 , h(t) - h(t)) W 11’ dt < G(qp II h,(t) - Wll>” !j’ 11 g /r dt. 

But the right-hand side clearly goes to zero as n --f co, and the proposition 
is established for this term when k = 2. 

For k > 2 we proceed inductively. So, for example, if k = 3 we must show 
not only that R(Du’/at, h,)X + R(Du’/at, h)X in L, but the covariant derivative 
D/at of the right term tends in gD to the covariant derivative to the left term 

in p9. However, the same sort of calculation we have already done also 
establishes this fact. 1 

THEOREM 1. Let M = A,P(P, Q). Then the vectmJield A: M -+ TM defined 
by Eq. (1) is PS with respect to the connection K on M induced by the Rimnnian 

connection on V. 

Proof. We must show that 

VX(u)[h] = h + S(h) 

where S: T,M + T,M is compact. By Proposition 2 we have shown that 

$ A(u)[h] = g + Th 
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is compact. Note that L = D2/W is an isomorphism 

4”(P, Q>o A A -U’s Q>. 

Set S = L-lT, and since T is compact so is S which completes the proof 
of the theorem. 1 

In [16] it is shown that for fixed P and “for almost all Q” the vector field h 
has nondegenerate zeros and therefore E: &p(P, Q>’ -+ R has B-nondegenerate 
critical points with respect to A. In [18] it is shown that the regular values of E 
form a residual Baire subset of R. The following corollary follows immediately 

from the previous theorem, Theorem 2, Section 5, and the fact that h is gradient 
like for E which is proven in [15]. 

COROLLARY. Suppose E: A,p(P, Q) -+ R has only B-nondegenerate critical 
points with respect to which the vector field h is deJined by the elliptic equation (1). 
Let a E R be a regular value for E and Ma = {u E A,p(P, Q) ] E(u) < a}. Then 
/\ points outward along aMa = E-l(a) and x(h) = x(Ma). 

One can eliminate the need to assume that E has only B-nondegenerate 
critical points. We conclude this paper with the following. 

THEOREM 2. Let E: A,p(P, Q) -+ R be the energy functional, h the gradient- 
lik jeld for E defked by Eq. (l), and a E R a regular value for E. Suppose further 
that the underlying Riemannian manifold V is CT+k, r > 3. Then x(X) = x(Ma). 

Proof. First observe that X points outward along aMa and therefore has 
no zeros on aMa. Since h is gradient like for E the zeros of h are a compact 
subset of the interior of Ma which by Theorem 2 of Section 4 implies that 
x(h) is defined. Let WC V be a path connected neighborhood of Q so that 

for all Q* E W “a” is a regular value for E: &p(P, Q*) + R. We can do this 
since the vector field A* on A,p(P, Q*) defined by (1) satisfies (CV) and A* 
varies continuously with Q*. Let Q1 E W be sufficiently close to Q so that 
E: A,*(P, Qi) has only nondegenerate zeros. Let t -+ Qt , 0 < t < 1 be a 
smooth imbedding of the unit interval into W joining IQ,, = Q and Qi . 

Set Mt = Ak”(P, Qt) and At the PS vector field on Mt defined by (1). Let 
5 = ut Mt with 7r: [ --f I the obvious fiber bundle over I = [0, 11. Then 
t --f At is an equivalence between h = A, and A1 and therefore x(X) = x(h,). 

Consider E as a map on 5. Then A: 5 4 T[ defined by h 1 n/r, = At is nonzero 
on E-l(a). From this it follows that E-l(a) is transverse to the fibers of 6. To 
see this note that E-l(a) is a codimension one submanifold of 6 with X(u) 
“orthogonal” to E-l(a) at any point (r E E-l(a). M, is also a codimension one 
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submanifold of 5. Consequently if E-l(a) were tangent to Mt for any t this 
would imply that At $ TMt which is impossible. Therefore 5” = (u E 5 / 
E(o) < u} is a smooth fiber bundle over I with boundary E-l(a) which implies 
that Ma = MO” is diffeomorphic to Ml a. Thus X(M”) = x(M,“) = x(&) = x(A) 
which concludes the proof of the theorem and this paper. H 
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