Minimal length elements in some double cosets of Coxeter groups

Xuhua He
Department of Mathematics, Stony Brook University, Stony Brook, NY 11794, USA
Received 2 November 2006; accepted 4 April 2007
Available online 21 April 2007
Communicated by Michael J. Hopkins

Dedicated to Toshiaki Shoji and Ken-ichi Shinoda on the occasion of their 60th birthdays

Abstract

We study the minimal length elements in some double cosets of Coxeter groups and use them to study Lusztig's G-stable pieces and the generalization of G-stable pieces introduced by Lu and Yakimov. We also use them to study the minimal length elements in a conjugacy class of a finite Coxeter group and prove a conjecture in [M. Geck, S. Kim, G. Pfeiffer, Minimal length elements in twisted conjugacy classes of finite Coxeter groups, J. Algebra 229 (2) (2000) 570-600].

© 2007 Elsevier Inc. All rights reserved.
MSC: 20F55; 20G99
Keywords: Coxeter group; Minimal length element; Reductive group; Character sheaf; Hecke algebra

0. Introduction

0.1. Let W be a Coxeter group generated by the simple reflections s_{i} (for $i \in I$). Let \mathcal{O} be a conjugacy class of W and $\mathcal{O}_{\text {min }}$ be the set of minimal length elements in \mathcal{O}. In [6] and [7, Section 3], Geck and Pfeiffer obtained the following result:

If W is a finite Coxeter group, then:
(1) For any $w \in \mathcal{O}$, there exists a sequence of conjugations by s_{i} which reduces w to an element in $\mathcal{O}_{\text {min }}$ and the lengths of the elements in the sequence weakly decrease.
(2) If $w, w^{\prime} \in \mathcal{O}_{\text {min }}$, then they are strongly conjugate in the sense of [7, 3.2.4].

[^0]This result was later generated by Geck, Kim and Pfeiffer to the "twisted" conjugacy classes of the finite Coxeter groups. See [8].
0.2. Let J be a subset of I and W_{J} be the subgroup of W generated by s_{j} (for $j \in J$). The group W_{J} acts on W by conjugation. This action arises naturally in the study of Lusztig's G-stable pieces in [15]. A natural question is whether the above result can be generalized to the W_{J}-orbits in W. The answer is yes as we will see in Corollary 3.8. We will then use this result to study Lusztig's G-stable pieces.
0.3. Recently, Lu and Yakimov obtained a generalization of Lusztig's G-stable pieces in [12], which is called $\mathcal{R}_{\mathcal{C}^{\prime}} \times \mathcal{R}_{\mathcal{C}}$-stable pieces. Their motivation for studying such a generalization comes from Poisson geometry. For more details, see [12, Introduction].
0.4. In this paper, we will study these $\mathcal{R}_{\mathcal{C}^{\prime}} \times \mathcal{R}_{\mathcal{C}}$-stable pieces in a different way. Namely, we will first study their analogy in terms of Coxeter groups. We consider the double cosets $W_{c^{\prime}} \backslash\left(W_{1} \times W_{2}\right) / W_{c}$, where $W_{c^{\prime}}$ and W_{c} are certain subgroups of the product $W_{1} \times W_{2}$ of two Coxeter groups. For the minimal length elements in the double cosets, a generalization of 0.1 will be proved. Then we will use the minimal length elements to study the $\mathcal{R}_{\mathcal{C}^{\prime}} \times \mathcal{R}_{\mathcal{C}}$-stable pieces.
0.5 . As an easy consequence of the results on the minimal length elements in the double cosets, we obtain some results on the minimal length elements in the ("twisted") W_{J}-conjugacy classes on W, where W_{J} is a proper parabolic subgroup of W. Then we will use these elements to study the ("twisted") conjugacy classes of W. We will get a new proof of the results in 0.1 for finite Coxeter groups of classical type. We will also study the "good elements" and prove a conjecture in $[8,5.6]$. Combining this result with the earlier results in [5] and [8], the existence of "good elements" in each twisted conjugacy class of a finite Coxeter group is established.
0.6. We now review the content of this paper in more detail.

In Section 1, we generalize a result of Bédard, following the approach in [15, Section 2]. In Section 2, we obtain a classification of the double cosets. In Section 3, we study the minimal length element in a double coset. In Section 4, we introduce the notation of distinguished double cosets and distinguished elements and define a partial order on the distinguished double cosets. In Section 5, we study the $\mathcal{R}_{\mathcal{C}^{\prime}} \times \mathcal{R}_{\mathcal{C}}$-stable pieces using the distinguished elements. In Section 6, we study the parabolic character sheaves and also obtain a result of the Hecke algebras. In Section 7, we study the "twisted" conjugacy classes of finite Coxeter groups and prove the existence of the "good elements."

1. A generalization of a Bédard's result

In this section, we generalize a result of Bédard [1]. We follow the approach in [15, Section 2] (and also take into account some simplification in [11]).
1.1. Let I be a finite set and $\left(m_{i j}\right)_{i, j \in I}$ be a matrix with entries in $\mathbb{N} \cup\{\infty\}$ such that $m_{i i}=1$ and $m_{i j}=m_{j i} \geqslant 2$ for all $i \neq j$. Let W be a group defined by the generators s_{i} for $i \in I$ and the relations $\left(s_{i} s_{j}\right)^{m_{i j}}=1$ for $i, j \in I$ with $m_{i j}<\infty$. We say that (W, I) is a Coxeter group. Sometimes we just call W itself a Coxeter group.

We denote by l the length function and \leqslant the Bruhat order. For $w \in W$, we denote by $\operatorname{supp}(w)$ the set of simple reflections that appear in some (or equivalently, any) reduced expression of w. For $J \subset I$, we denote by W_{J} the standard parabolic subgroup of W generated by J and by W^{J} (respectively ${ }^{J} W$) the set of minimal coset representatives in W / W_{J} (respectively $W_{J} \backslash W$). For $J, K \subset I$, we simply write $W^{J} \cap{ }^{K} W$ as ${ }^{K} W^{J}$. For $J \subset I$ with W_{J} finite, we denote by w_{J} the maximal element in W_{J}. For an automorphism σ of W, we define the σ-twisted conjugation action of W on itself by $w \cdot w^{\prime}=w w^{\prime} \sigma(w)^{-1}$. The orbits are called the σ-twisted conjugacy classes of W. For a finite set X, we denote by $\sharp X$ its cardinality.
1.2. We recall some known results about W^{J}.
(1) If $w \in W^{J}$ and $i \in I$, then there are three possibilities.
(a) $s_{i} w>w$ and $s_{i} w \in W^{J}$;
(b) $s_{i} w>w$ and $s_{i} w=w s_{j}$ for some $j \in J$;
(c) $s_{i} w<w$ in which case $s_{i} w \in W^{J}$.
(2) If $w \in W^{J}, v \in W_{J}$ and $K \subset J$, then $v \in W^{K}$ if and only if $w v \in W^{K}$.
(3) If $w \in J^{J^{\prime}} W^{J}$ and $u \in W_{J^{\prime}}$, then $u w \in W^{J}$ if and only if $u \in W^{K}$, where $K=J^{\prime} \cap \operatorname{Ad}(w) J$.

Lemma 1.3.

(1) Let $J, K \subset I$ and $w \in{ }^{K} W$ with $w^{-1}(K) \subset J$. Assume that $w=x y$ for $x \in{ }^{K} W^{J}$ and $y \in W_{J}$. Then $x^{-1}(K) \subset J$.
(2) Let $J, K \subset I$ and $w \in W^{K}$ with $w(K) \subset J$. Assume that $w=x y$ for $x \in W_{J}$ and $y \in{ }^{J} W^{K}$. Then $y(K) \subset J$.

Proof. We only prove part (1). Part (2) can be proved in the same way.
By assumption, for $k \in K$, there exists $j \in J$, such that $s_{k} w=w s_{j}=x y s_{j}$. It is easy to see that $s_{k} x>x$. If $s_{k} x \in W^{J}$, then

$$
s_{k} w \in\left(s_{k} x\right) W_{J}, \quad x y s_{j} \in x W_{J} \quad \text { and } \quad s_{k} x, x \in W^{J}
$$

Thus $s_{k} x=x$, which is a contradiction. Hence by $1.2(1), s_{k} x=x s_{j^{\prime}}$ for some $j^{\prime} \in J$. The lemma is proved.

Lemma 1.4. Let $u, w \in W$. Then
(1) The subset $\{v w ; v \leqslant u\}$ of W contains a unique minimal element y. Moreover, $l(y)=l(w)-$ $l\left(y w^{-1}\right)$.
(2) The subset $\{v w ; v \leqslant u\}$ of W contains a unique maximal element y^{\prime}. Moreover, $l\left(y^{\prime}\right)=$ $l(w)+l\left(y^{\prime} w^{-1}\right)$.

Remark. This is a generalization of the result [10, Lemma 3.3]. In [10, Lemma 3.3] the Coxeter group W is a finite Weyl group. But this assumption is not needed here.

Proof of Lemma 1.4. We will only prove part (1). Part (2) can be proved in the same way.
We argue by induction on $l(u)$. For $l(u)=0$, part (1) is clear. Assume now that $l(u)>0$ and that the statement holds for all $u^{\prime} \in W$ with $l\left(u^{\prime}\right)<l(u)$. Then there exists $i \in I$ such that $s_{i} u<u$.

We denote $s_{i} u$ by u^{\prime}. Then by induction hypothesis, the subset $\left\{v^{\prime} w ; v^{\prime} \leqslant u^{\prime}\right\}$ contains a unique element $y_{1}=v_{1} w$ and $l\left(y_{1}\right)=l(w)-l\left(v_{1}\right)$. Set $y=\min \left\{y_{1}, s_{i} y_{1}\right\}$. Then we have that $y<s_{i} y$ and $y \leqslant y_{1}$. Now assume that z is an element in $\{v w ; v \leqslant u\}$. Then it is easy to see that either z or $s_{i} z$ is contained in $\left\{v^{\prime} w ; v \leqslant u^{\prime}\right\}$. Therefore we have that either $y \leqslant y_{1} \leqslant z$ or $y \leqslant y_{1} \leqslant s_{i} z$. In the second case, by [13, Corollary 2.5], we still have that $y \leqslant z$. So y is the minimal element in $\{v w ; v \leqslant u\}$.

If $y=y_{1}$, then $l(y)=l(w)-l\left(v_{1}\right)$. If $y=s_{i} y_{1}=s_{i} v_{1} w$, then $l(y)=l\left(y_{1}\right)-1=l(w)-$ $l\left(v_{1}\right)-1$. Since $l(y) \geqslant l(w)-l\left(s_{i} v_{1}\right)$, we have that $l\left(s_{i} v_{1}\right)=l\left(v_{1}\right)+1$ and $l(y)=l(w)-l\left(s_{i} v_{1}\right)$. The lemma is proved.
1.5. Let $\left(W_{1}, I_{1}\right)$ and $\left(W_{2}, I_{2}\right)$ be two Coxeter groups. A triple $c=\left(J_{1}, J_{2}, \delta\right)$ consisting of $J_{1} \subset I_{1}, J_{2} \subset I_{2}$ and an isomorphism $\delta: W_{J_{1}} \rightarrow W_{J_{2}}$ which sends J_{1} to J_{2} will be called an admissible triple for $W_{1} \times W_{2}$. To each admissible triple $c=\left(J_{1}, J_{2}, \delta\right)$, set

$$
W_{c}=\left\{(w, \delta(w)) ; w \in W_{J_{1}}\right\} \subset W_{1} \times W_{2} .
$$

Let $c=\left(J_{1}, J_{2}, \delta\right)$ be an admissible triple for $W_{1} \times W_{2}$, then $c^{-1}=\left(J_{2}, J_{1}, \delta^{-1}\right)$ is an admissible triple for $W_{2} \times W_{1}$.

For admissible triples $c=\left(J_{1}, J_{2}, \delta\right)$ and $c^{\prime}=\left(J_{1}^{\prime}, J_{2}^{\prime}, \delta^{\prime}\right)$ for $W_{1} \times W_{2}$, we say that $c^{\prime} \leqslant c$ if $J_{1}^{\prime} \subset J_{1}, J_{2}^{\prime} \subset J_{2}$ and $\delta^{\prime}=\left.\delta\right|_{W_{J_{1}^{\prime}}}$.
1.6. Let $c=\left(J_{1}, J_{2}, \delta\right)$ and $c^{\prime}=\left(J_{1}^{\prime}, J_{2}^{\prime}, \delta^{\prime}\right)$ be two admissible triples. Let $\mathcal{T}\left(c, c^{\prime}\right)$ be the set of all sequences $\left(J_{1}^{(n)}, J_{2}^{\prime(n)}, w_{1}^{(n)}, w_{2}^{(n)}\right)_{n \geqslant 0}$ where $J_{1}^{(n)} \subset J_{1}, J_{2}^{\prime(n)} \subset J_{2}^{\prime}, w_{1}^{(n)} \in W_{1}$ and $w_{2}^{(n)} \in W_{2}$ are such that:
(a) $J_{1}^{(0)}=J_{1}, J_{2}^{\prime(0)}=\delta^{\prime} w_{1}^{(0)} J_{1} \cap J_{2}^{\prime}$;
(b) $J_{1}^{(n)}=\delta^{-1}\left(w_{2}^{(n-1)}\right)^{-1} J_{2}^{\prime(n-1)} \cap J_{1}$ for $n \geqslant 1$;
(c) $J_{2}^{\prime(n)}=\delta^{\prime} w_{1}^{(n)} J_{1}^{(n)} \cap J_{2}^{\prime}$ for $n \geqslant 1$;
(d) $w_{1}^{(n)} \in J_{1}^{\prime} W_{1}^{J_{1}^{(n)}}, w_{2}^{(n)} \in J_{2}^{J^{\prime(n)}} W_{2}^{J_{2}}$ for $n \geqslant 0$;
(e) $w_{1}^{(n)} \in w_{1}^{(n-1)} W_{J_{1}^{(n-1)}}, w_{2}^{(n)} \in W_{J_{2}^{(n-1)}} w_{2}^{(n-1)}$ for $n \geqslant 1$.

Proposition 1.7. $\left(J_{1}^{(n)}, J_{2}^{\prime(n)}, w_{1}^{(n)}, w_{2}^{(n)}\right)_{n \geqslant 0} \mapsto\left(w_{1}^{(m)}, w_{2}^{(m)}\right)$ for $m \gg 0$ is a well-defined bijection $\phi: \mathcal{T}\left(c, c^{\prime}\right) \rightarrow{ }^{J_{1}^{\prime}} W_{1} \times W_{2}^{J_{2}}$.

Proof. Let $\left(J_{1}^{(n)}, J_{2}^{\prime(n)}, w_{1}^{(n)}, w_{2}^{(n)}\right)_{n \geqslant 0} \in \mathcal{T}\left(c, c^{\prime}\right)$. We prove by induction on $n \geqslant 0$ that
(a) $J_{1}^{(n+1)} \subset J_{1}^{(n)}, J_{2}^{\prime(n+1)} \subset J_{2}^{\prime(n)}$.

For $n=0$, we have $J_{1}^{(1)} \subset J_{1}^{(0)}=J_{1}$. Now $\left(w_{1}^{(1)}\right)^{-1}\left(\delta^{\prime}\right)^{-1} J_{2}^{\prime(1)} \subset J_{1}^{(1)} \subset J_{1}$ and $w_{1}^{(0)}=$ $\min \left(w_{1}^{(1)} W_{J_{1}^{(0)}}\right)$. By Lemma 1.3, $\left(w_{1}^{(0)}\right)^{-1}\left(\delta^{\prime}\right)^{-1} J_{2}^{\prime(1)} \subset J_{1}$. Hence $J_{2}^{\prime(1)} \subset \delta^{\prime} w_{1}^{(0)} J_{1} \cap J_{2}^{\prime}=J_{2}^{\prime(0)}$.

Assume now that $n>0$ and that (a) holds when n is replaced by $n-1$. Then $w_{2}^{(n)} \delta J_{1}^{(n+1)} \subset$ $J_{2}^{\prime(n)} \subset J_{2}^{\prime(n-1)}$ and $w_{2}^{(n-1)}=\min \left(W_{J_{2}^{\prime(n-1)}} w_{2}^{(n)}\right)$. By Lemma 1.3, $w_{2}^{(n-1)} \delta J_{1}^{(n+1)} \subset J_{2}^{\prime(n-1)}$. Hence

$$
J_{1}^{(n+1)} \subset \delta^{-1}\left(w_{2}^{(n-1)}\right)^{-1} J_{2}^{\prime(n-1)} \cap J_{1}=J_{1}^{(n)}
$$

Similarly, $J_{2}^{\prime(n+1)} \subset J_{2}^{\prime(n)}$. (a) is proved.
Now since I_{1}, I_{2} are finite sets, there exists $n_{0} \geqslant 1$ such that $J_{1}^{(n)}=J_{1}^{(n-1)}$ and $J_{2}^{\prime(n)}=J_{2}^{\prime(n-1)}$ for $n \geqslant n_{0}$. For such n we have

$$
w_{1}^{(n)} \in J_{1}^{\prime} W_{1}^{J_{1}^{(n)}}, \quad w_{1}^{(n-1)} \in J_{1}^{J_{1}^{\prime}} W_{1}^{J_{1}^{(n)}}, \quad w_{1}^{(n)} \in w_{1}^{(n-1)} W_{J_{1}^{(n)}} .
$$

Thus $w_{1}^{(n)}=w_{1}^{(n-1)}$. Similarly $w_{2}^{(n)}=w_{2}^{(n-1)}$. Thus ϕ is well defined. We set $w_{1}=w_{1}^{(m)}$ and $w_{2}=w_{2}^{(m)}$ for $m \gg 0$. By 1.6(a) and (d), $w_{1} \in w_{1}^{(n)} W_{J_{1}^{(n)}}$. Since $w_{1}^{(n)} \in W^{J_{n}^{(n)}}$, we have that
(b) $w_{1}^{(n)}=\min \left(w_{1} W_{J_{1}^{(n)}}\right)$.

Similarly,
(c) $w_{2}^{(n)}=\min \left(W_{J_{2}^{\prime(n)}} w_{2}\right)$.

Now assume that $\phi\left(\left(\tilde{J}_{1}^{(n)}, \tilde{J}_{2}^{\prime(n)}, \tilde{w}_{1}^{(n)}, \tilde{w}_{2}^{(n)}\right)_{n \geqslant 0}\right)=\left(w_{1}, w_{2}\right)$. We show by induction on $n \geqslant 0$ that
(d) $J_{1}^{(n)}=\tilde{J}_{1}^{(n)}, J_{2}^{\prime(n)}=\tilde{J}_{2}^{\prime(n)}, w_{1}^{(n)}=\tilde{w}_{1}^{(n)}, w_{2}^{(n)}=\tilde{w}_{2}^{(n)}$.

For $n=0$ this holds since

$$
\begin{gathered}
J_{1}^{(0)}=\tilde{J}_{1}^{(0)}=J_{1}, \quad w_{1}^{(0)}=\tilde{w}_{1}^{(0)}=\min \left(w_{1} W_{J_{1}}\right), \\
J_{2}^{\prime(0)}=\tilde{J}_{2}^{(0)}=\delta^{\prime} w_{1}^{(0)} J_{1} \cap J_{2}^{\prime}, \quad w_{2}^{(0)}=\tilde{w}_{2}^{(0)}=\min \left(W_{J_{2}^{\prime(0)}} w_{2}\right) .
\end{gathered}
$$

Assume now that $n>0$ and that (d) holds when n is replaced by $n-1$. From 1.6(b), we deduce that $J_{1}^{(n)}=\tilde{J}_{1}^{(n)}=\delta^{-1}\left(w_{2}^{(n-1)}\right)^{-1} J_{2}^{\prime(n-1)} \cap J_{1}$. From (b), we deduce that $w_{1}^{(n)}=\tilde{w}_{1}^{(n)}=$ $\min \left(w_{1} W_{J_{1}^{(n)}}\right)$. By $1.6(\mathrm{c})$, we deduce that $J_{2}^{\prime(n)}=\tilde{J}_{2}^{\prime(n)}$. From (c), we deduce that $w_{2}^{(n)}=\tilde{w}_{2}^{(n)}$.

Thus (d) holds and ϕ is injective.
We define an inverse to ϕ. Let $\left(w_{1}, w_{2}\right) \in{ }^{J_{1}^{\prime}} W_{1} \times W_{2}^{J_{2}}$, we define by induction on $n \geqslant 0$ a sequence $\left(J_{1}^{(n)}, J_{2}^{(n)}, w_{1}^{(n)}, w_{2}^{(n)}\right)_{n \geqslant 0}$ as follows.

We set $J_{1}^{(0)}=J_{1}, w_{1}^{(0)}=\min \left(w_{1} W_{J_{1}}\right), J_{2}^{\prime(0)}=\delta^{\prime} w_{1}^{(0)} J_{1} \cap J_{2}^{\prime}$ and $w_{2}^{(0)}=\min \left(W_{J_{2}^{\prime(0)}} w_{2}\right)$.
Assume now that $n>0$ and $J_{1}^{(n-1)}, J_{2}^{\prime(n-1)}, w_{1}^{(n-1)}, w_{2}^{(n-1)}$ are defined. We define
$J_{1}^{(n)}=\delta^{-1}\left(w_{2}^{(n-1)}\right)^{-1} J_{2}^{\prime(n-1)} \cap J_{1}, w_{1}^{(n)}=\min \left(w_{1} W_{J_{1}^{(n)}}\right), J_{2}^{\prime(n)}=\delta^{\prime} w_{1}^{(n)} J_{1}^{(n)} \cap J_{2}^{\prime} \quad$ and

$$
w_{2}^{(n)}=\min \left(W_{J_{2}^{\prime(n)}} w_{2}\right)
$$

This completes the inductive definition.
Now for $n \geqslant 1, w_{1}^{(n)} \in w_{1} W_{J_{1}^{(n)}}$ and $w_{1} \in w_{1}^{(n-1)} W_{J_{1}^{(n-1)}}$. Hence

$$
w_{1}^{(n)} \in\left(w_{1}^{(n-1)} W_{J_{1}^{(n-1)}}\right) W_{J_{1}^{(n)}}=w_{1}^{(n-1)} W_{J_{1}^{(n-1)}} .
$$

Similarly, $w_{2}^{(n)} \in W_{J_{2}^{\prime(n-1)}} w_{2}^{(n-1)}$.
For $n \geqslant 0, w_{1}=w_{1}^{(n)} x$ for some $x \in W_{J_{1}^{(n)}}$ and $l\left(w_{1}\right)=l\left(w_{1}^{(n)}\right)+l(x)$. Now for $v \in W_{J_{1}^{\prime}}$, $l\left(v w_{1}\right)=l(v)+l\left(w_{1}\right)$ since $w_{1} \in J_{1}^{\prime} W_{1}$. On the other hand, $l\left(v w_{1}^{(n)} x\right) \leqslant l\left(v w_{1}^{(n)}\right)+l(x)$. Then

$$
l(v)+l\left(w_{1}^{(n)}\right)=l\left(v w_{1}^{(n)}\right) \quad \text { and } \quad w_{1}^{(n)} \in^{J_{1}^{\prime}} W_{1} .
$$

Similarly, $w_{2}^{(n)} \in W_{2}^{J_{2}}$.
Thus $\left(J_{1}^{(n)}, J_{2}^{\prime(n)}, w_{1}^{(n)}, w_{2}^{(n)}\right)_{n \geqslant 0} \in \mathcal{T}\left(c, c^{\prime}\right)$.
We show that $w_{1}^{(m)}=w_{1}$ and $w_{2}^{(m)}=w_{2}$ for $m \gg 0$. For any $n \geqslant 0$, we have $w_{1}=w_{1}^{(n)} u$ and $w_{2}=v w_{2}^{(n)}$ for $u \in W_{J_{1}^{(n)}}$ and $v \in W_{J_{2}^{\prime(n)}}$. Since $w_{1} \in J_{1}^{J_{1}^{\prime}} W_{1}$ and $w_{1}^{(n)} \in J_{1}^{J_{1}^{\prime}} W_{1}^{J_{J^{(n)}}}$, by [15, 2.1(b)], $u \in J_{1}^{(n)} \cap\left(w_{1}^{(n)}\right)^{-1} J_{1}^{\prime} W_{1}$. Assume that $n \gg 0$. We have $J_{1}^{(n)}=J_{1}^{(n-1)}$ and $J_{2}^{\prime(n)}=J_{2}^{\prime(n-1)}$. By 1.6(b) and (c),

$$
\sharp J_{1}^{(n)} \leqslant \sharp\left(w_{2}^{-1} J_{2}^{\prime(n)} \cap J_{2}\right) \leqslant \sharp J_{2}^{\prime(n)}, \quad \sharp J_{2}^{\prime(n)} \leqslant \sharp\left(w_{1} J_{1}^{(n)} \cap J_{1}^{\prime}\right) \leqslant \sharp J_{1}^{(n)} .
$$

Hence $\sharp J_{1}^{(n)}=\sharp J_{2}^{\prime(n)}$ and
(e) $w_{1} J_{1}^{(n)} \subset J_{1}^{\prime}, w_{2}^{-1} J_{2}^{\prime(n)} \subset J_{2}$,
(f) $J_{1}^{(n)}=\delta^{-1} w_{2}^{-1} J_{2}^{\prime(n)}, J_{2}^{\prime(n)}=\delta^{\prime} w_{1} J_{1}^{(n)}$.

So $u \in J_{1}^{J_{1}^{(n)} \cap w_{1}^{-1} J_{1}^{\prime}} W_{1}={ }_{1}^{J_{1}^{(n)}} W_{1}$. Notice that $u \in W_{J_{1}^{(n)}}$. Thus $u=1$ and $w_{1}=w_{1}^{(n)}$. Similarly, $w_{2}=w_{2}^{(n)}$.

Thus we have defined a map $\psi:{ }^{J_{1}^{\prime}} W_{1} \times W_{2}^{J_{2}} \rightarrow \mathcal{T}\left(c, c^{\prime}\right)$ such that $\phi \circ \psi=i d$. Hence ϕ is bijective. The proposition is proved.

Corollary 1.8. For $w_{1} \in{ }^{J_{1}^{\prime}} W_{1}$ and $w_{2} \in W_{2}^{J_{2}}$, define

$$
I\left(w_{1}, w_{2}, c, c^{\prime}\right)=\max \left\{K \subset J_{1} ; w_{1}(K) \subset J_{1}^{\prime} \text { and } \delta^{\prime} w_{1} K=w_{2} \delta K\right\}
$$

Proof. Let $\left(J_{1}^{(n)}, J_{2}^{\prime(n)}, w_{1}^{(n)}, w_{2}^{(n)}\right)_{n \geqslant 0}$ be the element in $\mathcal{T}\left(c, c^{\prime}\right)$ whose image under ϕ is $\left(w_{1}, w_{2}\right)$. Then $I\left(w_{1}, w_{2}, c, c^{\prime}\right)=J_{1}^{(n)}$ for $n \gg 0$. By (e) and (f) in the proof of Proposition 1.7, we have that $J_{n}^{(n)} \subset J_{1}, w_{1}\left(J_{1}^{(n)}\right) \subset J_{1}^{\prime}$ and $\delta^{\prime} w_{1} J_{1}^{(n)}=w_{2} \delta J_{1}^{(n)}$ for $n \gg 0$. Thus $J_{1}^{(n)} \subset I\left(w_{1}, w_{2}, c, c^{\prime}\right)$ for $n \gg 0$.

Now set $I^{\prime}\left(w_{1}, w_{2}, c, c^{\prime}\right)=\delta^{\prime} w_{1} I\left(w_{1}, w_{2}, c, c^{\prime}\right)$. It suffices to prove that for $n \geqslant 0$

$$
I\left(w_{1}, w_{2}, c, c^{\prime}\right) \subset J_{1}^{(n)} \quad \text { and } \quad I^{\prime}\left(w_{1}, w_{2}, c, c^{\prime}\right) \subset J_{2}^{\prime(n)}
$$

We argue by induction on n. For $n=0, I\left(w_{1}, w_{2}, c, c^{\prime}\right) \subset J_{1}^{(0)}=J_{1}$. Now

$$
w_{1} I\left(w_{1}, w_{2}, c, c^{\prime}\right) \subset J_{1}^{\prime}, w_{1}^{-1} w_{1} I\left(w_{1}, w_{2}, c, c^{\prime}\right)=I\left(w_{1}, w_{2}, c, c^{\prime}\right) \subset J_{1}
$$

Notice that $w_{1}^{(0)}=\min \left(w_{1} W_{J_{1}}\right)$. By Lemma 1.3,

$$
\left(w_{1}^{(0)}\right)^{-1} w_{1} I\left(w_{1}, w_{2}, c, c^{\prime}\right) \subset J_{1} .
$$

In other words, $w_{1} I\left(w_{1}, w_{2}, c, c^{\prime}\right) \subset w_{1}^{(0)} J_{1} \cap J_{1}^{\prime}$ and $I^{\prime}\left(w_{1}, w_{2}, c, c^{\prime}\right) \subset \delta^{\prime} w_{1}^{(0)} J_{1} \cap J_{2}^{\prime}$. So (a) holds for $n=0$. Assume now that $n>0$ and that (a) holds when n is replaced by $n-1$. Then

$$
w_{2} \delta I\left(w_{1}, w_{2}, c, c^{\prime}\right)=I^{\prime}\left(w_{1}, w_{2}, c, c^{\prime}\right) \subset J_{2}^{\prime(n-1)} \quad \text { and } \quad w_{2}^{(n-1)}=\min \left(W_{J_{2}^{\prime(n-1)}} w_{2}\right)
$$

By Lemma 1.3, $w_{2}^{(n-1)} \delta I\left(w_{1}, w_{2}, c, c^{\prime}\right) \subset J_{2}^{\prime(n-1)}$. Hence

$$
I\left(w_{1}, w_{2}, c, c^{\prime}\right) \subset \delta^{-1}\left(w_{2}^{(n-1)}\right)^{-1} J_{2}^{\prime(n-1)} \cap J_{1}=J_{1}^{(n)}
$$

Notice that $w_{1}^{-1} w_{1} I\left(w_{1}, w_{2}, c, c^{\prime}\right)=I\left(w_{1}, w_{2}, c, c^{\prime}\right) \subset J_{1}^{(n)}$ and $w_{1}^{(n)} \in \min \left(w_{1} W_{J_{1}^{(n)}}\right)$. By Lemma 1.3, $\left(w_{1}^{(n)}\right)^{-1} w_{1} I\left(w_{1}, w_{2}, c, c^{\prime}\right) \subset J_{1}^{(n)}$. Hence

$$
I^{\prime}\left(w_{1}, w_{2}, c, c^{\prime}\right)=\delta^{\prime} w_{1} I\left(w_{1}, w_{2}, c, c^{\prime}\right) \subset \delta^{\prime} w_{1}^{(n)} J_{1}^{(n)} \cap J_{2}^{\prime}=J_{2}^{\prime(n)}
$$

The corollary is proved.
1.9. Below is a variant of the above results. Let $\mathcal{T}^{\prime}\left(c, c^{\prime}\right)$ be the set of sequences $\left(J_{1}^{(n)}, J_{2}^{\prime(n)}, w_{1}^{(n)}, w_{2}^{(n)}\right)_{n \geqslant 0}$ where $J_{1}^{(n)} \subset J_{1}, J_{2}^{\prime(n)} \subset J_{2}^{\prime}, w_{1}^{(n)} \in W_{1}$ and $w_{2}^{(n)} \in W_{2}$ are such that:
(a) $J_{1}^{(0)}=\delta^{-1}\left(w_{1}^{(0)}\right)^{-1} J_{2}^{\prime} \cap J_{1}, J_{2}^{\prime(0)}=J_{2}^{\prime}$;
(b) $J_{1}^{(n)}=\delta^{-1}\left(w_{2}^{(n)}\right)^{-1} J_{2}^{\prime(n)} \cap J_{1}$ for $n \geqslant 1$,
(c) $J_{2}^{\prime(n)}=\delta^{\prime} w_{1}^{(n-1)} J_{1}^{(n-1)} \cap J_{2}^{\prime}$ for $n \geqslant 1$;
(d) $w_{1}^{(n)} \in J_{1}^{\prime} W_{1}^{J_{1}^{(n)}}, w_{2}^{(n)} \in J_{2}^{J^{(n)}} W_{2}^{J_{2}}$ for $n \geqslant 0$;
(e) $w_{1}^{(n)} \in w_{1}^{(n-1)} W_{J_{1}^{(n-1)}}, w_{2}^{(n)} \in W_{J_{2}^{(n-1)}} w_{2}^{(n-1)}$ for $n \geqslant 1$.

Then $\left(J_{1}^{(n)}, J_{2}^{(n)}, w_{1}^{(n)}, w_{2}^{(n)}\right)_{n \geqslant 0} \mapsto\left(w_{1}^{(m)}, w_{2}^{(m)}\right)$ for $m \gg 0$ is also a well-defined bijection $\mathcal{T}\left(c, c^{\prime}\right) \rightarrow{ }^{J_{1}^{\prime}} W_{1} \times W_{2}^{J_{2}}$ and $I\left(w_{1}, w_{2}, c, c^{\prime}\right)=J_{1}^{(n)}$ for $n \gg 0$.

2. The $W_{c^{\prime}} \times W_{c}$-stable pieces

2.1. To each element $\left(w_{1}, w_{2}\right) \in W_{1} \times W_{2}$ we associate a sequence $\left(J_{1}^{(n)}, J_{2}^{\prime(n)}, w_{1}^{(n)}, w_{2}^{(n)}\right.$, $\left.u_{1}^{(n)}, u_{2}^{(n)}, v_{1}^{(n)}, v_{2}^{(n)}\right)_{n \geqslant 0}$ with $J_{1}^{(n)} \subset J_{1}, J_{2}^{\prime(n)} \subset J_{2}^{\prime}, w_{1}^{(n)} \in J_{1}^{\prime} W_{1}^{J_{1}^{(n)}}, w_{2}^{(n)} \in J_{2}^{J_{2}^{\prime(n)}} W_{2}^{J_{2}}, u_{1}^{(n)} \in$ $J_{1}^{\prime} W_{1}, u_{2}^{(n)} \in W_{2}^{J_{2}}, v_{1}^{(n)} \in W_{1}$ and $v_{2}^{(n)} \in W_{2}$. We set

$$
\begin{aligned}
J_{1}^{(0)}=J_{1}, & u_{1}^{(0)} & =\min \left(W_{J_{1}^{\prime}} w_{1}\right), & w_{1}^{(0)}=\min \left(u_{1}^{(0)} W_{J_{1}}\right), \\
J_{2}^{\prime(0)} & =\delta^{\prime} w_{1}^{(0)} J_{1} \cap J_{2}^{\prime}, & & u_{2}^{(0)}=\min \left(\delta^{\prime}\left(v_{1}^{(0)}\right)^{-1} w_{2} W_{J_{2}}\left(u_{1}^{(0)}\right)^{-1},\right. \\
w_{2}^{(0)} & =\min \left(W_{J_{2}^{\prime(0)}} u_{2}^{(0)}\right), & & v_{2}^{(0)}=\left(u_{2}^{(0)}\right)^{-1} \delta^{\prime}\left(v_{1}^{(0)}\right)^{-1} w_{2} .
\end{aligned}
$$

Assume that $n>1$ and that $J_{1}^{(n-1)}, J_{2}^{\prime(n-1)}, w_{1}^{(n-1)}, w_{2}^{(n-1)}, u_{1}^{(n-1)}, u_{2}^{(n-1)}, v_{1}^{(n-1)}, v_{2}^{(n-1)}$ are already defined. Let

$$
\begin{gathered}
J_{1}^{(n)}=\delta^{-1}\left(w_{2}^{(n-1)}\right)^{-1} J_{2}^{\prime(n-1)} \cap J_{1}, \quad u_{1}^{(n)}=\min \left(W_{J_{1}^{\prime}} u_{1}^{(n-1)} \delta^{-1}\left(v_{2}^{(n-1)}\right)^{-1}\right), \\
w_{1}^{(n)}=\min \left(u_{1}^{(n)} W_{J_{1}^{(n)}}\right), \quad v_{1}^{(n)}=u_{1}^{(n-1)} \delta^{-1}\left(v_{2}^{(n-1)}\right)^{-1}\left(u_{1}^{(n)}\right)^{-1}, \\
J_{2}^{\prime(n)}=\delta^{\prime} w_{1}^{(n)} J_{1}^{(n)} \cap J_{2}^{\prime}, \quad u_{2}^{(n)}=\min \left(\delta^{\prime}\left(v_{1}^{(n)}\right)^{-1} u_{2}^{(n-1)} W_{J_{2}}\right), \\
w_{2}^{(n)}=\min \left(W_{J_{2}^{\prime(n)}} u_{2}^{(n)}\right), \quad v_{2}^{(n)}=\left(u_{2}^{(n)}\right)^{-1} \delta^{\prime}\left(v_{1}^{(n)}\right)^{-1} u_{2}^{(n-1)} .
\end{gathered}
$$

This completes the inductive definition.
Lemma 2.2. We keep the notation in 2.1. Then

$$
\left(J_{1}^{(n)}, J_{2}^{\prime(n)}, w_{1}^{(n)}, w_{2}^{(n)}\right)_{n \geqslant 0} \in \mathcal{T}\left(c, c^{\prime}\right) .
$$

Proof. 1.6(a)-(d) are automatically satisfied. By definition, $v_{1}^{(0)} \in W_{J_{1}^{\prime}}$ and $v_{2}^{(0)} \in W_{J_{2}}$. Now we prove by induction on $n>1$ that
(a) $v_{1}^{(n)} \in W_{\left(\delta^{\prime}\right)^{-1} J_{2}^{(n-1)}}, v_{2}^{(n)} \in W_{\delta J_{1}^{(n)}}$,
(b) $w_{1}^{(n)} \in w_{1}^{(n-1)} W_{J_{1}^{(n-1)}}, w_{2}^{(n)} \in W_{J_{2}^{\prime(n-1)}} w_{2}^{(n-1)}$.

For $n=1$, we have

$$
\begin{gathered}
u_{1}^{(1)}=\min \left(W_{J_{1}^{\prime}} u_{1}^{(0)} \delta^{-1}\left(v_{2}^{(0)}\right)^{-1}\right), \\
u_{1}^{(0)} \delta^{-1}\left(v_{2}^{(0)}\right)^{-1} \in u_{1}^{(0)} W_{J_{1}^{(0)}}=w_{1}^{(0)} W_{J_{1}^{(0)}} .
\end{gathered}
$$

Notice that $w_{1}^{(0)} \in J_{1}^{J_{1}^{\prime}} W_{1}^{J_{1}^{(0)}}$. By [10, Lemma 3.6],

$$
u_{1}^{(0)} \delta^{-1}\left(v_{2}^{(0)}\right)^{-1} \in W_{J_{1}^{\prime} \cap w_{1}^{(0)} J_{1}^{(0)}} u_{1}^{(1)}=W_{\left(\delta^{\prime}\right)^{-1} J_{2}^{\prime(0)}} u_{1}^{(1)}, \quad u_{1}^{(1)} \in w_{1}^{(0)} W_{J_{1}^{(0)}} .
$$

Hence $v_{1}^{(1)} \in W_{\left(\delta^{\prime}\right)^{-1} J_{2}^{(0)}}$ and $w_{1}^{(1)} \in w_{1}^{(0)} W_{J_{1}^{(0)}}$.
We also have that

$$
\begin{gathered}
u_{2}^{(1)}=\min \left(\delta^{\prime}\left(v_{1}^{(1)}\right)^{-1} u_{2}^{(0)} W_{J_{2}}\right), \\
\delta^{\prime}\left(v_{1}^{(1)}\right)^{-1} u_{2}^{(0)} \in W_{J_{2}^{\prime(0)}} u_{2}^{(0)}=W_{J_{2}^{\prime(0)}} w_{2}^{(0)} .
\end{gathered}
$$

Notice that $w_{2}^{(0)} \in J_{2}^{J^{\prime(0)}} W_{2}^{J_{2}}$. By [10, Lemma 3.6],

$$
\delta^{\prime}\left(v_{1}^{(1)}\right)^{-1} u_{2}^{(0)} \in u_{2}^{(1)} W_{J_{2} \cap\left(w_{2}^{(0)}\right)^{-1} J_{2}^{\prime(0)}}=u_{2}^{(1)} W_{\delta J_{1}^{(1)}}, \quad u_{2}^{(1)} \in W_{J_{2}^{\prime(0)}} w_{2}^{(0)}
$$

Hence $v_{2}^{(1)} \in W_{\delta J_{1}^{(1)}}$ and $w_{2}^{(1)} \in W_{J_{2}^{\prime(0)}} w_{2}^{(0)}$.
Assume now that $n>2$ and that (a) and (b) hold when n is replaced by $n-1$. Then we can show in the same way that $v_{1}^{(n)} \in W_{\left(\delta^{\prime}\right)^{-1} J_{2}^{\prime(n-1)}}, v_{2}^{(n)} \in W_{\delta J_{2}^{(n)}}, w_{1}^{(n)} \in w_{1}^{(n-1)} W_{J_{1}^{(n-1)}}$ and $w_{2}^{(n)} \in W_{J_{2}^{\prime(n-1)}} w_{2}^{(n-1)}$. The lemma is proved.
2.3. We define a map $\pi: W_{1} \times W_{2} \rightarrow{ }^{J_{1}^{\prime}} W_{1} \times W_{2}^{J_{2}}$ as follows. Let

$$
\left(J_{1}^{(n)}, J_{2}^{\prime(n)}, w_{1}^{(n)}, w_{2}^{(n)}, u_{1}^{(n)}, u_{2}^{(n)}, v_{1}^{(n)}, v_{2}^{(n)}\right)_{n \geqslant 0}
$$

be the sequence associated to $\left(w_{1}, w_{2}\right) \in W_{1} \times W_{2}$. By the previous lemma,

$$
\left(J_{1}^{(n)}, J_{2}^{\prime(n)}, w_{1}^{(n)}, w_{2}^{(n)}\right)_{n \geqslant 0} \in \mathcal{T}\left(c, c^{\prime}\right) .
$$

Now set

$$
\pi\left(w_{1}, w_{2}\right)=\phi\left(\left(J_{1}^{(n)}, J_{2}^{\prime(n)}, w_{1}^{(n)}, w_{2}^{(n)}\right)_{n \geqslant 0}\right)
$$

This completes the definition.
For $\left(w_{1}, w_{2}\right) \in J_{1}^{J_{1}^{\prime}} W_{1} \times W_{2}^{J_{2}}$, set $\left[w_{1}, w_{2}, c, c^{\prime}\right]=\pi^{-1}\left(w_{1}, w_{2}\right)$. Then

$$
W_{1} \times W_{2}=\bigsqcup_{\left(w_{1}, w_{2}\right) \in \bigcup_{1}^{J_{1}^{\prime}} W_{1} \times W_{2}^{J_{2}}}\left[w_{1}, w_{2}, c, c^{\prime}\right] .
$$

Proposition 2.4. Let $\left(w_{1}, w_{2}\right) \in{ }^{J_{1}^{\prime}} W_{1} \times W_{2}^{J_{2}}$. Then
(1) $\left[w_{1}, w_{2}, c, c^{\prime}\right]=W_{c^{\prime}}\left(w_{1} W_{I\left(w_{1}, w_{2}, c, c^{\prime}\right)}, w_{2}\right) W_{c}$.
(2) Define an automorphism $\sigma: W_{I\left(w_{1}, w_{2}, c, c^{\prime}\right)} \rightarrow W_{I\left(w_{1}, w_{2}, c, c^{\prime}\right)}$ by

$$
\sigma(w)=\delta^{-1}\left(w_{2}^{-1} \delta^{\prime}\left(w_{1} w w_{1}^{-1}\right) w_{2}\right)
$$

Then map $W_{I\left(w_{1}, w_{2}, c, c^{\prime}\right)} \rightarrow W_{1} \times W_{2}$ defined by $w \rightarrow\left(w_{1} w, w_{2}\right)$ induces a bijection between the σ-twisted conjugacy classes on $W_{I\left(w_{1}, w_{2}, c, c^{\prime}\right)}$ and the double cosets

$$
W_{c^{\prime}} \backslash\left[w_{1}, w_{2}, c, c^{\prime}\right] / W_{c} .
$$

Remark. By part (1), for each $\left(w_{1}, w_{2}\right) \in{ }^{J_{1}^{\prime}} W_{1} \times W_{2}^{J_{2}}$, the subset $\left[w_{1}, w_{2}, c, c^{\prime}\right]$ of $W_{1} \times W_{2}$ is stable under the action of $W_{c^{\prime}} \times W_{c}$. We call $\left[w_{1}, w_{2}, c, c^{\prime}\right]$ a $W_{c^{\prime}} \times W_{c}$-stable piece of $W_{1} \times W_{2}$.

Proof of Proposition 2.4. Let $\left(J_{1}^{(n)}, J_{2}^{\prime(n)}, w_{1}^{(n)}, w_{2}^{(n)}, u_{1}^{(n)}, u_{2}^{(n)}, v_{1}^{(n)}, v_{2}^{(n)}\right)_{n \geqslant 0}$ be the sequence associated to $\left(w_{1}^{\prime}, w_{2}^{\prime}\right) \in W_{1} \times W_{2}$. By definition, $u_{1}^{(n)} \in w_{1}^{(n)} W_{J_{1}^{(n)}}$ for $n \geqslant 0$. By (e) in the proof of Proposition 1.7, $w_{1}^{(n)} W_{J_{1}^{(n)}} \subset W_{J_{1}^{\prime}} w_{1}^{(n)}$ for $n \gg 0$. Since $u_{1}^{(n)}, w_{1}^{(n)} \in{ }^{J_{1}^{\prime}} W_{1}$, we have that
(a) $u_{1}^{(n)}=w_{1}^{(n)}$ for $n \gg 0$.

Similarly,
(b) $u_{2}^{(n)}=w_{2}^{(n)}$ for $n \gg 0$.

By definition, $\left(w_{1}^{\prime}, w_{2}^{\prime}\right)$ and $\left(u_{1}^{(0)}, \delta^{\prime}\left(v_{1}^{(0)}\right)^{-1} w_{2}^{\prime}\right)$ are in the same $W_{c^{\prime}} \times W_{c}$-coset. We can show by induction on $n \geqslant 0$ that
(c) $\left(w_{1}^{\prime}, w_{2}^{\prime}\right),\left(u_{1}^{(n)} \delta^{-1}\left(v_{2}^{(n)}\right)^{-1}, u_{2}^{(n)}\right)$ and $\left(u_{1}^{(n+1)}, \delta^{\prime}\left(v_{1}^{(n+1)}\right)^{-1} u_{2}^{(n)}\right)$ are in the same $W_{c^{\prime}} \times W_{c^{-}}$ coset.

Now suppose that $\pi\left(w_{1}^{\prime}, w_{2}^{\prime}\right)=\left(w_{1}, w_{2}\right)$. For $n \gg 0$, we have $u_{1}^{(n)}=w_{1}$ and $u_{2}^{(n)}=w_{2}$. Moreover, $\delta^{-1}\left(v_{2}^{(n)}\right) \in W_{J_{1}^{(n)}}=W_{I\left(w_{1}, w_{2}, c, c^{\prime}\right)}$. Thus by (c), $\left(w_{1}^{\prime}, w_{2}^{\prime}\right) \in\left[w_{1}, w_{2}, c, c^{\prime}\right]$. On the other hand, it is easy to see that for $v \in W_{I\left(w_{1}, w_{2}, c, c^{\prime}\right)}, \pi\left(w_{1} v, w_{2}\right)=\left(w_{1}, w_{2}\right)$. Therefore $\left[w_{1}, w_{2}, c, c^{\prime}\right]=W_{c^{\prime}}\left(w_{1} W_{I\left(w_{1}, w_{2}, c, c^{\prime}\right)}, w_{2}\right) W_{c}$. Part (1) is proved.

For all $x \in W_{w_{1} I\left(w_{1}, w_{2}, c, c^{\prime}\right)}$ and $y \in W_{I\left(w_{1}, w_{2}, c, c^{\prime}\right)}$,

$$
\left(x, \delta^{\prime}(x)\right)\left(w_{1} W_{I\left(w_{1}, w_{2}, c, c^{\prime}\right)}, w_{2}\right)(y, \delta(y))=\left(w_{1} W_{I\left(w_{1}, w_{2}, c, c^{\prime}\right)}, w_{2} W_{\delta I\left(w_{1}, w_{2}, c, c^{\prime}\right)}\right) .
$$

On the other hand, assume that $\left(x, \delta^{\prime}(x)\right)\left(w_{1} v, w_{2}\right)(y, \delta(y))=\left(w_{1} v^{\prime}, w_{2}\right)$ for $x \in W_{J_{1}^{\prime}}, y \in W_{J_{1}}$ and $v, v^{\prime} \in W_{I\left(w_{1}, w_{2}, c, c^{\prime}\right)}$, then $x w_{1} v y=w_{1} v^{\prime}$ and $\delta^{\prime}(x) w_{2} \delta(y)=w_{2}$. By [10, Lemma 3.6], $\delta^{\prime} \operatorname{supp}(x)=w_{2} \delta \operatorname{supp}(y)$ and

$$
w_{1}^{-1}\left(\operatorname{supp}(x) \cup w_{1} I\left(w_{1}, w_{2}, c, c^{\prime}\right)\right)=\operatorname{supp}(y) \cup I\left(w_{1}, w_{2}, c, c^{\prime}\right)
$$

Therefore,

$$
\begin{gathered}
w_{1}\left(\operatorname{supp}(y) \cup I\left(w_{1}, w_{2}, c, c^{\prime}\right)\right) \in J_{1}^{\prime}, \\
\delta^{\prime} w_{1}\left(\operatorname{supp}(y) \cup I\left(w_{1}, w_{2}, c, c^{\prime}\right)\right)=w_{2} \delta\left(\operatorname{supp}(y) \cup I\left(w_{1}, w_{2}, c, c^{\prime}\right)\right) .
\end{gathered}
$$

Hence $\operatorname{supp}(y) \subset I\left(w_{1}, w_{2}, c, c^{\prime}\right)$ and $\delta^{\prime}(x) w_{2} \delta(y)=w_{2}$.

Now define the action of $W_{w_{1} I\left(w_{1}, w_{2}, c, c^{\prime}\right)}$ on $\left(w_{1} W_{I\left(w_{1}, w_{2}, c, c^{\prime}\right)}, w_{2}\right)$ by

$$
x \cdot\left(w_{1} v, w_{2}\right)=\left(x w_{1} v \delta^{-1} w_{2} \delta^{\prime}(x)^{-1} w_{2}, w_{2}\right)
$$

Then the inclusion map

$$
\left(w_{1} W_{I\left(w_{1}, w_{2}, c, c^{\prime}\right)}, w_{2}\right) \rightarrow\left[w_{1}, w_{2}, c, c^{\prime}\right]
$$

 W_{c}-cosets in $\left[w_{1}, w_{2}, c, c^{\prime}\right]$. Part (2) is proved.

Corollary 2.5. Each double coset in $W_{c^{\prime}} \backslash\left(W_{1} \times W_{2}\right) / W_{c}$ contains at most one element of the form $\left(w_{1}, w_{2}\right)$ with $w_{1} \in W^{J_{1}}$ and $w_{2} \in{ }^{J_{2}^{\prime}} W$.

Proof. Let $\left(w_{1}, w_{2}\right),\left(w_{1}^{\prime}, w_{2}^{\prime}\right) \in{ }^{J_{1}^{\prime}} W_{1} \times W_{2}^{J_{2}}$. By part (1) of the previous proposition, $W_{c^{\prime}}\left(w_{1}, w_{2}\right) W_{c} \subset\left[w_{1}, w_{2}, c, c^{\prime}\right]$ and $W_{c^{\prime}}\left(w_{1}^{\prime}, w_{2}^{\prime}\right) W_{c} \subset\left[w_{1}^{\prime}, w_{2}^{\prime}, c, c^{\prime}\right]$. In particular, if $W_{c^{\prime}}\left(w_{1}, w_{2}\right) W_{c}=W_{c^{\prime}}\left(w_{1}^{\prime}, w_{2}^{\prime}\right) W_{c}$, then $\left[w_{1}, w_{2}, c, c^{\prime}\right] \cap\left[w_{1}^{\prime}, w_{2}^{\prime}, c, c^{\prime}\right] \neq \varnothing$. By the definition, $\left(w_{1}, w_{2}\right)=\left(w_{1}^{\prime}, w_{2}^{\prime}\right)$. The corollary is proved.

It is also worth mentioning the following consequence.
Corollary 2.6. Let (W, I) be a Coxeter group. Let $J, J^{\prime} \subset I$ and $\delta: W_{J} \rightarrow W_{J^{\prime}}$ be an automorphism with $\delta(J)=J^{\prime}$. Define the action of W_{J} on W by $x \cdot y=x y \delta(x)^{-1}$. For $w \in W^{J^{\prime}}$, set

$$
I(w, \delta)=\max \left\{K \subset J^{\prime} ; \delta w K=K\right\}, \quad[w, \delta]=W_{J} \cdot\left(w W_{I(w, \delta)}\right)
$$

Then
(1) $W=\bigsqcup_{w \in W^{J^{\prime}}}[w, \delta]$.
(2) For $w \in W^{J^{\prime}}$, define an automorphism $\sigma: W_{I(w, \delta)} \rightarrow W_{I(w, \delta)}$ by $\sigma(v)=\delta\left(w v w^{-1}\right)$. Then map $W_{I(w, \delta)} \rightarrow W$ defined by $v \rightarrow w v$ induces a bijection between the σ-twisted conjugacy classes in $W_{I(w, \delta)}$ and the W_{J}-orbits in $[w, \delta]$.

Proof. Let $\left(W_{1}, I_{1}\right)=\left(W_{2}, I_{2}\right)=(W, I), c=\left(J, J^{\prime}, \delta\right)$ and $c^{\prime}=(I, I, i d)$. Then the map $W_{1} \times$ $W_{2} \rightarrow W$ defined by $\left(w_{1}, w_{2}\right) \mapsto w_{1}^{-1} w_{2}$ induces a natural bijection $W_{c^{\prime}} \backslash\left(W_{1} \times W_{2}\right) / W_{c}$ to the W_{J}-orbits on W. Now the corollary follows easily from Proposition 2.4.

3. Minimal length elements

3.1. We follow the notation in [7, Section 3.2]. Let (W, I) be a Coxeter group. Let $J, J^{\prime} \subset I$ and $\delta: W_{J} \rightarrow W_{J^{\prime}}$ be an automorphism with $\delta(J)=J^{\prime}$. Given $w, w^{\prime} \in W$ and $j \in J$, we write $w{\xrightarrow{s_{j}}}_{\delta} w^{\prime}$ if $w^{\prime}=s_{j} w \delta\left(s_{j}\right)$ and $l\left(w^{\prime}\right) \leqslant l(w)$. If $w=w_{0}, w_{1}, \ldots, w_{n}=w^{\prime}$ is a sequence of elements in W such that for all k, we have $w_{k-1} \xrightarrow{s_{j}}{ }_{\delta} w_{k}$ for some $j \in J$, then we write $w \rightarrow_{\delta} w^{\prime}$.

We call $w, w^{\prime} \in W$ elementarily strongly δ-conjugate if $l(w)=l\left(w^{\prime}\right)$ and there exists $x \in W_{J}$ such that $w^{\prime}=x w \delta(x)^{-1}$ and either $l(x w)=l(x)+l(w)$ or $l\left(w \delta(x)^{-1}\right)=l(x)+l(w)$. We call w, w^{\prime} strongly δ-conjugate if there is a sequence $w=w_{0}, w_{1}, \ldots, w_{n}=w^{\prime}$ such that w_{i-1}
is elementarily strongly δ-conjugate to w_{i}. We will write $w \sim_{\delta} w^{\prime}$ if w and w^{\prime} are strongly δ-conjugate.

If $w \sim_{\delta} w^{\prime}$ and $w \rightarrow_{\delta} w^{\prime}$, then we say that w and w^{\prime} are in the same δ-cyclic shift class and write $w \approx_{\delta} w^{\prime}$. For $w \in W$, set

$$
\operatorname{Cyc}_{\delta}(w)=\left\{w^{\prime} \in W ; w \approx_{\delta} w^{\prime}\right\}
$$

If $w^{\prime} \in \operatorname{Cyc}_{\delta}(w)$ for all $w^{\prime} \in W$ with $w \rightarrow_{\delta} w^{\prime}$, then we call the δ-cyclic shift class terminal. It is easy to see that if w is an element of minimal length in $\left\{x w \delta(x)^{-1} ; x \in W_{J}\right\}$, then $\mathrm{Cyc}_{\delta}(w)$ is terminal.

The following result is proved in [6] for the usual conjugacy classes and in [8] for the twisted conjugacy classes.

Theorem 3.2. Let (W, I) be a finite Coxeter group and $\delta: W \rightarrow W$ be an automorphism with $\delta(I)=I$. Let \mathcal{O} be a δ-twisted conjugacy class in W and $\mathcal{O}_{\min }$ be the set of minimal length elements in \mathcal{O}. Then
(1) For each $w \in \mathcal{O}$, there exists $w^{\prime} \in \mathcal{O}_{\min }$ such that $w \rightarrow_{\delta} w^{\prime}$.
(2) Let $w, w^{\prime} \in \mathcal{O}_{\min }$, then $w \sim_{\delta} w^{\prime}$.
3.3. Let l_{1} (respectively l_{2}) be the length function on W_{1} (respectively W_{2}). Define the length function l on $W_{1} \times W_{2}$ by $l\left(w_{1}, w_{2}\right)=l_{1}\left(w_{1}\right)+l_{2}\left(w_{2}\right)$ for $w_{1} \in W_{1}$ and $w_{2} \in W_{2}$. For each double coset \mathcal{O} in $W_{c^{\prime}} \backslash\left(W_{1} \times W_{2}\right) / W_{c}$, we set

$$
\mathcal{O}_{\min }=\left\{\mathbf{w} \in \mathcal{O} ; l(\mathbf{w}) \leqslant l\left(\mathbf{w}^{\prime}\right) \text { for all } \mathbf{w}^{\prime} \in \mathcal{O}\right\} .
$$

Now following the convention of Fomin and Zelevinsky, we consider $W_{J_{1}^{\prime}} \times W_{J_{1}}$ as a Coxeter group with simple reflections s_{-i} (for $i \in J_{1}^{\prime}$) and s_{j} (for $j \in J_{1}$).

Given $\mathbf{w}, \mathbf{w}^{\prime} \in W_{1} \times W_{2}$ and $i \in J_{1}^{\prime}$, we write $\mathbf{w} \xrightarrow{s_{-i}} c^{\prime} \mathbf{w}^{\prime}$ if $\mathbf{w}=\left(s_{i}, \delta^{\prime}\left(s_{i}\right)\right) \mathbf{w}^{\prime}$ and $l\left(\mathbf{w}^{\prime}\right) \leqslant$ $l(\mathbf{w})$.

Similarly, given $j \in J_{1}$, we write $\mathbf{w} \xrightarrow{s_{j}}{ }_{c, c^{\prime}} \mathbf{w}^{\prime}$ if $\mathbf{w}=\mathbf{w}^{\prime}\left(s_{j}, \delta\left(s_{j}\right)\right)$ and $l\left(\mathbf{w}^{\prime}\right) \leqslant l(\mathbf{w})$.
If $\mathbf{w}=\mathbf{w}_{0}, \mathbf{w}_{1}, \ldots, \mathbf{w}_{n}=\mathbf{w}^{\prime}$ is a sequence of elements in $W_{1} \times W_{2}$ such that for all k, we have $\mathbf{w}_{k-1} \xrightarrow{s_{i}}{ }_{c, c^{\prime}} \mathbf{w}_{k}$ for some $i \in-J_{1}^{\prime} \sqcup J_{1}$, then we write $\mathbf{w} \rightarrow_{c, c^{\prime}} \mathbf{w}^{\prime}$.

We write $\mathbf{w} \sim_{c, c^{\prime}} \mathbf{w}^{\prime}$ if there exists a sequence $\mathbf{w}=\mathbf{w}_{0}, \mathbf{w}_{1}, \ldots, \mathbf{w}_{n}=\mathbf{w}^{\prime}$ such that

$$
l\left(\mathbf{w}_{k+1}\right)=l\left(\mathbf{w}_{k}\right), \quad \mathbf{w}_{k+1}=\left(x_{k}, \delta^{\prime}\left(x_{k}\right)\right) \mathbf{w}_{k}\left(y_{k}, \delta\left(y_{k}\right)\right)
$$

and either

$$
l\left(\left(x_{k}, 1\right) \mathbf{w}_{k}\left(1, \delta\left(y_{k}\right)\right)\right)=l_{1}\left(x_{k}\right)+l\left(\mathbf{w}_{k}\right)+l_{1}\left(y_{k}\right)
$$

or

$$
l\left(\left(1, \delta^{\prime}\left(x_{k}\right)\right) \mathbf{w}_{k}\left(y_{k}, 1\right)\right)=l_{1}\left(x_{k}\right)+l\left(\mathbf{w}_{k}\right)+l_{1}\left(y_{k}\right)
$$

for all k and some $x_{k} \in W_{J_{1}^{\prime}}, y_{k} \in W_{J_{1}}$.
We write $\mathbf{w} \approx_{c, c^{\prime}} \mathbf{w}^{\prime}$ if $\mathbf{w} \rightarrow_{c, c^{\prime}} \mathbf{w}^{\prime}$ and $\mathbf{w} \sim_{c, c^{\prime}} \mathbf{w}^{\prime}$.

Proposition 3.4. Let $\left(w_{1}, w_{2}\right) \in{ }^{J_{1}^{\prime}} W_{1} \times W_{2}^{J_{2}}$ and \mathcal{O} is a double coset in $W_{c^{\prime}} \backslash\left[w_{1}, w_{2}, c, c^{\prime}\right] / W_{c}$ that corresponds to the σ-twisted conjugacy class \mathcal{O}^{\prime} in $W_{I\left(w_{1}, w_{2}, c, c^{\prime}\right)}$ via the map in Proposition 2.4(2). Let $\mathcal{O}_{\min }^{\prime}$ be the set of minimal length elements in \mathcal{O}^{\prime}. Then
(1) For each $\mathbf{w} \in \mathcal{O}$, there exists $v \in \mathcal{O}^{\prime}$ such that $\mathbf{w} \rightarrow_{c, c^{\prime}}\left(w_{1} v, w_{2}\right)$.
(2) If $\mathbf{w} \in \mathcal{O}_{\min }$, then there exists $v \in \mathcal{O}_{\min }^{\prime}$ such that $\mathbf{w} \approx_{c, c^{\prime}}\left(w_{1} v, w_{2}\right)$.

Proof. Let $\left(J_{1}^{(n)}, J_{2}^{\prime(n)}, w_{1}^{(n)}, w_{2}^{(n)}, u_{1}^{(n)}, u_{2}^{(n)}, v_{1}^{(n)}, v_{2}^{(n)}\right)_{n \geqslant 0}$ be the sequence associated to $\mathbf{w}=$ ($w_{1}^{\prime}, w_{2}^{\prime}$). Then it is easy to see that

$$
\mathbf{w} \rightarrow_{c, c^{\prime}}\left(u_{1}^{(0)}, \delta^{\prime}\left(v_{1}^{(0)}\right)^{-1} w_{2}^{\prime}\right) \rightarrow_{c, c^{\prime}}\left(u_{1}^{(0)} \delta^{-1}\left(v_{2}^{(0)}\right)^{-1}, u_{2}^{(0)}\right)
$$

and for $n \geqslant 0$,

$$
\begin{aligned}
\left(u_{1}^{(n)} \delta^{-1}\left(v_{2}^{(n)}\right)^{-1}, u_{2}^{(n)}\right) & \rightarrow_{c, c^{\prime}}\left(u_{1}^{(n+1)}, \delta^{\prime}\left(v_{1}^{(n+1)}\right)^{-1} u_{2}^{(n)}\right) \\
& \rightarrow_{c, c^{\prime}}\left(u_{1}^{(n+1)} \delta^{-1}\left(v_{2}^{(n+1)}\right)^{-1}, u_{2}^{(n+1)}\right) .
\end{aligned}
$$

By the proof of Proposition 2.4, $u_{1}^{(n)}=w_{1}, u_{2}^{(n)}=w_{2}$ and $\delta^{-1}\left(v_{2}^{(n)}\right) \in \mathcal{O}^{\prime}$ for $n \gg 0$. Thus $\mathbf{w} \rightarrow_{c, c^{\prime}}\left(w_{1} v, w_{2}\right)$ for some $v \in \mathcal{O}^{\prime}$. Part (1) is proved.

If moreover, $\mathbf{w} \in \mathcal{O}_{\text {min }}$, then $\left(w_{1} v, w_{2}\right) \in \mathcal{O}_{\text {min }}$. By Proposition 2.4(2), $v \in \mathcal{O}_{\text {min }}^{\prime}$. It is then easy to see that

$$
\mathbf{w} \approx_{c, c^{\prime}}\left(u_{1}^{(0)}, \delta^{\prime}\left(v_{1}^{(0)}\right)^{-1} w_{2}^{\prime}\right) \approx_{c, c^{\prime}}\left(u_{1}^{(0)} \delta^{-1}\left(v_{2}^{(0)}\right)^{-1}, u_{2}^{(0)}\right)
$$

and for $n \geqslant 0$,

$$
\begin{aligned}
\left(u_{1}^{(n)} \delta^{-1}\left(v_{2}^{(n)}\right)^{-1}, u_{2}^{(n)}\right) & \approx_{c, c^{\prime}}\left(u_{1}^{(n+1)}, \delta^{\prime}\left(v_{1}^{(n+1)}\right)^{-1} u_{2}^{(n)}\right) \\
& \approx_{c, c^{\prime}}\left(u_{1}^{(n+1)} \delta^{-1}\left(v_{2}^{(n+1)}\right)^{-1}, u_{2}^{(n+1)}\right)
\end{aligned}
$$

In particular, $\mathbf{w} \approx_{c, c^{\prime}}\left(w_{1} v, w_{2}\right)$. Part (2) is proved.
Now combining the above proposition with Theorem 3.2, we have the following consequence.
Corollary 3.5. Let $\left(w_{1}, w_{2}\right) \in{ }_{1}^{J_{1}^{\prime}} W_{1} \times W_{2}^{J_{2}}$ with $W_{I\left(w_{1}, w_{2}, c, c^{\prime}\right)}$ is a finite Coxeter group. Let $\mathcal{O} \in W_{c^{\prime}} \backslash\left[w_{1}, w_{2}, c, c^{\prime}\right] / W_{c}$. Then
(1) For each $\mathbf{w} \in \mathcal{O}$, there exists $\mathbf{w}^{\prime} \in \mathcal{O}_{\min }$ such that $\mathbf{w} \rightarrow_{c, c^{\prime}} \mathbf{w}^{\prime}$.
(2) Let $\mathbf{w}, \mathbf{w}^{\prime} \in \mathcal{O}_{\min }$, then $\mathbf{w} \sim_{c, c^{\prime}} \mathbf{w}^{\prime}$.

Remark. By definition, if $W_{J_{1}}$ or $W_{J_{1}^{\prime}}$ is a finite Coxeter group, then $W_{I\left(w_{1}, w_{2}, c, c^{\prime}\right)}$ is also a finite Coxeter group.

Lemma 3.6. Let (W, I) be a Coxeter group and $\delta: W \rightarrow W$ be an automorphism with $\delta(I)=I$. Let $w \in W$ with $\delta(w)=w^{-1}$. Then $w \rightarrow{ }_{\delta} w_{J}$ for some $J=\delta(J) \subset I$. Moreover, $w_{J} \delta\left(s_{j}\right)=$
$s_{j} w_{J}$ for $j \in J$ and w_{J} has minimal length in its σ-conjugacy class in W. In particular, $x \delta(x)^{-1} \rightarrow_{\delta} 1$ for all $x \in W$.

Remark. This is a generalization of Richardson's theorem in [17]. Our proof is similar to the proof of [7, 3.2.10] which was essentially due to Howlett.

Proof of Lemma 3.6. We argue by induction on $l(w)$. For $w=1$ this is clear. Suppose that $l(w) \geqslant 1$. Since $\delta(w)=w^{-1}$, we have that $\left\{i \in I ; l\left(s_{i} w\right)<l(w)\right\}=\left\{i \in I ; l\left(w \delta\left(s_{i}\right)\right)<l(w)\right\}$. Set

$$
J=\left\{i \in I ; s_{i} w=w \delta\left(s_{i}\right), l\left(s_{i} w\right)<l(w)\right\} .
$$

Then $w=w_{J} w^{\prime}$, where w_{J} is the maximal element in W_{K} and $w^{\prime} \in{ }^{J} W$.
If $w^{\prime}=1$, then $w=w_{J}=\delta\left(w_{J}\right)^{-1}$ and $\delta(J)=J$. Now for $x=a b$ with $a \in W^{J}$ and $b \in W_{J}$, $x w \delta(x)^{-1}=a\left(b w \delta(b)^{-1}\right) \delta(a)^{-1}=a w_{J} \delta(a)^{-1}$. So $l\left(x w \delta(x)^{-1}\right) \geqslant l\left(a w_{J}\right)-l(a)=l(w)$.

If $w^{\prime} \neq 1$, then there exists $i \in I$ with $l\left(w^{\prime} \delta\left(s_{i}\right)\right)<l\left(w^{\prime}\right)$. Hence $l\left(w \delta\left(s_{i}\right)\right)<l(w)$ and $l\left(s_{i} w\right)<l(w)$. If $i \in J$, then $s_{i} w \in W_{J} w^{\prime}, w \delta\left(s_{i}\right) \in W_{J} w^{\prime} \delta\left(s_{i}\right)$ and $w^{\prime}, w^{\prime} \delta\left(s_{i}\right) \in{ }^{J} W$. Hence $s_{i} w \neq w \delta\left(s_{i}\right)$. That is a contradiction. Hence $i \notin J$. By [7, Lemma 1.2.6], $l\left(s_{i} w \delta\left(s_{i}\right)\right)<l(w)$. Hence $w \rightarrow_{\delta} s_{i} w \delta\left(s_{i}\right)$. Now the lemma follows from induction hypothesis.

Now combining the above lemma with Proposition 3.4, we have the following consequence.
Corollary 3.7. Let $\left(w_{1}, w_{2}\right) \in{ }^{J_{1}^{\prime}} W_{1} \times W_{2}^{J_{2}}$ and $\mathcal{O}=W_{c^{\prime}}\left(w_{1}, w_{2}\right) W_{c}$. Let $\mathbf{w} \in \mathcal{O}$. Then $\mathbf{w} \rightarrow_{c, c^{\prime}}$ $\left(w_{1}, w_{2}\right)$. If moreover, $\mathbf{w} \in \mathcal{O}_{\min }$, then $\mathbf{w} \approx_{c, c^{\prime}}\left(w_{1}, w_{2}\right)$.

It is also worth mentioning the following consequence which is a generalization of Theorem 3.2.

Corollary 3.8. Let (W, I) be a Coxeter group. Let $J, J^{\prime} \subset I$ and $\delta: W_{J} \rightarrow W_{J^{\prime}}$ be an automorphism with $\delta(J)=J^{\prime}$. Define the action of W_{J} on W by $x \cdot y=x y \delta(x)^{-1}$. Let \mathcal{O} be a W_{J}-orbit in W and $\mathcal{O}_{\min }$ be the set of minimal length elements in \mathcal{O}. If moreover, W_{J} is a finite Coxeter group or $\mathcal{O} \cap W^{J^{\prime}} \neq \varnothing$. Then
(1) For each $w \in \mathcal{O}$, there exists $w^{\prime} \in \mathcal{O}_{\min }$ such that $w \rightarrow_{\delta} w^{\prime}$.
(2) Let $w, w^{\prime} \in \mathcal{O}_{\min }$, then $w \sim_{\delta} w^{\prime}$.

Remark. The case when W is a finite Coxeter group was proved in [4].

4. Distinguished double cosets

Lemma 4.1. For $\left(w_{1}, w_{2}\right) \in W_{1} \times W_{2}$, set

$$
\begin{aligned}
W\left(w_{1}, w_{2}\right)= & \left\{v \in W_{J_{1}} ; \delta^{\prime} \operatorname{Ad}\left(w_{1}\right)\left(\delta^{-1} \operatorname{Ad}\left(w_{2}\right)^{-1} \delta^{\prime} \operatorname{Ad}\left(w_{1}\right)\right)^{n} v \in W_{J_{2}^{\prime}}\right. \text { and } \\
& \left.\left(\delta^{-1} \operatorname{Ad}\left(w_{2}\right)^{-1} \delta^{\prime} \operatorname{Ad}\left(w_{1}\right)\right)^{n+1} v \in W_{J_{1}} \text { for all } n \geqslant 0\right\}
\end{aligned}
$$

Then

(1) $W\left(w_{1}, w_{2}\right)=W_{I\left(w_{1}, w_{2}, c, c^{\prime}\right)}$ for $\left(w_{1}, w_{2}\right) \in{ }^{J_{1}^{\prime}} W_{1} \times W_{2}^{J_{2}}$.
(2) $W\left(w_{1}^{\prime}, w_{2}^{\prime}\right)=W_{\delta^{-1} I\left(w_{2}^{\prime}, w_{1}^{\prime}, c^{-1},\left(c^{\prime}\right)^{-1}\right)}$ for $\left(w_{1}^{\prime}, w_{2}^{\prime}\right) \in W_{1}^{J_{1}} \times{ }^{J_{2}^{\prime}} W_{2}$.

Proof. Part (2) is equivalent to part (1). So we will only prove part (1).
Let $\left(J_{1}^{(n)}, J_{2}^{(n)}, w_{1}^{(n)}, w_{2}^{(n)}\right)_{n \geqslant 0}$ be the element in $\mathcal{T}\left(c, c^{\prime}\right)$ whose image under the map ϕ defined in Proposition 1.7 is $\left(w_{1}, w_{2}\right)$. Let $v \in W\left(w_{1}, w_{2}\right)$. Then we can prove by induction on $n \geqslant 0$ that

$$
\begin{gathered}
\delta^{\prime} \operatorname{Ad}\left(w_{1}\right)\left(\delta^{-1} \operatorname{Ad}\left(w_{2}\right)^{-1} \delta^{\prime} \operatorname{Ad}\left(w_{1}\right)\right)^{n} v \in W_{J_{2}^{(n)}} \\
\left(\delta^{-1} \operatorname{Ad}\left(w_{2}\right)^{-1} \delta^{\prime} \operatorname{Ad}\left(w_{1}\right)\right)^{n+1} v \in W_{J_{1}^{(n+1)}}
\end{gathered}
$$

In particular, for $n \gg 0$,

$$
\left(\delta^{-1} \operatorname{Ad}\left(w_{2}\right)^{-1} \delta^{\prime} \operatorname{Ad}\left(w_{1}\right)\right)^{n+1} v \in W_{I\left(w_{1}, w_{2}, c, c^{\prime}\right)}
$$

Hence $v \in W_{I\left(w_{1}, w_{2}, c, c^{\prime}\right)}$. On the other hand, $W_{I\left(w_{1}, w_{2}, c, c^{\prime}\right)} \subset W\left(w_{1}, w_{2}\right)$. Hence $W_{I\left(w_{1}, w_{2}, c, c^{\prime}\right)}=$ $W\left(w_{1}, w_{2}\right)$. Part (1) is proved.
4.2. A double coset \mathcal{O} in $W_{c^{\prime}} \backslash\left(W_{1} \times W_{2}\right) / W_{c}$ is called distinguished with respect to c, c^{\prime} if it contains some element $\left(w_{1}, w_{2}\right)$ with $w_{1} \in J_{1}^{\prime} W_{1}$ and $w_{2} \in W_{2}^{J_{2}}$. In this case, we simply write $I\left(\mathcal{O}, c, c^{\prime}\right)$ for $I\left(w_{1}, w_{2}, c, c^{\prime}\right)$ and $\left[\mathcal{O}, c, c^{\prime}\right]$ for $\left[w_{1}, w_{2}, c, c^{\prime}\right]$.

The minimal length elements in distinguished double cosets are called distinguished elements in $W_{1} \times W_{2}$ with respect to c, c^{\prime}.

Proposition 4.3. Each element in $W_{1}^{J_{1}} \times{ }^{J_{2}^{\prime}} W_{2}$ is a distinguished element in $W_{1} \times W_{2}$ with respect to c, c^{\prime}.

Proof. Let $w_{1}^{\prime} \in W_{1}^{J_{1}}$ and $w_{2}^{\prime} \in{ }^{J_{2}^{\prime}} W_{2}$. Then $\left(w_{1}^{\prime}, w_{2}^{\prime}\right)$ is of minimal length in $W_{c^{\prime}}\left(w_{1}^{\prime}, w_{2}^{\prime}\right) W_{c}$. By Proposition 2.4, we may assume that $\left(w_{1}^{\prime}, w_{2}^{\prime}\right)=\left(x, \delta^{\prime}(x)\right)\left(w_{1} v_{1}, w_{2} v_{2}\right)(y, \delta(y))$ for some $x \in W_{J_{1}^{\prime}}, y \in W_{J_{1}}, w_{1} \in{ }^{J_{1}^{\prime}} W_{1}, w_{2} \in W_{2}^{J_{2}}, v_{1} \in W_{I\left(w_{1}, w_{2}, c, c^{\prime}\right)}$ and $v_{2} \in W_{\delta I\left(w_{1}, w_{2}, c, c^{\prime}\right)}$. It is easy to see that we may assume furthermore that $x \in W_{J_{1}^{\prime}}^{I^{\prime}\left(w_{1}, w_{2}, c, c^{\prime}\right)}$ and $y \in W_{J_{1}}^{I\left(w_{1}, w_{2}, c, c^{\prime}\right)}$, where $I^{\prime}\left(w_{1}, w_{2}, c, c^{\prime}\right)=\delta^{\prime} w_{1} I\left(w_{1}, w_{2}, c, c^{\prime}\right)$. By Lemma 4.1,

$$
W_{\delta^{-1} I\left(w_{2}^{\prime}, w_{1}^{\prime}, c^{-1},\left(c^{\prime}\right)^{-1}\right)}=W\left(w_{1}^{\prime}, w_{2}^{\prime}\right)=y^{-1} W\left(w_{1}, w_{2}\right) y=y^{-1} W_{I\left(w_{1}, w_{2}, c, c^{\prime}\right)} y .
$$

Hence $\delta^{-1} I\left(w_{2}^{\prime}, w_{1}^{\prime}, c^{-1},\left(c^{\prime}\right)^{-1}\right)=y^{-1} I\left(w_{1}, w_{2}, c, c^{\prime}\right)$. Thus $x v_{1} y \in W_{\delta^{-1} I\left(w_{2}^{\prime}, w_{1}^{\prime}, c^{-1},\left(c^{\prime}\right)^{-1}\right)}$ and $x w_{1} y\left(y^{-1} v y\right)=w_{1}^{\prime} \in W_{1}^{\delta^{-1} I\left(w_{2}^{\prime}, w_{1}^{\prime}, c^{-1},\left(c^{\prime}\right)^{-1}\right)}$. Hence $y^{-1} v_{1} y=1$ and $v_{1}=1$. Similarly, $v_{2}=1$. Then $\left(w_{1}^{\prime}, w_{2}^{\prime}\right) \in W_{c^{\prime}}\left(w_{1}, w_{2}\right) W_{c}$ and $\left(w_{1}^{\prime}, w_{2}^{\prime}\right)$ is a distinguished element. The proposition is proved.

In the rest of this section, we will introduce a partial order on the set of distinguished double cosets.

Lemma 4.4. Let $\mathcal{O} \in W_{c^{\prime}} \backslash\left(W_{1} \times W_{2}\right) / W_{c}$ and $\mathbf{w} \in \mathcal{O}_{\min }$. If $\mathbf{w} \leqslant \mathbf{w}^{\prime}$ and $\mathbf{w}_{1}^{\prime} \rightarrow_{c, c^{\prime}} \mathbf{w}^{\prime}$, then there exists $\mathbf{w}_{1} \in \mathcal{O}_{\text {min }}$ with $\mathbf{w}_{1} \leqslant \mathbf{w}_{1}^{\prime}$.

Proof. It suffices to prove that for any $i \in-J_{1}^{\prime} \sqcup J_{1}$ and $\mathbf{w}_{1}^{\prime} \in W_{1} \times W_{2}$ with $\mathbf{w}_{1}^{\prime} \xrightarrow{s_{i}}{ }_{c, c^{\prime}} \mathbf{w}^{\prime}$, there exists $\mathbf{w}_{1} \in \mathcal{O}_{\text {min }}$ with $\mathbf{w}_{1} \leqslant \mathbf{w}_{1}^{\prime}$. There are two cases:

Case 1. $\mathbf{w}_{1}^{\prime}=\left(s_{i}, \delta^{\prime}\left(s_{i}\right)\right) \mathbf{w}^{\prime}$ for $i \in J_{1}^{\prime}$.
Case 2. $\mathbf{w}_{1}^{\prime}=\mathbf{w}^{\prime}\left(s_{i}, \delta\left(s_{i}\right)\right)$ for $i \in J_{1}$.
We will only prove for case 1 . Case 2 can be proved in the same way. Assume that $\mathbf{w}^{\prime}=$ $\left(w_{1}^{\prime}, w_{2}^{\prime}\right)$ and $\mathbf{w}=\left(w_{1}, w_{2}\right)$. If $l\left(\mathbf{w}_{1}\right)>l\left(\mathbf{w}^{\prime}\right)$. Then $\mathbf{w} \leqslant \mathbf{w}^{\prime} \leqslant \mathbf{w}_{1}^{\prime}$. Now assume that $l\left(\mathbf{w}_{1}\right)=$ $l\left(\mathbf{w}^{\prime}\right)$. Without loss of generalization, we may assume that $s_{i} w_{1}^{\prime}<w_{1}^{\prime}$ and $\delta^{\prime}\left(s_{i}\right) w_{2}^{\prime}>w_{2}^{\prime}$.

If $s_{i} w_{1}>w_{1}$, then by [13, Corollary 2.5], we have that $w_{1} \leqslant s_{i} w_{1}^{\prime}$. We also have that $w_{2} \leqslant$ $w_{2}^{\prime}<\delta^{\prime}\left(s_{i}\right) w_{2}^{\prime}$. Hence $\mathbf{w} \leqslant \mathbf{w}_{1}^{\prime}$.

If $s_{i} w_{1}<w_{1}$, then by [13, Corollary 2.5], we have that $s_{i} w_{1}<s_{i} w_{1}^{\prime}$. Since $\delta^{\prime}\left(s_{i}\right) w_{2}^{\prime}>w_{2}^{\prime}$ and $w_{2} \leqslant w_{2}^{\prime}$, then by [13, Corollary 2.5], we also have that $\delta^{\prime}\left(s_{i}\right) w_{2} \leqslant \delta^{\prime}\left(s_{i}\right) w_{2}^{\prime}$. Hence $\left(s_{i}, \delta^{\prime}\left(s_{i}\right)\right) \mathbf{w} \leqslant \mathbf{w}_{1}^{\prime}$. Moreover, since $s_{i} w_{1}<w_{1}, l\left(\left(s_{i}, \delta^{\prime}\left(s_{i}\right)\right) \mathbf{w}\right) \leqslant l(\mathbf{w})$ and $\mathbf{w} \in \mathcal{O}_{\min }$, we have that $\left(s_{i}, \delta^{\prime}\left(s_{i}\right)\right) \mathbf{w} \in \mathcal{O}_{\text {min }}$. The lemma is proved.

Now combining the above lemma with Corollary 3.8, we have the following consequence.

Corollary 4.5. Let $\mathcal{O} \in W_{c^{\prime}} \backslash\left(W_{1} \times W_{2}\right) / W_{c}$. If moreover, any of the following condition holds:
(1) $W_{J^{\prime}}$ or $W_{J_{1}}$ is a finite Coxeter group; or
(2) \mathcal{O} is a distinguished double coset,
then $\mathcal{O}_{\text {min }}=\{\mathbf{w} \in \mathcal{O} ; \mathbf{w}$ is a minimal element in $\mathcal{O}\}$.

Here is another consequence.

Corollary 4.6. Let $\mathcal{O}, \mathcal{O}^{\prime}$ be distinguished double cosets in $W_{c^{\prime}} \backslash\left(W_{1} \times W_{2}\right) / W_{c}$. Then the following conditions are equivalent:
(1) For some $\mathbf{w}^{\prime} \in \mathcal{O}_{\min }^{\prime}$, there exists $\mathbf{w} \in \mathcal{O}_{\min }$ such that $\mathbf{w} \leqslant \mathbf{w}^{\prime}$.
(2) For any $\mathbf{w}^{\prime} \in \mathcal{O}_{\min }^{\prime}$, there exists $\mathbf{w} \in \mathcal{O}_{\min }$ such that $\mathbf{w} \leqslant \mathbf{w}^{\prime}$.
4.7. Now we define a partial order on the set of distinguished double cosets in $W_{c^{\prime}} \backslash\left(W_{1} \times\right.$ W_{2})/ W_{c} as follows:
$\mathcal{O} \leqslant \mathcal{O}^{\prime}$ if for some (or equivalently, any) $\mathbf{w}^{\prime} \in \mathcal{O}_{\text {min }}^{\prime}$, there exists $\mathbf{w} \in \mathcal{O}_{\min }$ with $\mathbf{w} \leqslant \mathbf{w}^{\prime}$.
This partial order will be used in the next section to describe the closure relations of the so-called $\mathcal{R}_{\mathcal{C}^{\prime}} \times \mathcal{R}_{\mathcal{C}}$-stable pieces.

5. $\mathcal{R}_{\mathcal{C}^{\prime}} \times \mathcal{R}_{\mathcal{C}}$-stable pieces and Hecke algebras

5.1. For $i=1,2$, let G_{i} be a connected reductive algebraic group over an algebraically closed field k, B_{i} be a Borel subgroup of G_{i} and $T_{i} \subset B_{i}$ be a maximal torus. B_{i} and T_{i} determine a Weyl group W_{i} and the set I_{i} of its simple reflections. For $w \in W$, we use the same symbol w for a representative of w in $N(T)$. For each subset J_{i} of I_{i}, we denote by $P_{J_{i}}$ the standard parabolic subgroup of type $J_{i}, L_{J_{i}}$ the Levi subgroup of $P_{J_{i}}$ that contains T_{i} and $\pi_{J_{i}}: P_{J_{i}} \rightarrow L_{J_{i}}$ the projection map.

For any subvariety X of $G_{1} \times G_{2}$, we denote by \bar{X} its closure in $G_{1} \times G_{2}$.
An admissible triple of $G_{1} \times G_{2}$ is by definition a triple $\mathcal{C}=\left(J_{1}, J_{2}, \theta_{\delta}\right)$ consisting of $J_{1} \subset I_{1}$, $J_{2} \subset I_{2}$, an isomorphism $\delta: W_{J_{1}} \rightarrow W_{J_{2}}$ with $\delta\left(J_{1}\right)=J_{2}$ and an isomorphism $\theta_{\delta}: L_{J_{1}} \rightarrow L_{J_{2}}$ that maps $T_{1} \subset L_{J_{1}}$ to $T_{2} \subset L_{J_{2}}$ and the root subgroup $U_{\alpha_{i}} \subset L_{J_{1}}$ to the root subgroup $U_{\alpha_{\delta(i)}} \subset L_{J_{2}}$ for $i \in J_{1}$. To each admissible triple $\mathcal{C}=\left(J_{1}, J_{2}, \theta_{\delta}\right)$, we associate a subgroup $\mathcal{R}_{\mathcal{C}}$ of $G_{1} \times G_{2}$ defined as follows:

$$
\mathcal{R}_{\mathcal{C}}=\left\{(p, q) ; p \in P_{J_{1}}, q \in P_{J_{2}}, \theta_{\delta}\left(\pi_{J_{1}}(p)\right)=\pi_{J_{2}}(q)\right\} .
$$

Moreover, each admissible triple $\mathcal{C}=\left(J_{1}, J_{2}, \theta_{\delta}\right)$ of $G_{1} \times G_{2}$ determines an admissible triple $c=\left(J_{1}, J_{2}, \delta\right)$ of $W_{1} \times W_{2}$. We also set $\mathcal{B}_{\mathcal{C}}=\mathcal{R}_{\mathcal{C}} \cap\left(B_{1}, B_{2}\right)$.

Notice that if $G_{1}=G_{2}=G, B_{1}=B_{2}=B, T_{1}=T_{2}=T$ and $I_{1}=I_{2}=I$, then $\mathcal{R}_{(I, I, i d)}$ is the diagonal subgroup G_{Δ} of $G \times G$ and $\mathcal{B}_{\mathcal{C}}=B_{\Delta}$. In fact, in [12], they consider a slightly more general class of the groups $\mathcal{R}_{\mathcal{C}}$. However, the results below can be easily generalized to the more general setting.
5.2. Now given admissible triples $\mathcal{C}=\left(J_{1}, J_{2}, \theta_{\delta}\right)$ and $\mathcal{C}^{\prime}=\left(J_{1}^{\prime}, J_{2}^{\prime}, \theta_{\delta^{\prime}}\right)$ of $G_{1} \times G_{2}$. Let $c=\left(J_{1}, J_{2}, \delta\right)$ and $c^{\prime}=\left(J_{1}^{\prime}, J_{2}^{\prime}, \delta^{\prime}\right)$ be the corresponding admissible triples of $W_{1} \times W_{2}$. For $\left(w_{1}, w_{2}\right) \in{ }^{J_{1}^{\prime}} W_{1} \times W_{2}^{J_{2}}$, define

$$
\left[w_{1}, w_{2}, \mathcal{C}, \mathcal{C}^{\prime}\right]=\mathcal{R}_{\mathcal{C}^{\prime}}\left(B_{1} w_{1} B_{1}, B_{2} w_{2} B_{2}\right) \mathcal{R}_{\mathcal{C}}
$$

We call $\left[w_{1}, w_{2}, \mathcal{C}, \mathcal{C}^{\prime}\right]$ a $\mathcal{R}_{\mathcal{C}^{\prime}} \times \mathcal{R}_{\mathcal{C}}$-stable piece of $G_{1} \times G_{2}$.
Proposition 5.3. Let $\left(w_{1}^{\prime}, w_{2}^{\prime}\right)$ be a distinguished element in $W_{1} \times W_{2}$ with respect to c, c^{\prime} and $\pi\left(w_{1}^{\prime}, w_{2}^{\prime}\right)=\left(w_{1}, w_{2}\right)$. Then

$$
\left[w_{1}, w_{2}, \mathcal{C}, \mathcal{C}^{\prime}\right]=\mathcal{R}_{\mathcal{C}^{\prime}}\left(B_{1} w_{1}^{\prime} B_{1}, B_{2} w_{2}^{\prime} B_{2}\right) \mathcal{R}_{\mathcal{C}^{\prime}}
$$

Remark. Thus for a distinguished double \mathcal{O} in $W_{c^{\prime}} \backslash\left(W_{1} \times W_{2}\right) / W_{c}$, we may write $\left[\mathcal{O}, \mathcal{C}, \mathcal{C}^{\prime}\right]$ for [$w_{1}, w_{2}, \mathcal{C}, \mathcal{C}^{\prime}$] where $\left(w_{1}, w_{2}\right)$ is the unique element in $\mathcal{O} \cap\left({ }^{J_{1}^{\prime}} W_{1} \times W_{2}^{J_{2}}\right)$.

Proof of Proposition 5.3. Let $\left(J_{1}^{(n)}, J_{2}^{\prime(n)}, w_{1}^{(n)}, w_{2}^{(n)}, u_{1}^{(n)}, u_{2}^{(n)}, v_{1}^{(n)}, v_{2}^{(n)}\right)_{n \geqslant 0}$ be the sequence associated to $\left(w_{1}^{\prime}, w_{2}^{\prime}\right)$. By the proof of Proposition 3.4,

$$
\begin{aligned}
\mathcal{R}_{\mathcal{C}^{\prime}}\left(B_{1} w_{1}^{\prime} B_{1}, B_{2} w_{2}^{\prime} B_{2}\right) \mathcal{R}_{\mathcal{C}^{\prime}} & =\mathcal{R}_{\mathcal{C}^{\prime}}\left(B_{1} u_{1}^{(0)} B_{1}, B_{2} \delta^{\prime}\left(v_{1}^{(0)}\right)^{-1} w_{2}^{\prime} B_{2}\right) \mathcal{R}_{\mathcal{C}^{\prime}} \\
& =\mathcal{R}_{\mathcal{C}^{\prime}}\left(B_{1} u_{1}^{(0)} \delta^{-1}\left(v_{2}^{(0)}\right)^{-1} B_{1}, B_{2} u_{2}^{(0)} B_{2}\right) \mathcal{R}_{\mathcal{C}^{\prime}}
\end{aligned}
$$

and for $n \geqslant 0$,

$$
\begin{aligned}
& \mathcal{R}_{\mathcal{C}^{\prime}}\left(B_{1} u_{1}^{(n)} \delta^{-1}\left(v_{2}^{(n)}\right)^{-1} B_{1}, B_{2} u_{2}^{(n)} B_{2}\right) \mathcal{R}_{\mathcal{C}^{\prime}} \\
& \quad=\mathcal{R}_{\mathcal{C}^{\prime}}\left(B_{1} u_{1}^{(n+1)} B_{1}, B_{2} \delta^{\prime}\left(v_{1}^{(n+1)}\right)^{-1} u_{2}^{(n)} B_{2}\right) \mathcal{R}_{\mathcal{C}^{\prime}} \\
& \quad=\mathcal{R}_{\mathcal{C}^{\prime}}\left(B_{1} u_{1}^{(n+1)} \delta^{-1}\left(v_{2}^{(n+1)}\right)^{-1} B_{1}, B_{2} u_{2}^{(n+1)} B_{2}\right) \mathcal{R}_{\mathcal{C}^{\prime}} .
\end{aligned}
$$

By the proof of Proposition 2.4, $u_{1}^{(n)}=w_{1}, u_{2}^{(n)}=w_{2}$ for $n \gg 0$. Moreover, since $l\left(w_{1}^{\prime}, w_{2}^{\prime}\right)=$ $l\left(w_{1}, w_{2}\right)$, we have that $v_{2}^{(n)}=1$ for $n \gg 0$. Thus $\left[w_{1}, w_{2}, \mathcal{C}, \mathcal{C}^{\prime}\right]=\mathcal{R}_{\mathcal{C}^{\prime}}\left(B_{1} w_{1}^{\prime} B_{1}, B_{2} w_{2}^{\prime} B_{2}\right) \mathcal{R}_{\mathcal{C}^{\prime}}$. The proposition is proved.

Now combining the above proposition with Proposition 4.3, we have the following consequence.

Corollary 5.4. $\mathcal{R}_{\mathcal{C}^{\prime}}\left(B_{1} w_{1} B_{1}, B_{2} w_{2} B_{2}\right) \mathcal{R}_{\mathcal{C}}$ is a $\mathcal{R}_{\mathcal{C}^{\prime}} \times \mathcal{R}_{\mathcal{C}}$-stable piece for $\left(w_{1}, w_{2}\right) \in W_{1}^{J_{1}} \times$ $J_{2}^{\prime} W_{2}$.

Remark. In [12], Lu and Yakimov define the $\mathcal{R}_{\mathcal{C}^{\prime}} \times \mathcal{R}_{\mathcal{C}}$-stable piece using $W_{1}^{J_{1}} \times{ }^{J_{2}^{\prime}} W_{2}$ instead of ${ }^{J_{1}^{\prime}} W_{1} \times W_{2}^{J_{2}}$. Now we can see from the above corollary that our definition coincide with theirs.

We may reformulate the above corollary in a different way.
Corollary 5.5. Let $\partial: G_{1} \times G_{2} \rightarrow G_{2} \times G_{1}$ be the map defined by $\left(g_{1}, g_{2}\right) \mapsto\left(g_{2}, g_{1}\right)$. Then ∂

Remark. A special case of the corollary has been proved in [11, Proposition 2.5]. The proof here is simpler.

We also have the following properties of the $\mathcal{R}_{\mathcal{C}^{\prime}} \times \mathcal{R}_{\mathcal{C}}$-stable pieces which were proved in [12] generalizing some results of the G-stable pieces obtained in [15].

Proposition 5.6.

(1) $G_{1} \times G_{2}=\bigsqcup_{\left(w_{1}, w_{2}\right) \epsilon^{J_{1}^{\prime}} W_{1} \times W_{2}^{J_{2}}}\left[w_{1}, w_{2}, \mathcal{C}, \mathcal{C}^{\prime}\right]$.
(2) Let $\left(w_{1}, w_{2}\right) \in^{J_{1}^{\prime}} W_{1} \times W_{2}^{J_{2}}$. Define an automorphism $\theta_{\sigma}: L_{I\left(w_{1}, w_{2}, c, c^{\prime}\right)} \rightarrow L_{I\left(w_{1}, w_{2}, c, c^{\prime}\right)}$ by $\theta_{\sigma}(l)=\theta_{\delta}^{-1}\left(w_{2}^{-1} \theta_{\delta}\left(w_{1} l w_{1}^{-1}\right) w_{2}\right)$. Then map $L_{I\left(w_{1}, w_{2}, c, c^{\prime}\right)} \rightarrow G_{1} \times G_{2}$ defined by $l \rightarrow$ $\left(w_{1} l, w_{2}\right)$ induces a bijection between the θ_{σ}-twisted conjugacy classes on $L_{I\left(w_{1}, w_{2}, c, c^{\prime}\right)}$ and the double cosets $\mathcal{R}_{\mathcal{C}^{\prime}} \backslash\left[w_{1}, w_{2}, \mathcal{C}, \mathcal{C}^{\prime}\right] / \mathcal{R}_{\mathcal{C}}$.

Remark. This proposition is an analogy of Proposition 2.4. In fact, we can prove this proposition using a modified version of the inductive method in 2.1. The case for the G-stable pieces was showed in this way in [10, 4.3 and 4.4].

The following property of the $\mathcal{R}_{\mathcal{C}^{\prime}} \times \mathcal{R}_{\mathcal{C}}$-stable piece will be used to study the closure relations.

Lemma 5.7. Let \mathbf{w} be a distinguished element in $W_{1} \times W_{2}$ with respect to c, c^{\prime}. Then $\mathcal{R}_{\mathcal{C}^{\prime}}\left(T_{1}, T_{2}\right) \mathbf{w} \mathcal{R}_{\mathcal{C}}$ is dense in the $\mathcal{R}_{\mathcal{C}^{\prime}} \times \mathcal{R}_{\mathcal{C}}$-stable piece $\mathcal{R}_{\mathcal{C}^{\prime}}\left(B_{1}, B_{2}\right) \mathbf{w}\left(B_{1}, B_{2}\right) \mathcal{R}_{\mathcal{C}}$.

Proof. By Corollary 3,7, it suffices to prove the case where $\mathbf{w}=\left(w_{1}, w_{2}\right) \in{ }^{J_{1}^{\prime}} W_{1} \times W_{2}^{J_{2}}$. In this case, by part (2) of the previous proposition,

$$
\mathcal{R}_{\mathcal{C}^{\prime}}\left(B_{1}, B_{2}\right) \mathbf{w}\left(B_{1}, B_{2}\right) \mathcal{R}_{\mathcal{C}}=\mathcal{R}_{\mathcal{C}^{\prime}} \mathbf{w}\left(L_{I\left(w_{1}, w_{2}, c, c^{\prime}\right)}, 1\right) \mathcal{R}_{\mathcal{C}}
$$

Let $\theta_{\sigma}: L_{I\left(w_{1}, w_{2}, c, c^{\prime}\right)} \rightarrow L_{I\left(w_{1}, w_{2}, c, c^{\prime}\right)}$ be the automorphism defined in part (2) of the previous proposition. Then

$$
\mathcal{R}_{\mathcal{C}^{\prime}}\left(T_{1}, T_{2}\right) \mathbf{w} \mathcal{R}_{\mathcal{C}}=\mathcal{R}_{\mathcal{C}^{\prime}} \mathbf{w}\left(L^{\prime}, 1\right) \mathcal{R}_{\mathcal{C}},
$$

where $L^{\prime}=\left\{l t \theta_{\sigma}(l)^{-1} ; l \in L_{I\left(w_{1}, w_{2}, c, c^{\prime}\right)}, t \in T\right\}$. By [18, Lemma 4], L^{\prime} is dense in $L_{I\left(w_{1}, w_{2}, c, c^{\prime}\right)}$. Hence $\mathcal{R}_{\mathcal{C}^{\prime}}\left(T_{1}, T_{2}\right) \mathbf{w} \mathcal{R}_{\mathcal{C}}$ is dense in $\left[w_{1}, w_{2}, c, c^{\prime}\right]$. The lemma is proved.

Proposition 5.8. Let $\mathbf{w} \in W_{1} \times W_{2}$, then

$$
\overline{\mathcal{R}_{\mathcal{C}^{\prime}}\left(B_{1}, B_{2}\right) \mathbf{w}\left(B_{1}, B_{2}\right) \mathcal{R}_{\mathcal{C}}}=\bigsqcup_{\mathcal{O}}\left[\mathcal{O}, \mathcal{C}, \mathcal{C}^{\prime}\right]
$$

where \mathcal{O} runs over the distinguished double cosets in $W_{c^{\prime}} \backslash\left(W_{1} \times W_{2}\right) / W_{c}$ that contains a minimal length element \mathbf{w}^{\prime} with $\mathbf{w}^{\prime} \leqslant \mathbf{w}$.

Remark. This was first proved in [12, Theorem 5.2], which is a generalization of [9, Corollary 5.5].

Proof of Proposition 5.8. We will simply write \mathcal{R} for $\mathcal{R}_{\mathcal{C}^{\prime}} \times \mathcal{R}_{\mathcal{C}}$ and \mathcal{B} for $\mathcal{B}_{\mathcal{C}^{\prime}} \times \mathcal{B}_{\mathcal{C}}$. Define the action of $\mathcal{B}_{\mathcal{C}^{\prime}} \times \mathcal{B}_{\mathcal{C}}$ on $\mathcal{R}_{\mathcal{C}^{\prime}} \times \mathcal{R}_{\mathcal{C}} \times\left(G_{1} \times G_{2}\right)$ by $\left(\mathbf{b}_{1}, \mathbf{b}_{2}\right) \cdot\left(\mathbf{g}_{1}, \mathbf{g}_{2}, \mathbf{g}\right)=\left(\mathbf{g}_{1} \mathbf{b}_{1}^{-1}, \mathbf{g}_{2} \mathbf{b}_{2}^{-1}, \mathbf{b}_{1} \mathbf{g b}_{2}^{-1}\right)$. Let $\mathcal{R} \times \mathcal{B}\left(G_{1} \times G_{2}\right)$ be its quotient space. Define the map $\mathcal{R}_{\mathcal{C}^{\prime}} \times \mathcal{R}_{\mathcal{C}} \times\left(G_{1} \times G_{2}\right) \rightarrow G_{1} \times G_{2}$ by $\left(\mathbf{g}_{1}, \mathbf{g}_{2}, \mathbf{g}\right) \mapsto \mathbf{g}_{1} \mathbf{g g}_{2}^{-1}$. Then this map induces a proper map $\mathcal{R} \times \mathcal{B}\left(G_{1} \times G_{2}\right) \rightarrow G_{1} \times G_{2}$. In particular,

$$
\mathcal{R}_{\mathcal{C}^{\prime}} \overline{\left(B_{1}, B_{2}\right) \mathbf{w}\left(B_{1}, B_{2}\right)} \mathcal{R}_{\mathcal{C}}=\overline{\mathcal{R}_{\mathcal{C}^{\prime}}\left(B_{1}, B_{2}\right) \mathbf{w}\left(B_{1}, B_{2}\right) \mathcal{R}_{\mathcal{C}}}
$$

Now let \mathcal{O} be a distinguished double cosets in $W_{c^{\prime}} \backslash\left(W_{1} \times W_{2}\right) / W_{c}$ that contains a minimal length element \mathbf{w}^{\prime} with $\mathbf{w}^{\prime} \leqslant \mathbf{w}$. Then

$$
\mathcal{R}_{\mathcal{C}^{\prime}}\left(T_{1}, T_{2}\right) \mathbf{w}^{\prime} \mathcal{R}_{\mathcal{C}} \subset \mathcal{R}_{\mathcal{C}^{\prime}}\left(B_{1}, B_{2}\right) \mathbf{w}^{\prime} \mathcal{R}_{\mathcal{C}} \subset \mathcal{R}_{\mathcal{C}^{\prime}} \overline{\left(B_{1}, B_{2}\right) \mathbf{w}\left(B_{1}, B_{2}\right)} \mathcal{R}_{c c}
$$

By the previous lemma, $\mathcal{R}_{\mathcal{C}^{\prime}}\left(T_{1}, T_{2}\right) \mathbf{w}^{\prime} \mathcal{R}_{\mathcal{C}}$ is dense in $\left[\mathcal{O}, \mathcal{C}, \mathcal{C}^{\prime}\right]$. Thus

$$
\left[\mathcal{O}, \mathcal{C}, \mathcal{C}^{\prime}\right] \subset \overline{\mathcal{R}_{\mathcal{C}^{\prime}}\left(B_{1}, B_{2}\right) \mathbf{w}\left(B_{1}, B_{2}\right) \mathcal{R}_{c c}}
$$

Now it suffices to prove that $\mathcal{R}_{\mathcal{C}^{\prime}}\left(B_{1}, B_{2}\right) \mathbf{w}\left(B_{1}, B_{2}\right) \mathcal{R}_{\mathcal{C}} \subset \bigsqcup_{\mathcal{O}}\left[\mathcal{O}, \mathcal{C}, \mathcal{C}^{\prime}\right]$ where \mathcal{O} runs over the distinguished double cosets in $W_{c^{\prime}} \backslash\left(W_{1} \times W_{2}\right) / W_{c}$ that contains a minimal length element \mathbf{w}^{\prime} with $\mathbf{w}^{\prime} \leqslant \mathbf{w}$.

We argue by induction on $l(\mathbf{w})$. For $\mathbf{w}=1$, the statement is clear. Assume that $l(\mathbf{w})>1$. Let $\left(J_{1}^{(n)}, J_{2}^{\prime(n)}, w_{1}^{(n)}, w_{2}^{(n)}, u_{1}^{(n)}, u_{2}^{(n)}, v_{1}^{(n)}, v_{2}^{(n)}\right)_{n \geqslant 0}$ be the sequence associated to \mathbf{w}. Then we can prove by induction on n that

$$
\begin{aligned}
& \mathcal{R}_{\mathcal{C}^{\prime}}\left(B_{1}, B_{2}\right) \mathbf{w}\left(B_{1}, B_{2}\right) \mathcal{R}_{\mathcal{C}} \\
& \subset \bigcup_{\mathbf{w}^{\prime}<\mathbf{w}} \mathcal{R}_{\mathcal{C}^{\prime}}\left(B_{1}, B_{2}\right) \mathbf{w}^{\prime}\left(B_{1}, B_{2}\right) \mathcal{R}_{\mathcal{C}} \\
& \quad \cup \mathcal{R}_{\mathcal{C}^{\prime}}\left(B_{1}, B_{2}\right)\left(u_{1}^{(n)} \delta^{-1}\left(v_{2}^{(n)}\right)^{-1}, u_{2}^{(n)}\right)\left(B_{1}, B_{2}\right) \mathcal{R}_{\mathcal{C}} \\
& \subset \bigcup_{\mathbf{w}^{\prime}<\mathbf{w}} \mathcal{R}_{\mathcal{C}^{\prime}}\left(B_{1}, B_{2}\right) \mathbf{w}^{\prime}\left(B_{1}, B_{2}\right) \mathcal{R}_{\mathcal{C}} \\
& \quad \cup \mathcal{R}_{\mathcal{C}^{\prime}}\left(B_{1}, B_{2}\right)\left(u_{1}^{(n+1)}, \delta^{\prime}\left(v_{1}^{(n+1)}\right)^{-1} u_{2}^{(n)}\right)\left(B_{1}, B_{2}\right) \mathcal{R}_{\mathcal{C}}
\end{aligned}
$$

By induction hypothesis and Proposition 1.7, the statement holds for \mathbf{w}. The proposition is proved.

Corollary 5.9. Let \mathcal{O} be a distinguished double coset in $W_{c^{\prime}} \backslash\left(W_{1} \times W_{2}\right) / W_{c}$. Then

$$
\overline{\left[\mathcal{O}, \mathcal{C}, \mathcal{C}^{\prime}\right]}=\bigsqcup_{\substack{\mathcal{O}^{\prime} \text { is a distinguished double coset } \\ \text { in } W_{c^{\prime}} \backslash\left(W_{1} \times W_{2}\right) / W_{c}, \mathcal{O}^{\prime} \leqslant \mathcal{O}}}\left[\mathcal{O}^{\prime}, \mathcal{C}, \mathcal{C}^{\prime}\right] .
$$

6. Unipotent character sheaves

6.1. We follow the notation of [2]. Let X be an algebraic variety over \mathbf{k} and l be a fixed prime number invertible in \mathbf{k}. We write $\mathcal{D}(X)$ instead of $\mathcal{D}_{c}^{b}\left(X, \overline{\mathbb{Q}}_{l}\right)$. If $C \in \mathcal{D}(X)$ and A is a simple perverse sheaf on X, we write $A \dashv C$ if A is a composition factor of ${ }^{p} H^{i}(C)$ for some $i \in \mathbb{Z}$. For $A, B \in \mathcal{D}(X)$, we write $A=B[\cdot]$ if $A=B[m]$ for some $m \in \mathbb{Z}$.

Let $C, C_{1}, \ldots, C_{n} \in \mathcal{D}(X)$. We write $C \in\left\langle C_{i} ; i=1,2, \ldots, n\right\rangle$ if there exist $m>n$ and $C_{n+1}, \ldots, C_{m} \in \mathcal{D}(X)$ such that $C_{m}=C$ and for each $n+1 \leqslant i \leqslant m$, there exist $1 \leqslant j, k<i$ such that $\left(C_{j}[\cdot], C_{i}, C_{k}[\cdot]\right)$ is a distinguished triangle in $\mathcal{D}(X)$. In this case, if $A \dashv C$, then $A \dashv C_{i}$ for some $1 \leqslant i \leqslant n$.

Let H be a connected algebraic group and X, Y be varieties with a free H-action on $X \times Y$. Denote by $X \times{ }^{H} Y$ the quotient space. For $C_{1} \in \mathcal{D}(X)$ and $C_{2} \in \mathcal{D}(Y)$ such that $C_{1} \boxtimes C_{2}$ is H-equivariant, we denote by $C_{1} \odot C_{2}$ be the element in $\mathcal{D}\left(X \times{ }^{H} Y\right)$ whose inverse image under $X \times Y \rightarrow X \times{ }^{H} Y$ is $C_{1} \boxtimes C_{2}$.
6.2. We keep the notation in 5.1. For $w_{1} \in W_{1}$, we denote by $\mathcal{L}_{w_{1}}$ the trivial local system on $B_{1} w_{1} B_{1}$. We also use the same notation for its extension by 0 to G_{1}. Let $\mathcal{A}_{w_{1}}$ be its perverse extension to G_{1}, i.e., a perverse sheaf on G_{1} supported by $\overline{B_{1} w_{1} B_{1}}$ and the restriction to $B_{1} w_{1} B_{1}$ is $\mathcal{L}_{w_{1}}\left[\operatorname{dim}\left(B_{1} w_{1} B_{1}\right)\right]$. We can define $\mathcal{L}_{w_{2}}$ and $\mathcal{A}_{w_{2}}$ for $w_{2} \in W_{2}$ in the same way. For $\mathbf{w}=$ $\left(w_{1}, w_{2}\right) \in W_{1} \times W_{2}$, set $\mathcal{L}_{\mathbf{w}}=\mathcal{L}_{w_{1}} \boxtimes \mathcal{L}_{w_{2}}$ and $\mathcal{A}_{\mathbf{w}}=\mathcal{A}_{w_{1}} \boxtimes \mathcal{A}_{w_{2}}$.

We will simply write \mathcal{R} for $\mathcal{R}_{\mathcal{C}^{\prime}} \times \mathcal{R}_{\mathcal{C}}$ and \mathcal{B} for $\mathcal{B}_{\mathcal{C}^{\prime}} \times \mathcal{B}_{\mathcal{C}}$. Then we have a proper map $\pi: \mathcal{R} \times \mathcal{B}\left(G_{1} \times G_{2}\right) \rightarrow G_{1} \times G_{2}$. See the proof of Proposition 5.8.

We call a simple perverse sheaf C on $G_{1} \times G_{2}$ a unipotent character sheaf with respect to \mathcal{C} and \mathcal{C}^{\prime} if C is a constitute of $\pi_{!}\left(\overline{\mathbb{Q}}_{l}[\operatorname{dim}(\mathcal{R})] \odot \mathcal{A}_{\mathbf{w}}\right)$ for some $\mathbf{w} \in W_{1} \times W_{2}$. This is a generalization of Lusztig's unipotent parabolic character sheaves in [15].

We may also define character sheaves with respect to \mathcal{C} and \mathcal{C}^{\prime} by using tame local systems instead of trivial local systems. However, we will not go into details here.

Recently, T.A. Springer told me that he also got a similar generalization of Lusztig's parabolic character sheaves.

Lemma 6.3. Let $\mathbf{w}, \mathbf{w}^{\prime} \in W_{1} \times W_{2}$. Then

If $\mathbf{w} \rightarrow_{c, c^{\prime}} \mathbf{w}^{\prime}$ and $l(\mathbf{w})>l\left(\mathbf{w}^{\prime}\right)$, then

$$
\begin{equation*}
\pi_{!}\left(\overline{\mathbb{Q}}_{l} \odot \mathcal{L}_{\mathbf{w}}\right) \in\left\langle\pi_{!}\left(\overline{\mathbb{Q}}_{l} \odot \mathcal{L}_{\mathbf{x}}\right)\right\rangle_{l(\mathbf{x})<l(\mathbf{w})} . \tag{1}
\end{equation*}
$$

(2) If $\mathbf{w} \approx_{c, c^{\prime}} \mathbf{w}^{\prime}$, then

$$
\pi!\left(\overline{\mathbb{Q}}_{l} \odot \mathcal{L}_{\mathbf{w}}\right)=\pi_{!}\left(\overline{\mathbb{Q}}_{l} \odot \mathcal{L}_{\mathbf{w}^{\prime}}\right)
$$

Remark. The proof is similar to [9, Lemma 3.9].
Proof of Lemma 6.3. It suffices to prove the case where $\mathbf{w}_{1} \xrightarrow{s_{i}}{ }_{c, c^{\prime}} \mathbf{w}_{2}$ for some $i \in-J_{1}^{\prime} \sqcup J_{1}$. Without loss of generalization, we may assume that $i \in J_{1}$. We assume that $\mathbf{w}=\left(w_{1}, w_{2}\right)$. Then $\mathbf{w}^{\prime}=\left(w_{1} s_{i}, w_{2} s_{\delta(i)}\right)$. Since $l(\mathbf{w}) \geqslant l\left(\mathbf{w}^{\prime}\right)$, either $w_{1}>w_{1} s_{i}$ or $w_{2}>w_{2} s_{\delta(i)}$. We assume that $w_{1}>w_{1} s_{i}$. The other case can be proved in the same way.

Set $B_{J_{i}}=B_{i} \cap L_{J_{i}}$. For $w \in W_{J_{i}}$, let \mathcal{L}_{w}^{\prime} be the trivial local system on $B_{J_{i}} w B_{J_{i}}$. Define the action of $B_{J_{i}}$ on $G_{i} \times L_{J_{i}}$ by $b \cdot\left(g, g^{\prime}\right)=\left(g b^{-1}, b g^{\prime}\right)$. Let $G_{i} \times{ }^{B_{J_{i}}} L_{J_{i}}$ be the quotient space. Define the action of \mathcal{B} on $\mathcal{R} \times\left(\left(G_{1} \times{ }^{B_{J_{1}}} L_{J_{1}}\right) \times G_{2}\right)$ by $b \cdot\left(r,\left(g, g^{\prime}\right), g_{2}\right)=\left(r b^{-1}\right.$, $\left.\left(b \cdot g, g^{\prime}\right), b \cdot g_{2}\right)$. Let $\mathcal{R} \times \mathcal{B}\left(\left(G_{1} \times{ }^{B_{J_{1}}} L_{J_{1}}\right) \times G_{2}\right)$ be the quotient. The map $\mathcal{R} \times\left(\left(G_{1} \times{ }^{B J_{1}}\right.\right.$ $\left.\left.L_{J_{1}}\right) \times G_{2}\right) \rightarrow G_{1} \times G_{2}$ defined by $\left(r,\left(g, g^{\prime}\right), g_{2}\right) \mapsto r \cdot\left(g g^{\prime}, g_{2}\right)$ induces a proper morphism

$$
f_{1,23,4}: \mathcal{R} \times \mathcal{B}\left(\left(G_{1} \times{ }^{B J_{1}} L_{J_{1}}\right) \times G_{2}\right) \rightarrow G_{1} \times G_{2} .
$$

We may define in the same way the variety $\mathcal{R} \times \mathcal{B}\left(G_{1} \times\left(G_{2} \times{ }^{B J_{2}} L_{J_{2}}\right)\right)$ and the proper morphism $f_{1,2,34}: \mathcal{R} \times \mathcal{B}\left(G_{1} \times\left(G_{2} \times{ }^{B_{J_{2}}} L_{J_{2}}\right)\right) \rightarrow G_{1} \times G_{2}$.

Now define an isomorphism $\iota: \mathcal{R} \times \mathcal{B}\left(\left(G_{1} \times{ }^{B J_{1}} L_{J_{1}}\right) \times G_{2}\right) \rightarrow \mathcal{R} \times \mathcal{B}\left(G_{1} \times\left(G_{2} \times{ }^{B J_{2}} L_{J_{2}}\right)\right)$ by

$$
\left(\left(r_{1}, r_{2}\right),\left(g, g^{\prime}\right), g_{2}\right) \mapsto\left(\left(r_{1}, r_{2}\left(\left(g^{\prime}\right)^{-1}, \theta_{\delta}\left(g^{\prime}\right)^{-1}\right)\right), g,\left(g_{2}, \theta_{\delta}\left(g^{\prime}\right)^{-1}\right)\right)
$$

for $r_{1} \in \mathcal{R}_{\mathcal{C}^{\prime}}$ and $r_{2} \in \mathcal{R}_{\mathcal{C}}$. It is easy to see that $f_{1,23,4}=f_{1,2,34} \circ \iota$. We have that

$$
\begin{aligned}
\pi_{!}\left(\overline{\mathbb{Q}}_{l} \odot \mathcal{L}_{\mathbf{w}}\right) & =\left(f_{1,23,4}\right)!\left(\overline{\mathbb{Q}}_{l} \odot\left(\left(\mathcal{L}_{w_{1} s_{i}} \odot \mathcal{L}_{s_{i}}^{\prime}\right) \boxtimes \mathcal{L}_{w_{2}}\right)\right) \\
& =\left(f_{1,2,34}\right)!!\left(\overline{\mathbb{Q}}_{l} \odot\left(\left(\mathcal{L}_{w_{1} s_{i}} \odot \mathcal{L}_{s_{i}}^{\prime}\right) \boxtimes \mathcal{L}_{w_{2}}\right)\right) \\
& =\left(f_{1,2,34)!\left(\overline{\mathbb{Q}}_{l} \odot\left(\mathcal{L}_{w_{1} s_{i}} \boxtimes\left(\mathcal{L}_{w_{2}} \odot \mathcal{L}_{s_{\delta(i)}}^{\prime}\right)\right)\right) .} .\right.
\end{aligned}
$$

Now the lemma follows from [16, 4.2.1].

Notice that for $\mathbf{w} \in W_{1} \times W_{2}$,

$$
\left\langle\pi_{!}\left(\overline{\mathbb{Q}}_{l} \odot \mathcal{L}_{\mathbf{x}}\right)\right\rangle_{\mathbf{x} \leqslant \mathbf{w}}=\left\langle\pi_{!}\left(\overline{\mathbb{Q}}_{l} \odot \mathcal{A}_{\mathbf{x}}\right)\right\rangle_{\mathbf{x} \leqslant \mathbf{w}} .
$$

Then we have the following consequence.
Corollary 6.4. Let $\mathbf{w}, \mathbf{w}^{\prime} \in W_{1} \times W_{2}$. Then
(1) If $\mathbf{w} \rightarrow_{c, c^{\prime}} \mathbf{w}^{\prime}$ and $l(\mathbf{w})>l\left(\mathbf{w}^{\prime}\right)$, then

$$
\pi_{!}\left(\overline{\mathbb{Q}}_{l} \odot \mathcal{A}_{\mathbf{w}}\right) \in\left\langle\pi_{!}\left(\overline{\mathbb{Q}}_{l} \odot \mathcal{A}_{\mathbf{x}}\right)\right\rangle_{l(\mathbf{x})<l(\mathbf{w})} .
$$

(2) If $\mathbf{w} \approx_{c, c^{\prime}} \mathbf{w}^{\prime}$, then

$$
\pi_{!}\left(\overline{\mathbb{Q}}_{l} \odot \mathcal{A}_{\mathbf{w}}\right)=\pi_{!}\left(\overline{\mathbb{Q}}_{l} \odot \mathcal{A}_{\mathbf{w}^{\prime}}\right)
$$

Now combining the above results with Corollary 3.5, we have the following result which is a generalization of the key lemma in [9, Section 3].

Proposition 6.5. Let C be a unipotent character sheaf with respect to \mathcal{C} and \mathcal{C}^{\prime}. Then
(1) $C \dashv \pi_{!}\left(\overline{\mathbb{Q}}_{l} \odot \mathcal{L}_{\mathbf{w}}\right)$ for some \mathbf{w} that is of minimal length in the coset $W_{c^{\prime}} \mathbf{w} W_{c}$.
(2) C is a constitute of $\pi_{!}\left(\overline{\mathbb{Q}}_{l} \odot \mathcal{A}_{\mathbf{w}}\right)$ for some \mathbf{w} that is of minimal length in the coset $W_{c^{\prime}} \mathbf{w} W_{c}$.

In the rest of this section, we consider the Hecke algebras.
6.6. Let (W, I) be a Coxeter group. Given a map $L: I \rightarrow \mathbb{Z}$ with $L(i)=L(j)$ for all $i \neq$ j such that $m_{i j}$ is finite and odd. Let $\mathcal{A}=\mathbb{Z}\left[v, v^{-1}\right]$, where v is an indeterminate. Set $v_{i}=$ $v^{L(i)} \in \mathcal{A}$.

Let \mathcal{H} be the \mathcal{A}-algebra defined by the generators $T_{s_{i}}(i \in I)$ and the relations
(a) $\left(T_{s_{i}}-v_{i}\right)\left(T_{S_{i}}+v_{i}^{-1}\right)=0$ for $i \in I$,
(b) $T_{s_{i}} T_{s_{j}} T_{s_{i}}=\cdots=T_{s_{j}} T_{s_{i}} T_{s_{j}} \cdots$
(both products have $m_{i j}$ factors) for any $i \neq j$ in I such that $m_{i j}<\infty . \mathcal{H}$ is called the IwahoriHecke algebra. For $w \in W$, we define $T_{w}=T_{s_{i_{1}}} T_{s_{i_{2}}} \cdots T_{s_{i_{n}}}$, where $w=s_{i_{1}} s_{i_{2}} \cdots s_{i_{n}}$ is a reduced expression. For subset J of I, we denote by \mathcal{H}_{J} the subalgebra of \mathcal{H} generated by $T_{S_{j}}(j \in J)$.
6.7. Now let $J, J^{\prime} \subset I$ and $\delta: W_{J} \rightarrow W_{J^{\prime}}$ be an automorphism with $\delta(J)=J^{\prime}$. We assume furthermore that $L(j)=L(\delta(j))$ for $i \in J$. Then there is a unique algebra isomorphism $D: \mathcal{H}_{J_{1}} \rightarrow \mathcal{H}_{J_{1}^{\prime}}$ such that $D\left(T_{S_{j}}\right)=T_{S_{\delta(j)}}$ for $j \in J$.

Now we have the following result which is a generalization of some results in [6] and [8].
Proposition 6.8. We keep the notation of the previous section. Let $\zeta: \mathcal{H} \rightarrow \mathcal{A}$ be a \mathcal{A}-linear map such that $\zeta\left(h^{\prime} h\right)=\zeta\left(h D\left(h^{\prime}\right)\right)$ for $h \in \mathcal{H}$ and $h^{\prime} \in \mathcal{H}_{J}$. Let \mathcal{O} be a W_{J}-orbit in W, where the W_{J}-action on W is defined in Corollary 3.8. Let $w, w^{\prime} \in \mathcal{O}_{\text {min }}$. If moreover W_{J} is a finite Coxeter group or $\mathcal{O} \cap W^{J^{\prime}} \neq \varnothing$, then $\zeta\left(T_{w}\right)=\zeta\left(T_{w^{\prime}}\right)$.

Remark. Some functions satisfying the condition in the proposition arises in the study of parabolic character sheaves. See [14, Section 31].

Proof of Proposition 6.8. By Corollary 3.8, $w \sim_{\delta} w^{\prime}$. Now it suffices to prove the statement for $w^{\prime}=x w \delta(x)^{-1}$ where $x \in W_{J}$ and either
(a) $l(x w)=l(x)+l(w)$; or
(b) $l\left(w \delta(x)^{-1}\right)=l(x)+l(w)$.

We only prove the case (a). Case (b) can be showed in the same way.
It is then easy to see that $T_{x} T_{w}=T_{x w}=T_{w^{\prime} \delta(x)}=T_{w^{\prime}} T_{\delta\left(x^{\prime}\right)}=T_{w^{\prime}} D\left(T_{x}\right)$. Hence $\zeta\left(T_{w}\right)=$ $\zeta\left(T_{x}^{-1}\left(T_{x} T_{w}\right)\right)=\zeta\left(T_{x} T_{w} D\left(T_{x}\right)^{-1}\right)=\zeta\left(T_{w^{\prime}}\right)$. The proposition is proved.

7. Cuspidal σ-conjugacy classes

In this section, we study the σ-conjugacy classes of finite Weyl group of type ABD. We will combine the approach in [7, Section 3] and Corollary 3.8 to obtain a new way to understand the σ-conjugacy classes.
7.1. Let $\sigma: W \rightarrow W$ be an automorphism with $\sigma(I)=I$. For $w \in W$, set $\operatorname{supp}_{\sigma}(w)=$ $\bigcup_{n \geqslant 0} \sigma^{n} \operatorname{supp}(w)$. Then $\operatorname{supp}_{\sigma}(w)$ is a σ-stable subset of I.

A σ-conjugacy class \mathcal{O} of W is called cuspidal if $\mathcal{O} \cap W_{J}=\varnothing$ for all proper σ-stable subset J of I.

Let V be the vector space spanned by α_{i} (for $i \in I$). We regard W as a subgroup of $G L(V)$ and σ as an element in $G L(V)$ in the natural way. For $w \in W$, set

$$
p_{w, \sigma}(q)=\operatorname{det}\left(q \cdot i d_{V}-w \sigma\right) .
$$

Then it is easy to see that $p_{w, \sigma}(q)=p_{w^{\prime}, \sigma}(q)$ if w is σ-conjugate to w^{\prime}.
As in [7, Exercise 1.15], for $w \in W$ and $i \in I$, define the length function $l_{i}(w)$ as the number of generators in I conjugate to s_{i} occuring in a reduced expression of W. Let d be the minimal positive integer such that $\sigma^{d}(i)=i$. Set

$$
l_{i, \sigma}(w)=\sum_{k=0}^{d-1} l_{\sigma^{k}(i)}(w)
$$

Then it is easy to see that if $w \approx_{\sigma} w^{\prime}$, then $l_{i, \sigma}(w)=l_{i, \sigma}\left(w^{\prime}\right)$ for all $i \in I$.
Lemma 7.2. If W_{J} is finite for any proper σ-stable subset J and $p_{w, \sigma}(1) \neq 0$, then the σ-conjugacy class of w is cuspidal.

Remark. This is a generalization of [7, Lemma 3.1.10].
Proof of Lemma 7.2. If $w \in W_{J}$ for some proper σ-stable subset J of I, then $\operatorname{supp}_{\sigma}(w) \neq I$. Set $v=\sum_{i \notin \operatorname{supp}_{\sigma}(w)} \alpha_{i}$. Then $w \sigma(v)=w v=v+\alpha$ for some $\alpha \in \sum_{i \in \operatorname{supp}_{\sigma}(w)} \mathbb{R} \alpha_{i}$. Since $w \sigma$ is of finite order, we may assume that $(w \sigma)^{n}=i d_{V}$. Thus $\sum_{1 \leqslant i \leqslant n}(w \sigma)^{n} v=n v+\beta$ for some
$\beta \in \sum_{i \in \operatorname{supp}_{\sigma}(w)} \mathbb{R} \alpha_{i}$ and $\sum_{1 \leqslant i \leqslant n}(w \sigma)^{n} v$ is an eigenvector of $w \sigma$ with eigenvalue 1 . Hence $p_{w, \sigma}(1)=0$.

The following lemmas are obvious and we omit the proofs.
Lemma 7.3. Let $w \in W_{J}$ and $x \in W^{J}$, then $l\left(x w \sigma(x)^{-1}\right) \geqslant l(v)$. In particular, if $J=\sigma(J)$ and w is of minimal length in its $\left.\sigma\right|_{J}$-conjugacy class in W_{J}, then it is of minimal length in its σ-conjugacy class in W.

Lemma 7.4. Let $w, w^{\prime} \in W$ with $w \rightarrow_{\sigma} w^{\prime}$. Then $\operatorname{supp}_{\sigma}\left(w^{\prime}\right) \subset \operatorname{supp}_{\sigma}(w)$. If moreover, $w \approx_{\sigma} w^{\prime}$, then $\operatorname{supp}_{\sigma}\left(w^{\prime}\right)=\operatorname{supp}_{\sigma}(w)$.

Now we state the main theorem in this section which is a generalization of [7, Theorem 3.2.7].
Theorem 7.5. For a finite Coxeter group (W, I) and an automorphism $\sigma: W \rightarrow W$ with $\sigma(I)=I$, the following holds:
(P1) Let $w \in W$ be such that $\operatorname{supp}_{\sigma}(w)=I$ and that $\mathrm{Cyc}_{\sigma}(w)$ is terminal. Then the σ-conjugacy class of w in W is cuspidal and $w \in \mathcal{O}_{\text {min }}$.
(P2) Let \mathcal{O} be a cuspidal σ-conjugacy class of W. Then $\mathcal{O}_{\min }=\operatorname{Cyc}_{\sigma}(w)$ for any $w \in \mathcal{O}_{\text {min }}$.
(P3) Let $\mathcal{O}, \mathcal{O}^{\prime}$ be cuspidal σ-conjugacy classes of W and $w \in \mathcal{O}_{\min }, w^{\prime} \in \mathcal{O}_{\text {min }}^{\prime}$. Then $\mathcal{O}=\mathcal{O}^{\prime}$ if and only if $p_{w, \sigma}(q)=p_{w^{\prime}, \sigma}(q)$ and $l_{i, \sigma}(w)=l_{i, \sigma}\left(w^{\prime}\right)$ for all $i \in I$.

Remark. There exist cuspidal conjugacy classes $\mathcal{O} \neq \mathcal{O}^{\prime}$ in finite Coxeter group of type F_{4} such that $p_{w, \sigma}(q)=p_{w^{\prime}, \sigma}(q)$ for $w \in \mathcal{O}$ and $w^{\prime} \in \mathcal{O}^{\prime}$. See [7, Appendix B].

As a consequence, it implies the Geck-Kim-Pfeiffer theorem [8, 2.6].
Theorem 7.6. Let (W, I) be a finite Coxeter group and $\sigma: W \rightarrow W$ be an automorphism with $\sigma(I)=I$. Let \mathcal{O} be a σ-conjugacy class of W. Then
(a) For each $w \in \mathcal{O}$, there exists an element $w^{\prime} \in \mathcal{O}_{\text {min }}$ such that $w \rightarrow_{\sigma} w^{\prime}$.
(b) Let $w, v \in \mathcal{O}_{\text {min }}$. Then there exist an element $w^{\prime} \in \operatorname{Cyc}_{\sigma}(w)$ and an element $x \in W$ such that w^{\prime} is elementarily strongly σ-conjugate to v via x. In particular, any two elements in $\mathcal{O}_{\text {min }}$ are strongly σ-conjugate.

Remark. The proof is similar to [7, 3.2.9].

Proof of Theorem 7.6. By [8, 2.8], it suffices to prove the theorem for irreducible groups.
(a) Let $w \in \mathcal{O}$. If there exists $w^{\prime} \in W$ such that $\operatorname{supp}_{\sigma}\left(w^{\prime}\right)$ is a proper subset of I and $w \rightarrow_{\sigma}$ w^{\prime}. Then by induction on $\sharp I$, we have $w^{\prime} \rightarrow_{\sigma} w^{\prime \prime}$ for some $w^{\prime \prime} \in W_{\text {supp }_{\sigma}\left(w^{\prime}\right)}$ which is of minimal length in its σ-conjugacy class in $W_{\text {supp }_{\sigma}\left(w^{\prime}\right)}$. By Lemma 7.3, $w^{\prime \prime}$ also has minimal length in its σ-conjugacy class in W and therefore $w \rightarrow_{\sigma} w^{\prime \prime} \in \mathcal{O}_{\text {min }}$.

Otherwise, $\operatorname{supp}_{\sigma}\left(w^{\prime}\right)=I$ for all $w^{\prime} \in W$ with $w \rightarrow_{\sigma} w^{\prime}$. Now let $w^{\prime} \in W$ be such that $\mathrm{Cyc}_{\sigma}\left(w^{\prime}\right)$ is terminal and $w \rightarrow_{\sigma} w^{\prime}$. Then by (P1) of the previous theorem, \mathcal{O} is cuspidal and $w^{\prime} \in \mathcal{O}_{\text {min }}$. Part (a) is proved.
(b) Since $w, v \in \mathcal{O}_{\text {min }}$, we have that $l(w)=l(v)$ and $a w \sigma(a)^{-1}=v$ for some $a \in W$. Write a as $a=x b$ for $x \in W^{\operatorname{supp}_{\sigma}(w)}$ and $b \in W_{\text {supp }_{\sigma}(w)}$. Set $w^{\prime}=b w \sigma(b)^{-1}$. Then $w^{\prime} \in W_{\text {supp }_{\sigma}(w)}$ and $v=x w^{\prime} \sigma(x)^{-1}$. By Lemma 7.3, $l\left(w^{\prime}\right) \leqslant l(v)$. However, since $v \in \mathcal{O}_{\text {min }}$, we have that $l\left(w^{\prime}\right)=l(v)$. Moreover, since $x \in W^{\operatorname{supp}_{\sigma}(w)}$, we have that $l\left(x w^{\prime}\right)=l(x)+l\left(w^{\prime}\right)$. Hence w^{\prime} is elementarily strongly σ-conjugate to v. Since w has minimal length in its σ-conjugacy class in $W_{\text {supp }_{\sigma}(w)}$, its cyclic shift class $\mathrm{Cyc}_{\sigma}(w)$ is terminal. Hence by $(\mathrm{P} 1)$ of the previous theorem, the σ-conjugacy class of w in $W_{\text {supp }_{\sigma}(w)}$ is cuspidal. Since $l\left(w^{\prime}\right)=l(w)$, by (P 2) of the previous theorem, $w^{\prime} \in \operatorname{Cyc}_{\sigma}(w)$. Part (b) is proved.

Below is another generalization of the main theorem.
Corollary 7.7. Let W be a finite Coxeter group and σ be an automorphism of W with $\sigma(I)=I$ and $\sigma^{2}=i d$. Then for $w \in W, w$ and $\sigma(w)^{-1}$ are in the same σ-conjugacy class.

Remark. This is a generalization of [7, Corollary 3.2.14]. The proof is similar to [7, Corollary 3.2.14] and is omitted here.
7.8. We will prove the main theorem for Coxeter groups of classical type. The exceptional groups with $\sigma=i d$ have been settled in [7, Appendix B] by direct computation. (P1) and (P2) of the main theorem have been settled for ${ }^{3} D_{4},{ }^{2} F_{4}$ and ${ }^{2} E_{6}$ by direct computation in [8, Section 6]. As to (P3), we can see from Tables I-III in [8, Section 6] that except for two classes in ${ }^{2} E_{6}$, minimal length elements in different cuspidal σ-conjugacy classes have different length. The only exception is the σ-conjugacy class of $w_{1}=s_{1} s_{3} s_{1} s_{2} s_{4} s_{3} s_{1} s_{5} s_{4} s_{3} s_{1} s_{6} s_{5} s_{4} s_{3} s_{1}$ and the σ-conjugacy class of $w_{2}=s_{2} s_{4} s_{5} s_{4} s_{2} s_{3} s_{4} s_{5} s_{6} s_{5} s_{4} s_{2} s_{3} s_{4} s_{5} s_{6}$. We have that $p_{w_{1}, \sigma}(q)=(q+1)^{4}\left(q^{2}+q+1\right)$ and $p_{w_{2}, \sigma}(q)=\left(q^{2}+q+1\right)^{2}$. Thus (P 3$)$ also holds for these cases.

The Coxeter groups of classical type with $\sigma=i d$ were first proved in [6] and then in [7] using cuspidal classes. We will give a new proof for these cases. We will also prove the main theorem for classical type with $\sigma \neq i d$.

The most difficult part of our proof is to find representatives of

$$
\operatorname{Cusp}_{\sigma}(W)=\left\{w \in W ; \operatorname{supp}_{\sigma}(w)=I, \operatorname{Cyc}_{\sigma}(w) \text { is terminal }\right\} / \approx_{\sigma}
$$

We will find the representatives case by case. The general strategy is as follows.
Let $w \in W$ with $\operatorname{supp}_{\sigma}(w)=I$ and $\operatorname{Cyc}_{\sigma}(w)$ terminal. We choose a maximal proper subset J of I. Then $w \approx_{\sigma} w_{1} v$ for some $w_{1} \in W^{\sigma(J)}$ and $v \in W_{I\left(w_{1},\left.\sigma\right|_{J}\right)}$. By Lemmas 7.9 and 7.10, $\operatorname{supp}_{\sigma}\left(w_{1}\right)=I$ and the $\sigma \operatorname{Ad}\left(w_{1}\right)$-conjugacy class of v in $W_{I\left(w_{1},\left.\sigma\right|_{J}\right)}$ is cuspidal. By induction on I, we may assume that v is a representative in $\operatorname{Cusp}_{\sigma \operatorname{Ad}\left(w_{1}\right)}\left(W_{I\left(w_{1},\left.\sigma\right|_{J}\right)}\right)$ that we have found. In particular, $w \approx_{\sigma} w_{1} v_{1} v_{2}$ for $v_{1} \in W^{\sigma w(K)}$ with $\operatorname{supp}_{\sigma \operatorname{Ad}\left(w_{1}\right)}\left(v_{1}\right)=I\left(w_{1},\left.\sigma\right|_{J}\right)$ and $v_{2} \in W_{I\left(w_{1} v_{1}, \sigma \mid K\right)}$. By Lemma 7.11, since $\operatorname{Cyc}_{\sigma}(w)$ is terminal, w_{1} and v_{1} must satisfy some condition.

In this way, we find some elements x_{k} in W such that for $w \in W$ with $\operatorname{supp}_{\sigma}(w)=I$ and $\operatorname{Cyc}_{\sigma}(w)$ terminal, we have $w \approx_{\sigma} x_{k}$ for some x_{k}. Now we calculate $p_{x_{k}, \sigma}(q)$ and check that

[^1]By 7.1 and Lemma 7.2, the σ-conjugacy class of x_{k} is cuspidal and different x_{k} belongs to different cuspidal class. Since each σ-conjugacy class contains at least one terminal cyclic shift class, $\operatorname{Cyc}_{\sigma}\left(x_{k}\right)$ is terminal for all x_{k}. Thus these x_{k} are representatives of $\operatorname{Cusp}_{\sigma}(W)$ and also representatives of cuspidal σ-conjugacy classes. (P 1)-(P 3) of the main theorem also hold in this case.

Lemma 7.9. Let W be an irreducible Coxeter group. Let $J \subset I, w \in W^{\sigma(J)}$ and $v \in W_{I\left(w,\left.\sigma\right|_{J}\right)}$. Then $\operatorname{supp}_{\sigma}(w v)=I$ if and only if $\operatorname{supp}_{\sigma}(w)=I$.

Proof. It is easy to see that if $\operatorname{supp}(w) \subset \operatorname{supp}(w v)$. Thus $\operatorname{supp}_{\sigma}(w)=I$ implies that $\operatorname{supp}_{\sigma}(w v)=I$. On the other hand, if $\operatorname{supp}_{\sigma}(w) \neq I$ and $\operatorname{supp}_{\sigma}(w v)=I$, then

$$
\bigcup_{n \geqslant 0} \sigma^{n} I\left(w,\left.\sigma\right|_{J}\right) \supset I-\operatorname{supp}_{\sigma}(w)
$$

It is easy to see that for $i \notin \operatorname{supp}_{\sigma}(w), w \alpha_{i}$ is of the form $\alpha_{i}+\sum_{j \in \operatorname{supp}(w)} a_{j} \alpha_{j}$ for some $a_{j} \in \mathbb{N} \cup$ $\{0\}$. By the definition of $I\left(w,\left.\sigma\right|_{J}\right)$, we have that $w \alpha_{i}=\alpha_{i}$ and $\sigma(i)=i$ for all $i \in I\left(w,\left.\sigma\right|_{J}\right)-$ $\operatorname{supp}_{\sigma}(w)$. Therefore $I\left(w,\left.\sigma\right|_{J}\right)-\operatorname{supp}_{\sigma}(w)$ is σ-stable and $I\left(w,\left.\sigma\right|_{J}\right) \supset I-\operatorname{supp}_{\sigma}(w)$.

Now since W is irreducible, there exists $i \in I\left(w,\left.\sigma\right|_{J}\right)-\operatorname{supp}_{\sigma}(w)$ and $j \in \operatorname{supp}_{\sigma}(w)$ such that $m_{i j} \neq 2$. Since σ is an automorphism of W and $\sigma(i)=i$, we have that $m_{i j}=m_{i, \sigma(j)}$. Therefore there exists $j \in \operatorname{supp}(w)$ such that $m_{i j} \neq 2$. Now let $w=s_{i_{1}} s_{i_{2}} \cdots s_{i_{n}}$ be a reduced expression and $m=\max \left\{k ; m_{i, i_{k}} \neq 2\right\}$. Then $w \alpha_{i}=s_{i_{1}} \cdots s_{i_{m}} \alpha_{i}=s_{i_{1}} \cdots s_{i_{m-1}}\left(\alpha_{i}+a \alpha_{i_{m}}\right)$ for some $a \in \mathbb{N}$. Therefore $w \alpha_{i}=\left(s_{i_{1}} \cdots s_{i_{m-1}}\right) \alpha_{i}+a\left(s_{i_{1}} \cdots s_{i_{m-1}}\right) \alpha_{i_{m}}=\alpha_{i}+\sum_{j \in \operatorname{supp}(w)} a_{j} \alpha_{j}+a \alpha$,
 contradiction. The lemma is proved.

Unless otherwise stated, we assume that $I=\{1,2, \ldots, n\}$. Set

$$
s_{[a, b]}= \begin{cases}s_{a} s_{a-1} \cdots s_{b}, & \text { if } a \geqslant b, \\ 0, & \text { otherwise }\end{cases}
$$

Lemma 7.10. Let (W, I) be an irreducible Coxeter group and $\sigma: W \rightarrow W$ be an automorphism with $\sigma(I)=I$. Let $d<n$ with:
(a) if $\sigma^{n}(i) \leqslant b-1$ for some $i \leqslant b-1$, then $\sigma^{n}(i)=i$ for all $i \leqslant b-1$;
(b) $m_{i j}=\delta_{1,|i-j|}$ for $1 \leqslant i, j \leqslant b$;
(c) $m_{i, i^{\prime}}=0$ for $i \leqslant b-1$ and $i^{\prime} \geqslant b+1$;
(d) $m_{b, \sigma^{n}(i)}=0$ for $i \leqslant b-1$ and $n \in \mathbb{Z}$ with $\sigma^{n}(i) \neq i$.

Let $a \leqslant b-1$. Let $w=\sigma^{-1}\left(s_{[b, a]}\right)^{-1} w_{1} s_{[b, 1]} v_{1} v_{2}$ with $w_{1}, v_{1}, v_{2} \in W, \operatorname{supp}\left(w_{1}\right), \operatorname{supp}\left(v_{1}\right) \subset$ $I-\bigcup_{n \in \mathbb{N}} \sigma^{n}\{1,2, \ldots, b\}, \operatorname{supp}\left(v_{2}\right) \subset\{a+1, a+2, \ldots, b-1\}$ and $l(w)=2 b-a+1+l\left(w_{1}\right)+$ $l\left(v_{1}\right)+l\left(v_{2}\right)$. Then $\operatorname{Cyc}_{\sigma}(w)$ is not terminal.

Remark. Let $J=\{1,2, \ldots, b-1\}$. The idea of the proof is to use the procedure in Section 2 to obtain an element of the form $v_{1} w_{1}$ where $w_{1} \in{ }^{J} W$ and $v_{1} \in W_{I\left(w_{1}^{-1},\left.\sigma\right|_{J}\right)}$ such that $w \rightarrow_{\left.\sigma\right|_{J}}$ $v_{1} w_{1}$ and $l\left(v_{1} w_{1}\right)<l(w)$.

Proof of Lemma 7.10. Set $x=s_{\sigma^{-1}(b)} w_{1} s_{[b, 1]} v_{1}$ and $y=v_{2} s_{[b, a]}^{-1}$. Then $x s_{\sigma^{n}(i)}=s_{\sigma^{n}(i)} x$ for $i \in\{1,2, \ldots, b-1\}$ and $n \in \mathbb{Z}$ with $\sigma^{n}(i) \neq i$.

Notice that $x y x^{-1}=s_{[b, 1]} y s_{[b, 1]}^{-1}$. Then $l\left(x y x^{-1}\right)=l(x)$. Now let n_{0} be the minimal positive integer such that $\sigma^{n_{0}}(i)=i$ for $i \leqslant b-1$. Then

$$
\begin{aligned}
& w \rightarrow_{\sigma} x y=\left(x y x^{-1}\right) x \rightarrow_{\sigma} x \sigma\left(x y x^{-1}\right)=\sigma\left(x y x^{-1}\right) x \rightarrow_{\sigma} x \sigma^{2}\left(x y x^{-1}\right) \\
& \rightarrow_{\sigma} \cdots \rightarrow_{\sigma} x \sigma^{n_{0}}\left(x y x^{-1}\right)=x\left(x y x^{-1}\right) .
\end{aligned}
$$

We can show in this way that $w \rightarrow_{\sigma} x\left(x^{a-1} y x^{-(a-1)}\right)$. Notice that

$$
\begin{aligned}
x\left(x^{a-1} y x^{-(a-1)}\right) & =\left(x^{a} v_{2} x^{-a}\right) x\left(x^{a-1} s_{[b-1, a]}^{-1} x^{-(a-1)}\right) \\
& =\left(x^{a} v_{2} x^{-a}\right) x s_{[b-a, 1]}^{-1} .
\end{aligned}
$$

Since $l\left(\left(x^{a} v_{2} x^{-a}\right) x s_{[b-a, 1]}^{-1}\right) \leqslant l\left(v_{2}\right)+l(x)-(b-a)<l(w), \operatorname{Cyc}_{\sigma}(w)$ is not terminal. The lemma is proved.

Lemma 7.11. We keep the assumption in the previous lemma. Let

$$
w=\sigma^{-1}\left(s_{[b, a]}\right)^{-1} w_{1} s_{[b, 1]} s_{b} v_{1} s_{[b, a+1]} v_{2}
$$

with $\operatorname{supp}\left(w_{1}\right), \operatorname{supp}\left(v_{1}\right), \operatorname{supp}\left(v_{2}\right) \in I-\bigcup_{n \in \mathbb{N}} \sigma^{n}\{1,2, \ldots, b\}$ and $l(w)=l\left(w_{1}\right)+l\left(v_{1}\right)+$ $l\left(v_{2}\right)+3 b-2 a+2$. If $2 a<b$, then $\mathrm{Cyc}_{\sigma}(w)$ is not terminal.

Remark. This is a generalization of the "Block exchange" lemma in [7, Lemma 3.4.5]. The proof here is similar to the previous lemma.

Proof of Lemma 7.11. Set $x=s_{\sigma^{-1}(b)} w_{1} s_{[b, 1]} s_{b} v_{1}$. Then

$$
\begin{aligned}
w & \rightarrow_{\sigma} x s_{[b, a+1]} v_{2} s_{[b-1, a]}^{-1}=x s_{[b, a+1]} s_{[b-1, a]}^{-1} v_{2}=x s_{[b-2, a]}^{-1} s_{[b, a]} v_{2} \\
& =s_{[b-3, a-1]}^{-1} x s_{[b, a]} v_{2} .
\end{aligned}
$$

As in the proof of the previous lemma, we can show that

$$
s_{[b-3, a-1]}^{-1} x s_{[b, a]} v_{2} \rightarrow{ }_{\sigma} x s_{[b, a]} v_{2} s_{[b-3, a-1]}^{-1} .
$$

If $2 a<b$, then we can show in the same way that

$$
w \rightarrow_{\sigma} x s_{[b, 2]} v_{2} s_{[b-2 a+1,1]}^{-1}=x s_{[b, 2]} s_{[b-2 a+1,1]}^{-1} v_{2}=x s_{[b-2 a, 1]}^{-1} s_{[b, 1]} v_{2} .
$$

Since $l\left(x s_{[b-2 a, 1]}^{-1} s_{[b, 1]} v_{2}\right) \leqslant l\left(v_{2}\right)+l(x)+b-(b-2 a)<l(w), \operatorname{Cyc}_{\sigma}(w)$ is not terminal. The lemma is proved.

Now we will prove the main theorem for each type. We will use the same labelling of Dynkin diagram as in [3]. Set $J=I-\left\{\sigma^{-1}(1)\right\}$. Then $\sigma(J)=I-\{1\}$.

Type $\boldsymbol{A}_{\boldsymbol{n}}$

7.12. Let $w \in W$ with $\operatorname{supp}_{i d}(w)=I$ and $\operatorname{Cyc}_{i d}(w)$ is terminal. By Corollary 3.8, $w \approx_{\left.i d\right|_{J}}$ $w_{1} v$ for some $w_{1} \in W^{J}$ and $v \in W_{I\left(x,\left.i d\right|_{J}\right)}$. By Lemma 7.9, $\operatorname{supp}_{i d}\left(w_{1}\right)=I$. Thus $w_{1}=s_{[n, 1]}$. Then $I\left(x,\left.i d\right|_{J}\right)=\varnothing$ and $w \approx_{\left.i d\right|_{J}} w_{1}$. It is easy to see that $p_{w_{1}, i d}(q)=\sum_{1 \leqslant i \leqslant n} q^{i}$. So there exists a unique cuspidal conjugacy class, which is just the conjugacy class that contains $s_{[n, 1]}$.

Type ${ }^{2} \boldsymbol{A}_{\boldsymbol{n}}$
Lemma 7.13. Let W be a Weyl group of type A_{n} and σ be an automorphism of order 2 on W with $\sigma(I)=I$. For any sequence $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right)$ with $\alpha_{1} \geqslant \alpha_{2} \geqslant \cdots \geqslant \alpha_{l} \geqslant 1$ and $\sum_{1 \leqslant i \leqslant l}\left(2 \alpha_{i}-1\right)=n+1$, we set

$$
w_{\alpha}=s_{\left[n+1-\alpha_{1}, 1\right]} s_{\left[n+2-\alpha_{1}-\alpha_{2}, \alpha_{1}+1\right]} \cdots s_{\left[n+l-\sum_{1 \leqslant i \leqslant l} \alpha_{i}, \sum_{1 \leqslant i \leqslant l-1}\left(\alpha_{i}\right)+1\right]} .
$$

Let $w \in W$ with $\operatorname{supp}_{\sigma}(w)=I$ and $\operatorname{Cyc}_{\sigma}(w)$ is terminal. Then $w \approx_{\sigma} w_{\alpha}$ for some α.
Proof. We argue by induction on n. By Corollary 3.8, $w \approx_{\left.\sigma\right|_{J}} w_{1} v$ for some $w_{1} \in W^{\sigma(J)}$ and $v \in W_{I\left(x,\left.\sigma\right|_{J}\right)}$. By Lemma 7.9, $\operatorname{supp}_{\sigma}\left(w_{1}\right)=I$. Thus $w_{1}=s_{\left[n+1-\alpha_{1}, 1\right]}$ for some $\alpha_{1} \geqslant 1$. Then $I\left(w_{1},\left.\sigma\right|_{J}\right)=\left\{\alpha_{1}+1, \alpha_{1}+2, \ldots, n+1-\alpha_{1}\right\}$ and $\sigma \operatorname{Ad}\left(w_{1}\right)$ is an order-2 bijection on $I\left(w_{1},\left.\sigma\right|_{J}\right)$. By Lemma 7.10, v is contained in a cuspidal $\sigma \operatorname{Ad}\left(w_{1}\right)$-conjugacy of $W_{I\left(w_{1},\left.\sigma\right|_{J}\right)}$. By induction hypothesis, $v \approx_{\sigma \operatorname{Ad}\left(w_{1}\right)} s_{\left[n+2-\alpha_{1}-\alpha_{2}, \alpha_{1}+1\right]} \cdots s_{\left[n+l-\sum_{1 \leqslant i \leqslant l} \alpha_{i}, \sum_{1 \leqslant i \leqslant l-1}\left(\alpha_{i}\right)+1\right]}$ for some sequence $\alpha^{\prime}=\left(\alpha_{2}, \alpha_{3}, \ldots, \alpha_{l}\right)$ with $\alpha_{2} \geqslant \alpha_{3} \geqslant \cdots \geqslant \alpha_{l} \geqslant 1$ and $\sum_{2 \leqslant i \leqslant l}\left(2 \alpha_{i}-1\right)=n+2-2 \alpha_{1}$. By Corollary 3.8,

$$
w \approx_{\left.\sigma\right|_{J}} s_{\left[n+1-\alpha_{1}, 1\right]} S_{\left[n+2-\alpha_{1}-\alpha_{2}, \alpha_{1}+1\right]} \cdots s_{\left[n+l-\sum_{1 \leqslant i \leqslant l} \alpha_{i}, \sum_{1 \leqslant i \leqslant l-1}\left(\alpha_{i}\right)+1\right]} .
$$

Notice that $\operatorname{Cyc}_{\sigma}(w)$ is terminal. By Lemma 7.11, we have that $\alpha_{1} \geqslant \alpha_{2}$. Thus lemma is proved.
7.14. We have that

$$
\begin{aligned}
p_{w_{\alpha}, \sigma}(q) & =\operatorname{det}\left(q \cdot i d_{V}-w_{\alpha} \sigma\right)=\operatorname{det}\left(q \cdot i d_{V}+w w_{0}\right) \\
& =(-1)^{n} \operatorname{det}\left(-q \cdot i d_{V}-w w_{0}\right)=\frac{(-1)^{n}}{(-q-1)} \prod_{1 \leqslant i \leqslant l}\left((-q)^{2 \alpha_{i}-1}-1\right) \\
& =\frac{1}{(q+1)} \prod_{1 \leqslant i \leqslant l}\left(q^{2 \alpha_{1}}+1\right) .
\end{aligned}
$$

Thus w_{α} is contained in a cuspidal σ-conjugacy class. It is also easy to see that $p_{w_{\alpha}, \sigma}(q) \neq$ $p_{w_{\alpha^{\prime}}, \sigma}(q)$ for $\alpha \neq \alpha^{\prime}$. By the argument in 7.8, the main theorem holds in this case.

We also showed that the cuspidal σ-conjugacy classes of A_{n} are parametrized by the sequence $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right)$ with $\alpha_{1} \geqslant \alpha_{2} \geqslant \cdots \geqslant \alpha_{l} \geqslant 1$ and $\sum_{1 \leqslant i \leqslant l}\left(2 \alpha_{i}-1\right)=n+1$. In other words, the cuspidal σ-conjugacy classes of A_{n} are parametrized by the partitions of $n+1$ with only odd parts.

Type $\boldsymbol{B}_{\boldsymbol{n}}$

Lemma 7.15. Let W be a Weyl group of type B_{n}. For any sequence $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right)$ with $\alpha_{1} \geqslant \alpha_{2} \geqslant \cdots \geqslant \alpha_{l} \geqslant 1$ and $\sum_{1 \leqslant i \leqslant l} \alpha_{i}=n$, we set

$$
w_{\alpha}=\left(s_{\left[n-1, \alpha_{1}\right]}^{-1} s_{[n, 1]}\right)\left(s_{\left[n-1, \alpha_{1}+\alpha_{2}\right]}^{-1} s_{\left[n, \alpha_{1}+1\right]}\right) \cdots\left(s_{\left[n, \sum_{1 \leqslant i \leqslant l-1}\left(\alpha_{i}\right)+1\right]}\right)
$$

Let $w \in W$ with $\operatorname{supp}_{i d}(w)=I$ and $\operatorname{Cyc}_{i d}(w)$ is terminal. Then $w \approx_{i d} w_{\alpha}$ for some α.
Proof. We argue by induction on n. By Corollary 3.8, $w \approx_{\left.i d\right|_{J}} w_{1} v$ for some $w_{1} \in W^{J}$ and $v \in W_{I\left(x,\left.i d\right|_{J}\right)}$. By Lemma 7.9, $\operatorname{supp}_{i d}\left(w_{1}\right)=I$. Thus $w_{1}=s_{\left[n-1, \alpha_{1}\right]}^{-1} s_{[n, 1]}$ for some $\alpha_{1} \geqslant 1$. Then $I\left(w_{1},\left.i d\right|_{J}\right)=\left\{\alpha_{1}+1, \alpha_{1}+2, \ldots, n\right\}$ and $\operatorname{Ad}\left(w_{1}\right)$ is the identity map on $I\left(w_{1},\left.i d\right|_{J}\right)$. By Lemma 7.10, v is contained in a cuspidal conjugacy of $W_{I\left(w_{1},\left.i d\right|_{J}\right)}$. By induction hypothesis, $v \approx_{i d}\left(s_{\left[n-1, \alpha_{1}+\alpha_{2}\right]}^{-1} s_{\left[n, \alpha_{1}+1\right]}\right) \cdots\left(s_{\left[n, \sum_{1 \leqslant i \leqslant l-1}\left(\alpha_{i}\right)\right]}\right)$ for some sequence $\alpha^{\prime}=\left(\alpha_{2}, \alpha_{3}, \ldots, \alpha_{l}\right)$ with $\alpha_{2} \geqslant \alpha_{3} \geqslant \cdots \geqslant \alpha_{l} \geqslant 1$ and $\sum_{2 \leqslant i \leqslant l} \alpha_{i}=n-\alpha_{1}$. By Corollary 3.8,

$$
w \approx_{J, i d}\left(s_{\left[n-1, \alpha_{1}\right]}^{-1} s_{[n, 1]}\right)\left(s_{\left[n-1, \alpha_{1}+\alpha_{2}\right]}^{-1} s_{\left[n, \alpha_{1}+1\right]}\right) \cdots\left(s_{\left[n, \sum_{1 \leqslant i \leqslant l-1}\left(\alpha_{i}\right)+1\right]}\right) .
$$

Notice that $\operatorname{Cyc}_{\sigma}(w)$ is terminal. By Lemma 7.11, we have that $\alpha_{1} \geqslant \alpha_{2}$. Thus lemma is proved.
7.16. By $[7,3.4 .3], p_{w_{\alpha}, i d}(q)=\prod_{1 \leqslant i \leqslant l}\left(q^{\alpha_{i}}+1\right)$. Thus w_{α} is contained in a cuspidal conjugacy class. Moreover, $p_{w_{\alpha}, i d}(q) \neq p_{w_{\alpha^{\prime}}, i d}(q)$ for $\alpha \neq \alpha^{\prime}$. By the argument in 7.8, the main theorem holds in this case. We also showed that the cuspidal conjugacy classes of B_{n} are parametrized by the partitions of n.

Type ${ }^{2} B_{2}$

7.17. There is one cuspidal σ-conjugacy class, which is the class that contains $s_{1} s_{2} s_{1}$. The other minimal length element in the class is $s_{2} s_{1} s_{2} \approx_{\sigma} s_{1} s_{2} s_{1}$. The main theorem holds in this case. We have that $p_{s_{1} s_{2} s_{1}, \sigma}(q)=(q+1)^{2}$.

Types $D_{\boldsymbol{n}}$ and ${ }^{2} D_{\boldsymbol{n}}$
7.18. Let $0 \leqslant a<b \leqslant n$. Define

$$
w_{a, b}= \begin{cases}s_{[n-2, b]}^{-1} s_{[n, a+1]}, & \text { if } b \leqslant n-1, \\ S_{[n-1, a+1]}, & \text { if } b=n\end{cases}
$$

For any sequence $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right)$ with $\alpha_{1} \geqslant \alpha_{2} \geqslant \cdots \geqslant \alpha_{l} \geqslant 1$ and $\sum_{1 \leqslant i \leqslant l} \alpha_{i}=n$, we set

$$
w_{\alpha}^{\prime}=w_{0, \alpha_{1}} w_{\alpha_{1}, \alpha_{1}+\alpha_{2}} \cdots w_{\sum_{1 \leqslant i \leqslant l-1} \alpha_{i}, \sum_{1 \leqslant i \leqslant l} \alpha_{i}}
$$

Lemma 7.19. Let W be a Weyl group of type D_{n}. Let $\sigma_{0}=i d$ and σ_{1} be the automorphism of order 2 on W with $\sigma_{1}(I)=I$. Let $w \in W$ with $\operatorname{supp}_{\sigma_{i}}(w)=I$ and $\mathrm{Cyc}_{\sigma_{i}}(w)$ is terminal. Then $w \approx_{\sigma_{i}} w_{\alpha}^{\prime}$ for some α with $2 \mid l-i$.

Proof. We argue by induction on n. For $n=3$, it is easy to check that the statement holds. Now assume that $n \geqslant 4$. By Corollary 3.8, $w \approx_{\sigma_{i} \mid J} w_{1} v$ for some $w_{1} \in W^{\sigma_{i}(J)}$ and $v \in W_{I\left(x, \sigma_{i} \mid J\right)}$. By Lemma 7.9, $\operatorname{supp}_{\sigma_{i}}\left(w_{1}\right)=I$. Thus $w_{1}=w_{\left[0, \alpha_{1}\right]}$ for some α_{1} with $1 \leqslant \alpha_{1} \leqslant n+i-1$. Then

$$
I\left(w_{1},\left.\sigma_{i}\right|_{J}\right)= \begin{cases}\left\{\alpha_{1}+1, \alpha_{1}+2, \ldots, n\right\}, & \text { if } \alpha_{1} \leqslant n-2, \\ \varnothing, & \text { if } \alpha_{1}>n-2,\end{cases}
$$

and $\sigma_{i} \operatorname{Ad}\left(w_{1}\right)$ is the bijection of order $2-i$ on $I\left(w_{1},\left.\sigma_{i}\right|_{J}\right)$. By Lemma 7.10, v is contained in a σ_{1-i}-cuspidal conjugacy of $W_{I\left(w_{1}, \sigma_{i} \mid J\right)}$. By induction hypothesis,

$$
v \approx_{\sigma_{1-i}} w_{\alpha_{1}, \alpha_{1}+\alpha_{2}} \cdots w_{\sum_{1 \leqslant i \leqslant l-1} \alpha_{i}, \sum_{1 \leqslant i \leqslant l} \alpha_{i}}
$$

for some sequence $\alpha^{\prime}=\left(\alpha_{2}, \alpha_{3}, \ldots, \alpha_{l}\right)$ with $\alpha_{2} \geqslant \cdots \geqslant \alpha_{l} \geqslant 1, \sum_{2 \leqslant i \leqslant l} \alpha_{i}=n-\alpha_{1}$ and $2 \mid$ $(l-1)-(1-i)=l+i$. By Corollary 3.8,

$$
w \approx_{\left.\sigma_{i}\right|_{J}} w_{0, \alpha_{1}} w_{\alpha_{1}, \alpha_{1}+\alpha_{2}} \cdots w_{\sum_{1 \leqslant i \leqslant l-1} \alpha_{i}, \sum_{1 \leqslant i \leqslant l} \alpha_{i}}
$$

Notice that $\operatorname{Cyc}_{\sigma_{i}}(w)$ is terminal. By Lemma 7.11, we have that $\alpha_{1} \geqslant \alpha_{2}$. Thus lemma is proved.
7.20. We use $\tilde{s}_{1}, \tilde{s}_{2}, \ldots, \tilde{s}_{n}$ for the standard generators of the Weyl group of type B_{n}. By [7, 1.4.8], we may regard W as a subgroup of a Weyl group of type B_{n} via $s_{i} \rightarrow \tilde{s}_{i}$ for $i \leqslant n-1$ and $s_{n} \rightarrow \tilde{s}_{n} \tilde{s}_{n-1} \tilde{s}_{n}$. For any partition α of n with even numbers of parts, the element w_{α}^{\prime} in W is just the element w_{α} of the Weyl group of type B_{n}. Thus $p_{w_{\alpha}^{\prime}, i d}(q)=p_{w_{\alpha}, i d}=\prod_{1 \leqslant i \leqslant l}\left(q^{\alpha_{i}}+1\right)$. Therefore w_{α}^{\prime} is contained in a cuspidal conjugacy class of W. Moreover, $p_{w_{\alpha}^{\prime}, i d}(q) \neq p_{w_{\alpha^{\prime}}, i d}(q)$ for $\alpha \neq \alpha^{\prime}$. By the argument in 7.8, the main theorem holds in this case. We also showed that the cuspidal conjugacy classes of D_{n} are parametrized by the partitions of n with even numbers of parts.

It is easy to see that $\sigma_{1}=\tilde{s}_{n}$ as an element is in $G L(V)$. Moreover, for any partition α of n with odd numbers of parts, $\tilde{s}_{n} w_{\alpha}^{\prime}=w_{\alpha}$ in the Weyl group of type B_{n}. Thus

$$
\begin{aligned}
p_{w_{\alpha}^{\prime}, \sigma_{1}}(q) & =\operatorname{det}\left(q \cdot i d_{V}-w_{\alpha}^{\prime} \tilde{s}_{n}\right)=\operatorname{det}\left(q \cdot i d_{V}-\tilde{s}_{n} w_{\alpha}^{\prime}\right) \\
& =\operatorname{det}\left(q \cdot i d_{V}-w_{\alpha}\right)=\prod_{1 \leqslant i \leqslant l}\left(q^{\alpha_{i}}+1\right)
\end{aligned}
$$

Therefore w_{α}^{\prime} is contained in a cuspidal σ_{1}-conjugacy class of W. Moreover, $p_{w_{\alpha}^{\prime}, \sigma_{1}}(q) \neq$ $p_{w_{\alpha^{\prime}}^{\prime}, \sigma_{1}}(q)$ for $\alpha \neq \alpha^{\prime}$. By the argument in 7.8, the main theorem holds in this case. We also showed that the cuspidal σ_{1}-conjugacy classes of D_{n} are parametrized by the partitions of n with odd numbers of parts.

Type ${ }^{3} D_{4}$

Lemma 7.21. Let W be the Weyl group of type D_{4} and σ be an automorphism of W with $\sigma\left(s_{1}\right)=s_{3}, \sigma\left(s_{3}\right)=s_{4}$ and $\sigma\left(s_{4}\right)=s_{1}$. Let $w \in W$ with $\operatorname{supp}_{\sigma}(w)=I$ and $\operatorname{Cyc}_{\sigma}(w)$ is terminal. Then $w \approx_{\sigma} w^{\prime}$ for some $w^{\prime} \in\left\{s_{2} s_{1}, s_{3} s_{2} s_{1} s_{3}, s_{3} s_{2} s_{1} s_{2} s_{3} s_{2}, s_{1} s_{2} s_{4} s_{3} s_{2} s_{1} s_{2} s_{4}\right\}$.

Proof. By Corollary 3.8, $w \approx_{\left.\sigma\right|_{J}} w_{1} v$ for some $w_{1} \in W^{\sigma(J)}$ and $v \in W_{I\left(w_{1},\left.\sigma\right|_{J}\right)}$. By Lemma 7.9, $\operatorname{supp}_{\sigma}\left(w_{1}\right)=I$. Thus

$$
w_{1} \in\left\{s_{2} s_{1}, s_{[3,1]}, s_{4} s_{2} s_{1}, s_{[4,1]}, s_{2} s_{[4,1]}, s_{1} s_{2} s_{[4,1]}\right\}
$$

Moreover,

$$
I\left(J, w_{1}, \sigma\right)= \begin{cases}\varnothing, & \text { if } w_{1} \in\left\{s_{2} s_{1}, s_{4} s_{2} s_{1}, s_{[4,1]}\right\}, \\ \{2,3\}, & \text { if } w_{1}=s_{[3,1]}, \\ \{4\}, & \text { if } w_{1}=s_{2} s_{[4,1]}, \\ \{2,4\}, & \text { if } w_{1}=s_{1} s_{2} s_{[4,1]} .\end{cases}
$$

If $w_{1} \in\left\{s_{2} s_{1}, s_{4} s_{2} s_{1}, s_{[4,1]}\right\}$, then $v=1$ and $w^{\prime} \approx_{\sigma} w_{1}$. Notice that

$$
s_{4} s_{2} s_{1}{\xrightarrow{s_{4}}}_{\sigma} s_{2} \quad \text { and } \quad s_{[4,1]} \xrightarrow{s_{4}} \sigma s_{3} s_{2} .
$$

Thus $w \approx_{\sigma} s_{2} s_{1}$.
If $w_{1}=s_{[3,1]}$, then $v \approx_{\operatorname{Ad}\left(w_{1}\right) \sigma} v_{1}$, where $v_{1} \in\left\{1, s_{3}, s_{2} s_{3} s_{2}\right\}$. Thus $w \approx_{\sigma} w_{1} v_{1}$. Notice that

$$
s_{[3,1]}{\xrightarrow{s_{3}}}_{\sigma} s_{2} s_{1} s_{4}{\xrightarrow{s_{2}}}_{\sigma} s_{1} s_{4} s_{2}{\xrightarrow{s_{4}}}_{\sigma} s_{1} s_{2} s_{1}{\xrightarrow{s_{2}}}_{\sigma} s_{1} .
$$

So $w \approx_{\sigma} s_{3} s_{2} s_{1} s_{3}$ or $w \approx_{\sigma} s_{3} s_{2} s_{1} s_{2} s_{3} s_{2}$.
If $w_{1}=s_{2} s_{[4,1]}$, then $v=1$ or $v=s_{4}$. Notice that $s_{2} s_{[4,1]} \xrightarrow{s_{2}}{ }_{\sigma} s_{1} s_{[4,1]}{ }^{s_{4}}{ }_{\sigma} s_{1} s_{3} s_{2}$. We also have that

$$
s_{2} s_{[4,1]} s_{4} \xrightarrow{s_{4}} \sigma s_{4} s_{2} s_{4} s_{3} s_{2} s_{4} \quad \text { and } \quad \sigma^{-1}\left(s_{4} s_{2} s_{4} s_{3} s_{2} s_{4}\right)=s_{3} s_{2} s_{1} s_{2} s_{3} s_{2} .
$$

Thus $w \approx_{\sigma} s_{2} s_{[4,1]} s_{4} \approx_{\sigma} s_{3} s_{2} s_{1} s_{2} s_{3} s_{2}$.
If $w_{1}=s_{1} s_{2} s_{[4,1]}$, then $v \approx_{\operatorname{Ad}\left(w_{1}\right) \sigma} v_{1}$, where $v_{1} \in\left\{1, s_{2}, s_{2} s_{4}\right\}$. Thus $w \approx_{\sigma} w_{1} v_{1}$. Notice that

$$
\begin{gathered}
s_{1} s_{2} s_{[4,1]}{\xrightarrow{s_{1}} \sigma s_{2} s_{[4,1]} s_{3}{\xrightarrow{s_{4}}}_{\sigma} s_{2} s_{4} s_{3} s_{2} \quad \text { and }}_{s_{1} s_{2} s_{[4,1]} s_{2}{\xrightarrow{s_{1}}}_{\sigma} s_{2} s_{[4,1]} s_{2} s_{4}{\xrightarrow{s_{2}}}_{\sigma} s_{[4,1]} s_{2} s_{4} s_{2}{\xrightarrow{s_{3}}}_{\sigma} s_{4} s_{2} s_{1} s_{4} s_{2} .} .
\end{gathered}
$$

Thus $w \approx_{\sigma} s_{1} s_{2} s_{4} s_{3} s_{2} s_{1} s_{2} s_{4}$.
The lemma is proved.
7.22. We have that

$$
\begin{gathered}
p_{s_{2} s_{1}, \sigma}(q)=q^{4}-q^{2}+1, \quad p_{s_{3} s_{2} s_{1} s_{3}, \sigma}(q)=\left(q^{2}-q+1\right)^{2}, \\
p_{s_{3} s_{2} s_{1} s_{2} s_{3} s_{2}, \sigma}(q)=(q+1)^{2}\left(q^{2}-q+1\right), \\
p_{s_{1} s_{2} s_{4} s_{3} s_{2} s_{1} s_{2} s_{4}, \sigma}(q)=\left(q^{2}+q+1\right)^{2} .
\end{gathered}
$$

Set $\mathcal{W}=\left\{s_{2} s_{1}, s_{3} s_{2} s_{1} s_{3}, s_{3} s_{2} s_{1} s_{2} s_{3} s_{2}, s_{1} s_{2} s_{4} s_{3} s_{2} s_{1} s_{2} s_{4}\right\}$. Then w is contained in a cuspidal σ-conjugacy class of W for $w \in \mathcal{W}$. Moreover, $p_{w, \sigma}(q) \neq p_{w^{\prime}, \sigma}(q)$ for $w \neq w^{\prime} \in \mathcal{W}$. By the argument in 7.8, the main theorem holds in this case.

In the rest of this section, we study the "good" elements.
7.23. Let $w \in W$, we call d the σ-order of w if d is the minimal positive integer such that $w \sigma(w) \cdots \sigma^{d-1}(w)=1$ and $\sigma^{d}=1$.

Let B^{+}be the braid monoid associated with (W, I). Then there is a canonical injection $f: W \rightarrow B^{+}$that identify the generators of W with the generators of B^{+}and $f\left(w_{1} w_{2}\right)=$ $f\left(w_{1}\right) f\left(w_{2}\right)$ if $w_{1}, w_{2} \in W$ and $l\left(w_{1} w_{2}\right)=l\left(w_{1}\right)+l\left(w_{2}\right)$. We will simply write \underline{w} for $f(w)$.

Now the automorphism σ extends to an automorphism of B^{+}(which we denote by the same symbol).

We call an element $w \in W$ of σ-order d a good element if there exists a sequence $I_{1} \supset I_{2} \supset$ $\cdots \supset I_{l}$ of I such that

$$
\underline{w} \sigma(\underline{w}) \cdots \sigma^{d-1}(\underline{w})=\underline{w}_{I_{1}}^{2} \underline{w}_{I_{2}}^{2} \cdots \underline{w}_{I_{l}}^{2} \quad \text { in } B^{+} .
$$

The "good" elements for $\sigma=i d$ were introduced in [5]. The above generalization appeared in [8].

Lemma 7.24.

(1) Let W be the Weyl group of type A_{n} and σ be an automorphism of order 2 with $\sigma(I)=I$. Then for any $a \leqslant n$,

$$
\underline{s}_{[n+1-a, 1]} \sigma\left(\underline{s}_{[n+1-a, 1]}\right) \cdots \sigma^{2 a-2}\left(\underline{s}_{[n+1-a, 1]}\right) \underline{w}_{\{a+1, a+2, \ldots, n+1-a\}}=\underline{w}_{I} .
$$

(2) Let W be the Weyl group of type B_{n}. Then for any $a \leqslant n$,

$$
\left(\underline{s}_{[n-1, a]}^{-1} \underline{s}_{[n, 1]}\right)^{a} \underline{w}_{\{a+1, a+2, \ldots, n\}}=\underline{w}_{I}
$$

(3) Let W be the Weyl group of type D_{n}. Then for $a \leqslant n-2$,

$$
\left(\underline{s}_{[n-2, a]}^{-1} \underline{s}_{[n, 1]}\right)^{a} \underline{w}_{\{a+1, a+2, \ldots, n\}}=\underline{w}_{I}
$$

(4) Let W be the Weyl group of type D_{n} and σ be the automorphism of order 2 with $\sigma(I)=I$. Then

$$
\begin{gathered}
\left(\underline{s}_{[n, 1]}\right)^{n-1}=\underline{w}_{I} \\
\underline{s}_{[n-1,1]} \sigma\left(\underline{s}_{[n-1,1]}\right) \cdots \sigma^{n-1}\left(\underline{s}_{[n-1,1]}\right)=\underline{w}_{I}
\end{gathered}
$$

Proof. We will prove part (1). The rest of the lemma can be showed in the same way.
By direct calculation,

$$
s_{[n+1-a, 1]} \cdots \sigma^{2 a-1}\left(s_{[n+1-a, 1]}\right) w_{\{a+1, a+2, \ldots, n+1-a\}}\left(\alpha_{i}\right)=-\alpha_{n+1-i}
$$

for each simple root α_{i}. Thus

$$
s_{[n+1-a, 1]} \sigma\left(s_{[n+1-a, 1]}\right) \cdots \sigma^{2 a-1}\left(s_{[n+1-a, 1]}\right) w_{\{a+1, a+2, \ldots, n+1-a\}}=w_{I}
$$

Moreover, $(2 a-1) l\left(s_{[n+1-a, 1]}\right)+l\left(w_{\{a+1, a+2, \ldots, n+1-a\}}\right)=n(n+1) / 2$. Now part (1) follows from the definition of $f: W \rightarrow B^{+}$. Part (1) is proved.

Corollary 7.25.

(1) Let W be the Weyl group of type A_{n} and σ be an automorphism of order 2 with $\sigma(I)=I$. Then for any $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right)$ with $\alpha_{1} \geqslant \alpha_{2} \geqslant \cdots \geqslant \alpha_{l} \geqslant 1$ and $\sum_{1 \leqslant i \leqslant l}\left(2 \alpha_{i}-1\right)=$ $n+1$,

$$
\underline{w}_{\alpha} \sigma\left(\underline{w}_{\alpha}\right) \cdots \sigma^{2 d-1}\left(\underline{w}_{\alpha}\right)=\underline{w}_{I_{1}}^{e_{1}} \underline{w}_{I_{2}}^{e_{2}-e_{1}} \cdots \underline{w}_{I_{l}}^{e_{l}-e_{l-1}},
$$

where d is the least common multiple of $2 \alpha_{i}-1, e_{i}=2 d /\left(2 \alpha_{i}-1\right)$ and

$$
I_{i}=\left\{\sum_{1 \leqslant k \leqslant i-1} \alpha_{k}-i+2, \sum_{1 \leqslant k \leqslant i-1} \alpha_{k}-i+3, \ldots, n-\sum_{1 \leqslant k \leqslant i-1} \alpha_{k}\right\} .
$$

(2) Let W be the Weyl group of type B_{n}. Then for any partition $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right)$ of n,

$$
\left(\underline{w}_{\alpha}\right)^{d}=\underline{w}_{I_{1}}^{e_{1}} \underline{w}_{I_{2}}^{e_{2}-e_{1}} \cdots \underline{w}_{I_{l}}^{e_{l}-e_{l-1}},
$$

where d is the least common multiple of $\alpha_{i}, e_{i}=d / a_{i}$ and

$$
I_{i}=\left\{\sum_{1 \leqslant k \leqslant i-1} \alpha_{k}+1, \sum_{1 \leqslant k \leqslant i-1} \alpha_{k}+2, \ldots, n\right\}
$$

(3) Let W be the Weyl group of type D_{n}. Let $\sigma_{0}=i d$ and σ_{1} be the automorphism of order 2 on W with $\sigma_{1}(I)=I$. Then for any partition $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right)$ of n with $l-i$ even,

$$
\underline{w}_{\alpha}^{\prime} \sigma\left(\underline{w}_{\alpha}^{\prime}\right) \cdots \sigma^{2 d-1}\left(\underline{w}_{\alpha}^{\prime}\right)=\underline{w}_{I_{1}}^{e_{1}} \underline{w}_{I_{2}}^{e_{2}-e_{1}} \cdots \underline{w}_{I_{l}}^{e_{l}-e_{l-1}},
$$

where d is the least common multiple of $\alpha_{i}, e_{i}=2 d / a_{i}$ and

$$
I_{i}= \begin{cases}\left\{\sum_{1 \leqslant k \leqslant i-1} \alpha_{k}+1, \sum_{1 \leqslant k \leqslant i-1} \alpha_{k}+2, \ldots, n\right\}, & \text { if } \sum_{1 \leqslant k \leqslant i-1} \alpha_{k} \leqslant n-2, \\ \varnothing, & \text { otherwise. }\end{cases}
$$

Remark. Part (2) and (3) were proved in [7, Proposition 4.3.11] and part (1) was conjectured in [8, 5.6].

Proof of Corollary 7.25. We will prove part (1). The rest of the lemma can be showed in the same way.

We argue by induction on l. Let $J=I-\{1\}$. Then w_{α} is of the form $w_{1} v$, where $w_{1}=$ $s_{\left[n+1-\alpha_{1}, 1\right]} \in W^{J}$ and $v \in W_{I\left(w_{1},\left.\sigma\right|_{J}\right)}$. It is easy to see that

$$
\underline{w}_{\alpha} \sigma\left(\underline{w}_{\alpha}\right) \cdots \sigma^{2 d-1}\left(\underline{w}_{\alpha}\right)=\underline{w}_{1} \sigma\left(\underline{w}_{1}\right) \cdots \sigma^{2 d-1}\left(\underline{w}_{1}\right) \underline{v}_{1} \sigma_{1}\left(\underline{v}_{1}\right) \cdots \sigma_{1}^{2 d-1}\left(\underline{v}_{1}\right)
$$

where

$$
\begin{aligned}
& \sigma_{1}=\operatorname{Ad}\left(w_{1}\right) \sigma \quad \text { and } \\
& v_{1}=\operatorname{Ad}\left(\sigma\left(w_{1}\right) \sigma^{2}\left(w_{1}\right) \cdots \sigma^{2 d-1}\left(w_{1}\right)\right)^{-1} v=\operatorname{Ad}\left(s_{\left[n, \alpha_{1}\right]}\right) \operatorname{Ad}\left(s_{\left[n+1-\alpha_{1}, 1\right]}^{-1} s_{\left[n, \alpha_{1}\right]}\right)^{d-1} v \\
&=\operatorname{Ad}\left(s_{\left[n, \alpha_{1}\right]}\right) v .
\end{aligned}
$$

Notice that σ_{1} is an order- 2 automorphism on $W_{\left[\alpha_{1}, \alpha_{1}+1, \ldots, n-\alpha_{1}\right]}$. By induction hypothesis,

$$
\underline{v}_{1} \sigma_{1}\left(\underline{v}_{1}\right) \cdots \sigma_{1}^{2 d^{\prime}-1}\left(\underline{v}_{1}\right)=\left(\underline{w}_{I_{2}}^{e_{2}^{\prime}} \underline{w}_{I_{3}}^{e_{3}^{\prime}-e_{2}^{\prime}} \cdots \underline{w}_{I_{l}}^{e_{l}^{\prime}-e_{l-1}^{\prime}}\right)
$$

where d^{\prime} is the least common multiple of $2 \alpha_{i}-1$ for $i \geqslant 2$ and $e_{i}^{\prime}=2 d^{\prime} /\left(2 \alpha_{i}-1\right)$. By [7, Proposition 4.1.9],

$$
\begin{aligned}
v_{1} \sigma_{1}\left(v_{1}\right) \cdots \sigma_{1}^{d-1}\left(v_{1}\right) & =\left(\underline{w}_{I_{2}}^{e_{2}^{\prime}}\right)^{\frac{d}{d^{\prime}}}\left(\underline{w}_{I_{3}}^{e_{3}^{\prime}-e_{2}^{\prime}}\right)^{\frac{d}{d^{\prime}}} \cdots\left(\underline{w}_{I_{l}}^{e_{l}^{\prime}-e_{l-1}^{\prime}}\right)^{\frac{d}{d^{\prime}}} \\
& =\underline{w}_{I_{2}}^{e_{2}} \underline{w}_{I_{3}}^{e_{3}-e_{2}} \cdots \underline{w}_{I_{l}-e_{l-1}}^{e_{l}} .
\end{aligned}
$$

By the previous lemma,

$$
\begin{aligned}
& \underline{w}_{1} \sigma\left(\underline{w}_{1}\right) \cdots \sigma^{2 d-1}\left(\underline{w}_{1}\right) \underline{w}_{I_{2}}^{e_{1}} \\
& \quad=\underline{w}_{1} \sigma\left(\underline{w}_{1}\right) \cdots \sigma^{2 d-e_{1}-1}\left(\underline{w}_{1}\right) \sigma\left(\underline{w}_{1} \sigma\left(\underline{w}_{1}\right) \cdots \sigma^{e_{1}-1}\left(\underline{w}_{1}\right) \underline{w}_{\sigma\left(I_{2}\right)}\right) \underline{w}_{I_{2}}^{e_{1}-1} \\
& \quad=\underline{w}_{1} \sigma\left(\underline{w}_{1}\right) \cdots \sigma^{2 d-e_{1}-1}\left(\underline{w}_{1}\right) \underline{w}_{I} \underline{w}_{I_{2}}^{e_{1}-1} \\
& \quad=\underline{w}_{1} \sigma\left(\underline{w}_{1}\right) \cdots \sigma^{2 d-e_{1}-1}\left(\underline{w}_{1}\right) \underline{w}_{\sigma\left(I_{2}\right)}^{e_{1}-1} \underline{w}_{I} \\
& \quad=\cdots=\underline{w}_{I}^{e_{1}} .
\end{aligned}
$$

Part (1) is proved.
Theorem 7.26. Let (W, I) be a finite Coxeter group and σ be an automorphism on W with $\sigma(I)=I$. Let \mathcal{O} be a σ-conjugacy class. Then there exists a good element $w \in \mathcal{O}_{\text {min }}$.

Remark. The non-twisted cases were proved in [5]. The twisted cases except the type ${ }^{2} A_{n}$ were proved in [8]. The type ${ }^{2} A_{n}$ follows from the previous corollary.

Acknowledgments

When I discussed with George Lusztig about the closure relations of the G-stable pieces, he pointed out to me the result of Geck and Pfeiffer in [6] about the minimal length elements in conjugacy classes of finite Weyl groups. This led me to think about the possible connection between the G-stable piece and the minimal length in certain subsets of the corresponding Weyl groups. It is a great pleasure to thank him here.

I would also like to thank Jiang-hua Lu for telling me her joint work [12] with Yakimov and for helpful answers to my questions.

Part of this work was done during my visit at University of Hong Kong and Hong Kong University of Science and Technology. I would like to thank them for the warm hospitality.

I would also like to thank T.A. Springer for some helpful discussions, and to thank M. Geck and G. Pfeiffer for pointing out the reference [4] to me.

References

[1] R. Bédard, On the Brauer liftings for modular representations, J. Algebra 93 (2) (1985) 332-353.
[2] A.A. Beilinson, J. Bernstein, P. Deligne, Faisceaux pervers, in: Analysis and Topology on Singular Spaces, I, Luminy, 1981, Soc. Math. France, Paris, 1982, pp. 5-171.
[3] N. Bourbaki, Groupes et algèbres de Lie. Chap. 4, 5, 6, Hermann, Paris, 1968.
[4] A. Francis, Centralizers of Iwahori-Hecke algebras. II. The general case, Algebra Colloq. 10 (1) (2003) 95-100.
[5] M. Geck, J. Michel, "Good" elements in finite Coxeter groups and representations of Iwahori-Hecke algebras, Proc. London Math. Soc. (3) 74 (2) (1997) 275-305.
[6] M. Geck, G. Pfeiffer, On the irreducible characters of Hecke algebras, Adv. Math. 102 (1) (1993) 79-94.
[7] M. Geck, G. Pfeiffer, Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras, London Math. Soc. Monogr. (N.S.), vol. 21, Oxford Univ. Press, Oxford, 2000.
[8] M. Geck, S. Kim, G. Pfeiffer, Minimal length elements in twisted conjugacy classes of finite Coxeter groups, J. Algebra 229 (2) (2000) 570-600.
[9] X. He, The character sheaves on the group compactification, Adv. Math. 207 (2006) 805-827.
[10] X. He, The G-stable pieces of the wonderful compactification, Trans. Amer. Math. Soc. 359 (2007) 3005-3024.
[11] X. He, Character sheaves on certain spherical varieties, math.RT/0605177.
[12] J.-H. Lu, M. Yakimov, Partitions of the wonderful group compactification, Transform. Groups, in press, math.RT/ 0606579.
[13] G. Lusztig, Hecke Algebras with Unequal Parameters, CRM Monogr. Ser., vol. 18, Amer. Math. Soc., Providence, RI, 2003.
[14] G. Lusztig, Character sheaves on disconnected groups, VI, Represent. Theory 8 (2004) 377-413.
[15] G. Lusztig, Parabolic character sheaves, I, Mosc. Math. J. 4 (1) (2004) 153-179.
[16] J.G.M. Mars, T.A. Springer, Character sheaves, Astérisque 173-174 (9) (1989) 111-198.
[17] R.W. Richardson, Conjugacy classes of involutions in Coxeter groups, Bull. Austral. Math. Soc. 26 (1982) 1-15.
[18] T.A. Springer, Twisted conjugacy in simply connected groups, Transform. Groups 11 (3) (2006) 539-545.

[^0]: E-mail address: hugo@math.sunysb.edu.
 0001-8708/\$ - see front matter © 2007 Elsevier Inc. All rights reserved.
 doi:10.1016/j.aim.2007.04.005

[^1]: $p_{x_{k}, \sigma}(1) \neq 0$
 $p_{x_{k}, \sigma}(q) \neq p_{x_{k^{\prime}}, \sigma}(q)$ for $x_{k} \neq x_{k^{\prime}}$.

