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a  b  s  t  r  a  c  t

A  3D  Computational  Particle  Fluid  Dynamic  (CPFD)  model  is validated  against  experimental  measure-
ments  in  a lab-scale  cold  flow  model  of a Circulating  Fluidized  Bed  (CFB).  The  model  prediction  of  pressure
along  the  riser,  downcomer  and  siphon  as  well  as  bed  material  circulation  rates  agree  well with  experi-
mental  measurements.  Primary  and  secondary  air  feed  positions  were  simulated  by  varying  the  positions
along the  height  of the  reactor  to get  optimum  bed  material  circulation  rate. The  optimal  ratio  of  the

brought to you btadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publish
eywords:
FB
iomass gasification
ual fluidized bed
PFD

height  of  primary  and  secondary  air feed  positions  to the  total height  of  the  riser  are  0.125  and  0.375
respectively.  The  model  is  simulated  for  high-temperature  conditions  and  for reacting  flow  including
combustion  reactions.  At  the  high  temperature  and  reaction  conditions,  the bed  material  circulation  rate
is decreased  with  the  corresponding  decrease  in pressure  drop  throughout  the  CFB  for  the  given  air  feed
rate.

© 2016  The  Authors.  Published  by Elsevier  Ltd.  This  is an  open  access  article  under  the  CC  BY-NC-ND
. Introduction

Circulating fluidized bed reactors are widely used in various
ndustrial applications including oxyfuel combustion, gasification
nd combustion of biomass or other carbonaceous feedstock. One
f the applications of CFB in gasification processes is heating bed
aterials by combustion of fuels and then transporting them to the

asification reactor (Pfeifer et al., 2009). Fluid dynamic properties
f the reactor, including gas-particle mixing and residence time,
epend on the gas velocity and particle circulation rate for a given
ed inventory (Ludlow et al., 2008). Gas velocity and bed material
irculation rate are significant parameters determining the perfor-
ance of the reactor. The solid circulation rate is also crucial for

eaction kinetics. The solid circulation rate determines the fluid –
olid contact time, heat transfer and overall performance of the CFB
s a rector (Roy et al., 2001). The solid circulation rate and solid dis-
ribution over the circulating system are determined by the fluid
ynamics (Lei and Horio, 1998) of the reactor. To obtain a proper

istribution of the solids throughout the CFB, proper pressure bal-
nce is required (Kaiser et al., 2001). Improvement of performance
f CFB mainly needs optimum fluid dynamic properties of the

∗ Corresponding author at: Kjølnes ring 56, P.O. BOX 203 N3901, Porsgrunn,
orway.
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098-1354/© 2016 The Authors. Published by Elsevier Ltd. This is an open access article 

/).
license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

bed. Many researchers have studied the fluid dynamic behavior of
CFB. Yerushalmi et al. have shown the transition between packed
bed, bubbling bed, turbulent and fast fluidization regimes in the
plot of bed voidage against superficial gas velocities (Yerushalmi
et al., 1976). Flow regime maps of gas-solid flow are also devel-
oped plotting gas velocity against the solid flux (Leung, 1980).
Takeuchi et al. performed experimental measurements to define
the boundaries of fast fluidization (Takeuchi et al., 1986). Hirama
et al. extended the flow diagram to transition from high velocity to
low-velocity fluidization regimes (Hirama et al., 1992). Bi and Grace
proposed unified flow regime diagram based on the experimental
findings. They have shown the relationship between flow regimes
for both gas-solid fluidization and co-current upward transport
(Grace, 1986; Bi et al., 1993; Bi and Grace, 1995). In the all of the
mentioned studies, the experiments are carried out at the ambi-
ent conditions. One of the significant factors affecting overall fluid
dynamic properties of the bed is particle size distribution. The par-
ticle size distribution is not included in all the studies mentioned
above. When particles of larger sizes and lower densities are mixed
with the particles of smaller sizes and higher densities, the mini-
mum  fluidization velocity changes (Thapa et al., 2011). Change in
minimum fluidization velocity effects on the transport velocity and
fast fluidization velocity. High-temperature gasses have lower den-

sity and higher viscosity. Change in density and viscosity changes
flow behavior in fluidized bed.

Therefore, the study of fluid dynamics in CFB should include the
particle size distribution and the effect of high-temperature con-
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Table 1
Location of the pressure tapping points.

Labelling Location Height [mm]

P1 Siphon 665
P2  Siphon 665
P3  Downcomer 1010
P4  Exit Filter 1685
P5  Intersection Precipitator 1595
P6  Reactor 1535
P7  Reactor 1330
P8  Reactor 1170
P9  Reactor 1005
P10 Reactor 850
P11 Reactor 610
P12 Reactor 525
P13 Reactor 365
Fig. 1. (a) CFB cold model with air flow regulation and pre

itions. The gas-solid flow without chemical reaction differs from
he reacting flow. The significance of those differences is not stud-
ed yet. The fluid dynamic properties of the CFB used in gasification
f biomass is complicated due to the gas feed positions at different
evels of the reactor. Air is fed to the reactor as bottom air at the
ottom of the riser and primary and secondary air are fed along the
eight of the rector (Kaushal et al., 2008a,b). When the gas is fed
t three positions of the bed, the feed position itself is expected to
ffect strongly on the fluid dynamics of the bed and the bed material
irculation rate.

Design, scaling, operation and improvements of the circulat-
ng fluidized bed reactors require a good understanding of the
uid dynamic parameters affecting the performance (Gungor and
ildirim, 2013). Many of those parameters can be studied by the
xperimental investigations using laboratory models, pilot and
emonstration plants. However, not all parameters are easy to
tudy using experimental methods. For example, the study of the
ffect of the gas feed positions needs reconstruction of the reac-
or, which takes a lot of time and can be economically too costly.
hese facts indicate the usefulness of the computational models to
vercome those types of challenges.

To overcome and/or substitute the experimental limitations,
omputer models have gained significant attention since the early
990s. Computer models make it possible to study the fluid dynam-

cs without disturbing the fluid flow field inside the reactor (Deen
t al., 2007). The current work is therefore, focused on a validation
f the CPFD (Computational Particle Fluid Dynamic) model against
xperimental measurements performed in a cold flow model of

 CFB. The model is then used for further investigations of high
emperature and reaction conditions as well as optimizing the feed
ositions of primary and secondary air.

. Experimental set-up

The experimental rig is located at University of Natural
esources and Life Sciences (BOKU), Vienna, Austria. The set up

onsists of a cold model of a circulating fluidized bed as shown in
ig. 1. The model is made of a transparent Plexiglas, which makes
t easier to visualize the fluidization and particle circulation dur-
ng the experiments. The model is wrapped with conductive wires
P14 Reactor 205
P15 Reactor 40

to avoid electrostatic forces at the wall. The fluidizing gas used in
the experiment is ambient air supplied from a compressor. The flu-
idizing gas is fed as bottom air and primary air at two different
stages of the reactor. The volume flow of primary and secondary
air is measured through rotameters shown in Fig. 1a. The setup
has 15 pressure tapping points which are connected to the pres-
sure sensors. An industrial measurement and control system (B&R
automation) is used to log the pressure data. The heights of pressure
tapping points are shown in Table 1.

The siphon shown in Fig. 1b is also fluidized by air. The parti-
cles used in the experimental investigations are sand particles of
density 2650 kg/m3. The particle size distribution is presented in
Fig. 2.

3. Computational model

In this work, a Computational Particle Fluid Dynamic (CPFD)
model is used to simulate the gas-solid flow with heat transfer
and chemical reactions. The commercial CPFD software Barracuda

VR 15 is used for the simulations. The CPFD numerical method-
ology incorporates multi-phase-particle-in-cell (MP-PIC) method
(Andrews and O’rourke, 1996; Snider, 2001). The gas phase is
solved using the Eulerian approach and the particles are modeled



182 R.K. Thapa et al. / Computers and Chemical Engineering 92 (2016) 180–188

Table 2
Reactions and kinetics.

Reactions Reaction rates References

2C (s) + O2 = 2CO r1 = 4.34 · 107εpTexp
(

−13519/T
)

[O2] Snider et al. (2011)

C (s) + H2O = CO + H2 r2 = 1.272mpTexp
(

−22645/T
)

[H2O] Snider et al. (2011)

H2 + 0.5O2 = H2O r3 = 1.63 · 109T2/3exp
(

−3420/T
)

[H2]1.5 [O2] Kaushal et al. (2007)

CO + 0.5O2 = CO2 r4 = 3.25 · 107exp
(

−15098/T
)

[CO

CO + H2O = CO2 + H2 r5 = 0.03exp
(

−20844/T
)

[CO] [H2O

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 20 0 40 0 60 0

A
cu

m
ul

at
iv

e 
fr

ac
tio

n 
[-]

Particle diameter [µm]

a
e
t
p
w
o
B

c
i
p
s
a
l
s
2

3

(

w
r
ı
m
p
t

�

w
s
t

Fig. 2. Particle size distribution.

s Lagrangian computational particles. Gas and particle momentum
quations are solved in three dimensions. The fluid is described by
he Navier-Stokes equation with strong coupling to the discrete
articles. The particle momentum follows the MP-PIC description
hich is a Lagrangian description of particle motions described by

rdinary differential equations coupling with the fluid (Snider and
anerjee, 2010).

In the CPFD numerical method, actual particles are grouped into
omputational particles, each containing a number of particles with
dentical densities, volume and velocities located at a particular
osition. The computational particle is a numerical approximation
imilar to the numerical control volume where a spatial region has

 single property for the fluid. With these computational particles,
arge commercial systems containing billions of particles can be
imulated using millions of computational particles (Chen et al.,
013).

.1. Governing equations

The volume averaged fluid mass and momentum equations are
Snider et al., 2011):

∂
(

εg�g

)
∂t

+ ∇ (
εg�gug

)
= ıṁp (1)

∂
(

εg�gug

)
∂t

+ ∇ (
εg�gugug

)
= −∇p + F + εg�gg + ∇εg�g (2)

here εg , �g and ug are gas volume fraction, density and velocity
espectively, p is gas pressure, g is the acceleration due to gravity,
ṁp is the gas mass production rate per volume, F is the rate of
omentum exchange per unit volume between the gas and solid

hase and �g is stress tensor which can be expressed in index nota-
ion as:

g,ij = �

(
∂ui

∂xj

+ ∂uj

∂xi

)
− 2

3
�ıij

∂uk

∂xk

(3)
here � is shear viscosity. The shear viscosity is the sum of laminar
hear viscosity and turbulence viscosity based on the Smagorinsky
urbulence model. In the model, large eddies are directly calcu-
] [O2]0.5[H2O]0.5 Kaushal et al. (2007)

] Kaushal et al. (2007)

lated. The unresolved sub grid turbulence is modeled by using eddy
viscosity. The turbulence viscosity is given as:

�t = C�g�2

√(
∂ui

∂xj

+ ∂uj

∂xi

)2

(4)

where C is sub grid eddy coefficient and known as Smagorinsky
coefficient.

The energy equation for the gas phase in terms of enthalpy equa-
tion for the gas mixture is given by:

∂
(

εg�ghg

)
∂t

+ ∇ ·
(

εg�ghgug

)
= εg

(
∂p

∂t
+ ug · ∇p

)
+ �

− ∇ ·
(

εgq
)

+ Q̇ + Sh + qḊ (5)

where hg is the gas enthalpy, � is viscous dissipation which is
ignored in this work. Q̇ is energy source per unit volume, which
is zero in this work because there is no energy source. Sh is conser-

vative energy exchange from solid phase to the gas phase and
·

qD is
the enthalpy diffusion term. q is gas heat flux and is calculated as:

q = 	g∇Tg (6)

where 	g is thermal conductivity consisting a molecular con-
ductivity (	m) and eddy conductivity (	t) from Reynolds stress
mixing, related to Prandtl number as Prt = Cp�t

	t
. In this calculations

Prt = 0.9. Tg is the gas mixture temperature.
The gas mixture properties expressed in Eq. (5) are based on the

mass fraction of gas species. The relation between mixture enthalpy
and species enthalpy is given by:

hg =
N∑

i=1

Yg,ihi (7)

where Yg,i is the mass fraction of each gas species, hi is species
enthalpy. The species enthalpy depends on the gas temperature
by:

hi =
∫ Tg

T0

Cp,idT + �hf,i (8)

where �hf,i is the heat of formation at reference temperature T0
and Cp,i is specific heat at constant pressure for species i. The gas
is compressible and pressure, enthalpy, temperature, density and
mass fraction are related through equation of state. The pressure is
given by the equation of state for the ideal gas as:

p = �gRTg

N∑
i=1

Yg,i

MWi
(9)

where R is universal gas constant, and MWi is the molecular weight
of gas species i.

The transport equation for the individual species in the gas

phase is given by:

∂
(

εg�gYg,i

)
∂t

+ ∇ (
εg�gYg,iug

)
= ∇ ·

(
�gDεg∇Yg,i

)
+ ı

·
mi,chem (10)
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Fig. 3. Geometry and grid of simulated CFB – particle initial conditions.

Table 3
Simulation parameters.

Parameters Units Values

Reactor diameter mm 50
Number of grids – 53768
Initial time step s 0.001
Mass of sand particles kg 0.54
Mass of char particles kg 0.014
Particle close pack volume fraction – 0.6
Fluid feed temperature K 300
Fluid and initial particle temperature:
Ambient case K 300
High temperature and reacting case K 1073
Composition of air fed for combustion reaction:
Nitrogen (N2) % 78.084
Oxygen (O2) % 20.9476
Argon (Ar) % 0.9365

w
c
r
S

q

p

Carbon dioxide (CO2) % 0.0135

here ı
·

mi,chem is the net production rate of species due to gas phase
hemical reactions. D is the turbulent mass diffusion rate which is
elated to viscosity, �g by Schmidt number, Sc.  The default value of
chmidt number is 0.9 in this work.

�g

�gD
= Sc (11)

The enthalpy diffusion term in Eq. (5) is given by:

˙ D =
N∑

i=1

∇ ·
(

hiεg�gD∇Yg,i

)
(12)
MP-PIC method calculates the particle phase dynamics for the
article distribution function, fp. A transport equation is solved for
Fig. 4. Computational set up – pressure monitors and flux planes.

the Particle distribution function. The transport equation for fp is
given by (O’rourke and Snider, 2010)

dfp
dt

+
∂
(

fpup

)
dx

+
∂
(

fpAp

)
dup

= fD − fp
�D

(13)

where fp is a function of the particle spatial location, xp, the par-
ticle velocity, up, the particle mass, mp, the particle temperature,
Tp and the time, t. Therefore, fp

(
xp, up, mp, Tp, t

)
dupdmpdTp is

the average number of particle per unit volume with velocities in
interval

(
up, up + dup

)
, masses in the interval

(
mp, mp + dmp

)
and

temperatures in the interval
(

Tp, Tp + dTp

)
.fD is the particle distri-

bution function for the local mass averaged particle velocity and �D

is particle collision damping time(O’rourke and Snider, 2010). Ap is
particle acceleration which is given by:

Ap = dup

dt
= Dp

(
ug − up

)
− 1

�p
∇pg + g − 1

εp�p
∇�p + g + ūp − ug

�D

(14)

In the equation above, εp is the particle volume fraction, �p is
the particle density,pg is the gas pressure, �p is the contact normal
stress,ūp is the local mass averaged particle velocity, and Dp is the
drag function. The Wen-Yu drag model is used in this work (Wen
and Yu, 1966).
Dp = CD
3
8

�g

�p

|ug − up|ε−2.65
g

rp
(15)
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Fig. 5. Comparison of experimental and computational pressures.

200

225

250

275

300

325

350

5 10 15 20 25B
ed

 m
at

er
ia

l c
irc

ua
lti

on
 ra

te
 

[k
g/

h]

Bottom air flow rate [Nm3/h]

experimental simulation

F
f

w
d

C

w

R

t
f

ε

b

F

a

250

260

270

280

290

300

310

0 200 400 600 800 1000 1200

So
lid

 c
irc

ul
at

io
n 

ra
te

 [k
g/

h]

Primary air feed positon [mm]

Fig. 7. Computational solid circulation rate vs. primary air feed position bottom air
15  Nm3/h; primary air 5 Nm3/h.

Fig. 8. Computational cross-sectional solid volume fractions.
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here rp is the particle radius and CD is the drag coefficient. The
rag coefficient is given by:

D =

⎧⎨
⎩

24
Re

(
1 + 0.15Re0.687

)
Re < 1000

0.44Re ≥ 1000

(16)

here Re is the Reynold’s number and is calculated as:

e = �g |ug − up|rp

�g
andrp =

(
mp

4
3 
�p

)1/3

(17)

The solid velocity is expressed as:

dxs

dt
= up (18)

The sum of the particle and gas volume fraction is unity and
he particle volume fraction is related to the particle distribution
unction, fp in the following way:

p = −
∫ ∫ ∫

fp
mp

�p
dmpdupdTp (19)

The interphase momentum transfer term, F, in Eq. (2) is defined
y:

 = −
∫ ∫ ∫

fp

{
mp

[
Dp

(
ug − up

)
− �p

�p

]
+ up

dmp

dt

}
dmpdupdTp

(20)
In the MP-PIC method, the temperatures within the particle are
ssumed as uniform and there is no heat release within the parti-

Secondary air feed po stion along  the heigh t of 
riser [mm]

Fig. 10. Computational solid circulation rate vs. secondary air feed positon.
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Fig. 11. Mole fraction of combustion pr
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Fig. 12. Comparison of solid volume fraction throughout the CFB.

le due to chemical reactions. It is assumed that the heat released
ue to chemical reactions on the surface of the particle does not
ontribute to the surface energy balance (Snider et al., 2011). The
umped heat equation for the particle phase is given by:

dTp 1 	gNug,p ( )

V dt

=
mp 2rp

Ap Tg − Tp (21)

here, CV is the specific heat of particle, Nug is the Nusselt num-
er for heat transfer from the gas to the particle. The conservative
oducts and char volume fraction.

energy exchange term, Sh, in Eq. (5) is given by:

Sh =
∫ ∫ ∫

fD

{
mp

[
Dp

(
up − ug

)2 − CV
dTp

dt

]

−dmp

dt

[
hp + 1

2

(
up − ug

)2
]}

dmpdupdTp (22)

where hp is the particle enthalpy. The terms Dp

(
up − ug

)2
and(

up − ug

)2
are negligible in flow with low Mach number.

The chemistry in the CPFD model is specified as mass action
kinetics. The chemical reactions are described by stoichiometric
equations including the corresponding reaction kinetics. The reac-
tion kinetics is expressed as:

k = A0mc1
p Tc2exp

(
− E

RT
+ E0

)
(23)

where A0 is the pre-exponential factor, E is activation energy, E0
is activation energy constant, R is universal gas constant, c is a
constant. T is the temperature of a particle gas film. The film tem-
perature is an average of the particle temperature and the bulk
gas temperature. The particle concentration is given by mass per
volume and mp = �pεp.

Only the basic governing equations for the gas and particles are
described in this section. More details about the questions, their
parameters and numerical procedures for solving the equations can
be found in (Snider and Banerjee, 2010; Snider et al., 2011).

3.2. Model geometry and boundary conditions

The model geometry of the CFB reactor is designed to sim-

ulate the experimental situation. The geometry-grid used in the
CPFD model is shown in Fig. 3. The air is introduced into the inlet
boundaries. There are two fixed inlet (flow) boundaries – one at the
bottom and another at the siphon. Air is introduced to both of the
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oundaries at the same time. The air leaves at the outlet boundary
ocated at the top of the reactor. Two more inlet boundaries are
dded as primary and secondary air along the height of the reac-
or for further computational investigations. The two  additional air
ow positions are only in computational studies and not the case
f experimental investigations. The flow boundaries are different
or different simulation cases, and they are therefore not shown
n the figure. The heights of those boundaries are described in the
elevant results and discussion sections. Initially, the particles are
lled at the bottom and the siphon area of the reactor as shown in
he figure.

The CPFD model contains the same number of pressure moni-
oring points as in the experimental study (P1-P15). The locations
f the monitors are also the same as in experiments and are shown
n Fig. 4. Two flux planes are set in the model to measure the solid
irculation rate.

.3. Gas-particle properties and chemical reactions

The particles used in the computational model are the same as
he sand particles used in the experimental measurements. Ambi-
nt air is used as the fluidizing gas. To investigate hot flow and
hemical reactions in the computational studies, char particles are
ixed with the sand and the combustion reactions are introduced.

he size distribution of char particles is also the same as sand par-
icles given in Fig. 2. The ratio of char particles to sand particles is
:40 by mass. The combustion reactions used in the model and their
eaction kinetics are given in Table 2. Char particles are assumed
s carbon which undergoes heterogeneous oxidation reaction with
2 or with H2O in the absence of O2.

The aim of including the reactions in this work is to compare
arameters such as particle circulation rate, the pressure drop along
he height of the bed at ambient as well as high temperature react-
ng conditions.

Some of the parameters used as input to the simulations are
iven in Table 3.

. Results and discussion

Experiments were performed in the lab-scale cold flow model
ith varying bottom air flow rate. Experimental pressure data mea-

ured via pressure tapping points are stored in an Excel data file for
urther processing. Pressure monitors are set in the computational

odel at the same locations as in experimental measurements.
he experimental pressure measurements are compared with the
omputational prediction for two different air feed rates and are
resented in Fig. 5.

The pressure is decreasing from bottom to top of the reactor
p15-p3). The computational pressure data deviate from exper-
mental measurements by 0%–20% over the CFB reactor. The

aximum deviations between experimental and computational
ata are in the siphon, and there are also some deviations at the
op and the bottom of the reactor. Experimental measurements and
imulations were also performed for higher feed rates. The devia-
ions between experimental results and simulations show the same
endency at the higher air flow rates as well.

The particle circulation rates in the experimental study are
etermined by using the method of interruption of siphon flu-

dization. Initially, the particle height in the downcomer above the
iphon is measured for a given air feed rate. Then the siphon fluidiz-
ng air flow is stopped abruptly for a given time. During that time,
ore particles are accumulated in the downcomer. The height is
easured again. The difference between the two heights gives the

eight of accumulated particles. The circulation rate per time is
etermined based on the height of the particle accumulation and
al Engineering 92 (2016) 180–188

the cross-sectional area of the downcomer. Simulations were run
for the same gas velocities. Solid circulation rates in the simulations
are measured by using two  flux planes as shown in Fig. 4. The sim-
ulation results of the solid circulation rates are compared with the
experimental measurements. The results are presented in Fig. 6.

The deviation between experimental and computational results
varies from 2% to 10%. Comparatively good agreements of the pres-
sure and the solid circulation rates between the experimental and
computational results give a basis for using the CPFD model for fur-
ther investigation of the fluid dynamics of the circulating fluidized
bed. Therefore, it is assumed that the further computational study
of the CFB reactor without performing experimental measurements
will give acceptable results.

Experimental investigation of the effect of the location of
primary and secondary air feed can only be performed by recon-
structing the rig which is both time consuming and economically
costly. Therefore, further investigations are continued only with
the CPFD model. In the CPFD model, the primary air flow is intro-
duced together with the constant bottom air feed rate. Keeping
both the bottom and the primary air feed rates constant, the pri-
mary air feed position is varied from the bottom of the riser by
an interval of 200 mm.  For all of the primary air feed positions,
the total air feed rate in the simulations is constant, 20 Nm3/h. The
total air feed rate of 20 Nm3/h is chosen, because the highest cir-
culation rate is achieved at this feed rate as presented in Fig. 6.
The riser fluidization determines the circulation rate in the system
predominantly. However, siphon fluidization needs to be adjusted
for optimum operation (Xu and Gao, 2003). For the given flow the
siphon air feed of 1 Nm3/h gives a stable circulation through the
siphon. Solid circulation rate as a function of the primary air feed
position is shown in Fig. 7. The solid circulation rate is decreasing
with increasing height of primary air feed.

In Fig. 6, the bed material circulation rate at a bottom air flow
rate of 20 Nm3/h is about 335 kg/h. Fig. 7 shows that the maximum
solid circulation rate is about 300 kg/h. When the gas is fed at two
positons, the solid circulation rate is decreased even though the
total gas feed rate is the same. The solid circulation rate decreases
with increased height of the feed position of primary air from the
bottom of the reactor.

Different cross-sectional particle volume fractions are pre-
sented in Fig. 8. The first row represents the cross-sectional volume
fraction of particles when only the bottom air is fed to the riser. The
cross sections are at the height of 200 mm to 1200 mm from the bot-
tom with an interval of 200 mm and are presented in the figure as
column 1–6 respectively. The first three cross sections have higher
particle concentration, which indicates that the particle concentra-
tion is higher at the lower part of the riser than the upper part. The
solid concentration is higher close to the wall than in the center.

The second and third row present the solid volume fractions
when primary air is introduced into the reactor in addition to a
constant feed of the bottom air. The second row shows the cross-
sectional solid volume fraction just below the primary air feed
position and the third-row present the solid volume fraction just
above the primary air feed position. The first three columns show
a large difference of cross-sectional volume fractions of particles
below and above the primary air feed positions indicating that
the introduction of primary air feed hinders the particles to flow
upwards. The primary air is introduced at the side of the reac-
tor. The introduction of the primary air feed, disturbs the particles
upward flow, which is known as ‘cut off’ or ‘barrier’ effect (Koksal
and Hamdullahpur, 2004). It is the reason of decreasing solid cir-
culation rate with the introduction of the primary air flow. When

air feed is located at a much higher position as indicated by column
4, 5, 6 in the figure, the solid concentration is not affected signifi-
cantly. It may  be due to the particle concentrations are very low at
the higher location of the riser.
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The model is used to investigate how the primary air feed rate
ffects on the bed material circulation rate. A series of simulations
ere run by gradually increasing the primary air feed rate. The set

f simulations were repeated for the feed positions 200, 400 and
00 mm above the bottom air feed positions. Some of the results
re presented in Fig. 9.

The solid circulation rate is increasing with the primary air flow
ate up to the feed positon of 400 mm.  At the higher feed positions,
he solid circulation rates decrease. This result indicates that very
igh primary air feed positon is not suitable for the steady and maxi-
ized bed material circulation rate. The maximum solid circulation

ate is achieved when the ratio of the height of the feed positon to
he total height of the reactor is 0.125. The solid circulation rate is
ncreasing with the primary air feed rate up to 14 Nm3/h and then
ecreasing again.

Simulations were run to investigate the effect of the secondary
ir flow position on the bed material circulation rate. The bottom
ir feed is kept at 10 Nm3/h and the primary air feed is main-
ained at the positon of 200 mm from the bottom with the feed
ate of 14 Nm3/h. These values are chosen because this combina-
ion gives the highest solid circulations rate. The secondary air flow
ate is kept constant at 5 Nm3/h and the feed positions are 400 mm,
00 mm,  800 mm,  1000 mm and 1200 mm.  The bed material circu-

ation rate as a function of secondary air flow position along the
eight of the reactor is shown in Fig. 10. The maximum solid circu-

ation is achieved at the feed position at 600 mm from the bottom
f the reactor. The ratio of the height of the feed position to the total
eight of the riser is 0.375.

A series of simulations were run to investigate the effect of
ncreasing secondary air flow on the bed material circulation rate.
he computational prediction shows that the bed material circu-
ation rate is not affected significantly by the increasing secondary
ir feed rate.

The same feed rate of the bottom air as in the experimental
easurements was used in the simulations with high temperature,

nitially without involving any combustion reactions. The high-
emperature condition is simulated at the temperature of 800◦ C.
igh temperature makes change in density and viscosity of the
uidizing gas. The purpose of the simulation at high temperature
ithout chemical reactions is to investigate the effect of density

nd viscosity of fluidizing gas on the solid circulation rate. Series of
imulations were also run for the reacting flow including combus-
ion of char particles. For the study of the combustion reaction, char
articles are introduced to the reactor and mixed with bed mate-
ial. The average reaction temperature is 800◦ C. The contours of the
olume fraction of the char particles and mole fraction of the major
asses along the height of the reactor are shown in Fig. 11. The con-
our of the char volume fraction shows that there are some char
articles present at the top of the riser. It indicates that there are
ome unreacted char particles circulating together with the sand
articles. A mixture of two particles with different densities can
ffect flow behavior and consequently the particle circulation rate.
ue to the chemical reactions, there is formation and consump-

ion of gasses. The figure shows a significant amount of oxygen is
resent at the bottom part of the reactor which is not present at
he top. It indicates that the oxygen gas is consumed at the bottom
rea of the reactor whereas the formation of CO2 increases along
he height of the reactor. The change in gas volume during flow
long the reactor can also effect in particle circulation rate.

A series of simulations were run with constant air flow rate of
0 Nm3/h to investigate the solid circulation rates at ambient con-
ition, high-temperature condition and at high temperature with

eactions. The solid volume fraction throughout the CFB at these
onditions are presented in Fig. 12.

The contours presented in the figure are snapshots at time 100s.
he contours 1, 2 and 3 are for the ambient, high temperature and
Fig. 13. Comparison of contours of pressure in CFB.

reacting flow conditions respectively. The solid concentrations in
the CFB are almost similar except for the high concentrations in
the downcomer and cyclone separator in the case of flow at high
temperature and flow with combustion reaction. The high concen-
tration of particles in the downcomer for those two cases indicates
decreasing solid circulation rates, which means that the siphon air
flow rate and/or the cyclone capacity have to be increased. Contours
of pressure for the corresponding simulations are shown in Fig. 13.
The pressure drop throughout the CFB is less for the high tem-
perature and reacting flow cases than for the case run at ambient
conditions. From the results of solid volume fraction and pressure
drop across the CFB, it is seen that the decreasing pressure drop
over the CFB decreases the solid circulation rate if the siphon air
flow rate remains constant.

The solid circulation rates are 254 kg/h, 198 kg/h and 210 kg/h
for the ambient, high temperature and reacting flow conditions
respectively.

The difference in the flow properties at ambient conditions and
high-temperature conditions are mainly due to the gas density and
viscosity. At temperature 1073 K, the density of the air is decreased
by four times and the viscosity is increased about two and a half
time. Changes in density and viscosity change the flow behavior.
The particles used in the current work, have small diameters and
consequently they do not need high gas velocity for fluidization.
The particle Reynolds number is 3.4, which is within the viscous
dominated flow (Gidaspow, 1994). Viscosity plays a major role in
this type of flow, and an increase in the viscosity decreases the
minimum fluidization and transport velocity of the particles. The
increase in viscosity may  also be one of the reasons for the pressure
decrease and consequently the decrease of solid circulation rate.

5. Conclusions

A 3D CPFD (Computational Particle Fluid Dynamic) model of a
circulating fluidized bed (CFB) is validated against the experimen-
tal measurements in a lab-scale cold model. The pressure drops
monitored in the CPFD model at a number of locations through-
out the CFB are compared with the corresponding experimental
measurements. The pressure deviation between experimental and

computational results varies from 0% to 20% which is fairly well
predicted. The model is simulated to measure the solid circulation
rate at a series of varying air feed rates and the corresponding solid
circulation rates are measured in the experiments. The deviation
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etween the computational prediction of solid circulation and cor-
esponding experimental measurements at various air feed rates
re from 2% to 10%.

The CPFD model is used to investigate the optimum primary
nd secondary air feed positions for maximum circulation rate of
he bed material. The bed material circulation rate is maximum
hen the ratio of primary air feed position to the total height of the

eactor is 0.125. The corresponding optimum ratio of secondary
ir feed position to the total height of the reactor is 0.375. At a
iven feed rate, the bed material circulation rate is decreasing when
he air feed is split as the bottom, primary and secondary air. The
irculation rate is highest when the total air is fed as bottom air.

Further investigation using the CPFD model shows that the par-
icle circulation rate is decreased at high-temperature conditions
nd reacting flow conditions in comparison to the ambient flow
onditions. The bed material circulation rates for ambient, high
emperature and reacting flow conditions are 254 kg/h, 198 kg/h
nd 210 kg/h respectively at a total air flow rate of 10 Nm3/h as
ottom air.

The computational model is well predicting the flow behavior
f the physical model and can be therefore used for optimization
f the process.
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