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Abstract

In this Letter, we apply the proper-time method to generate the Lorentz-violating Chern–Simons terms in the four-dimensional Yang–Mills and
non-linearized gravity theories. It is shown that the coefficient of the induced Chern–Simons term is finite but regularization dependent.
© 2008 Elsevier B.V.

1. Introduction

The possibility of Lorentz symmetry breaking was firstly suggested in [1–3] and has motivations from the GZK effect [4], quan-
tum gravity problems [5], and the concept of double special relativity [6]. One of the implications of the Lorentz symmetry breaking
is the possibility of arising of new classes of couplings in the Lagrangian which involve constant vectors or tensors, similarly to
the Seiberg–Witten map [7] representation of the noncommutative field theories in which the Lorentz-symmetry breaking can be
naturally treated as an implication of the space–time noncommutativity [8,9]. Following the common methodology, the Lorentz-
breaking terms in different field theories arise as radiative corrections generated from the coupling of the dynamical fields to spinor
fields, which are also coupled with constant vectors or tensors. The most important results achieved in such direction are the gen-
eration of the four-dimensional Lorentz-breaking Chern–Simons term in the electrodynamics, both at zero [10–25] and at a finite
temperature [26–30], in the Yang–Mills theory [31], and the generation of the linearized gravitational Chern–Simons term [32].

The characteristic feature of the Lorentz-breaking theories is the ambiguity of quantum corrections, which in the vector field case
is related to the presence of the ABJ anomaly [33] and has been intensively discussed in the papers [31,33,34]. Thus, the natural
question is whether the analogous ambiguity takes place in the case of the gravity theory. In particular, the problem is whether this
ambiguity survives within the proper-time method [35], which seems to be the most adequate for calculations in the non-linearized
gravity (see [36] for the calculations of the three-dimensional gravitational Chern–Simons term) since it is known to preserve the
gauge invariance and obtain explicit solutions for the equations of motion. At the same time, it is known (see [19–21,23]) that even
within the framework of the proper-time approach the ambiguity of results is observed in the case of the electrodynamics. So, it is
interesting to compare this situation with the gravity case.

In this Letter we apply the proper-time method to find the four-dimensional Lorentz-breaking Chern–Simons terms in the Yang–
Mills theory [37] and the non-linearized gravity [38]. We note that in the case of gravity it is natural to expect that the possible
ambiguities are related to the gravitational triangle anomaly [39] which could be treated as the natural gravitational analogs of the
well-known ABJ triangle anomaly.
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The structure of the Letter looks as follows. In the next section we calculate the Chern–Simons term in the four-dimensional
Yang–Mills theory via the proper-time method. Section 3 is devoted to the calculation of the Chern–Simons term in the non-
linearized gravity within the framework of the same method and the discussion of the possible ambiguities. In the summary,
a review of the results obtained is given.

2. Induced non-Abelian Chern–Simons term

The starting point of our study is the action of the spinors coupled to the Yang–Mills field with the inclusion of a Lorentz-breaking
term proportional to the constant vector bμ, given by

(1)S =
∫

d4x ψ̄
(
i/∂ − m − /bγ5 − gγ μAa

μT a
)
ψ,

where T a are the generators of some Lie group algebra satisfying the relations tr(T aT b) = δab and [T a,T b] = if abcT c , and
Aμ = Aa

μT a is the Lie-algebra valued Yang–Mills vector field. The one-loop effective action of the Aμ, obtained via integration
over the fermions in this action, can be expressed in terms of the functional trace as [31]

(2)Seff = −i Tr ln(i/∂ − m − /bγ5 − g/A),

where Tr means trace over Dirac matrices, over the group indices, as well as trace over the integration in momentum or coordinate
spaces. In the sequel we shall use the notation /A = γ μAa

μT a . Now, to apply the proper-time method, analogous to the one used to
obtain the consistent anomalies [40], to calculate this trace we add to this effective action a constant

(3)C = −i Tr ln(i/∂ + m + /bγ5)

(for more details see [36]), so that after some manipulations, we get

(4)S′
eff = −i Tr ln

[−� − ig/A/∂ − mg/A − m2 − (g/A + 2m)/bγ5 + 2i(b · ∂)γ5 − b2].
Our aim consists in the calculation of S′

eff up to first order in the Lorentz-breaking vector bμ. Using the relation

(5)ln(A + B) = lnA + A−1B + · · · ,
we can write down the first-order term in bμ as

(6)Sb = −i Tr
(� + ig/A/∂ + mg/A + m2)−1[

(g/A + 2m)/bγ5 − 2i(b · ∂)γ5
]
.

We introduce the proper-time representation

(7)
(� + ig/A/∂ + mg/A + m2)−1 =

∞∫
0

ds e−s(�+ig/A/∂+mg/A+m2),

and rewrite the expression (6) as

(8)Sb = −i Tr

∞∫
0

ds e−sm2
e−s(�+ig/A/∂+mg/A)

[
(g/A + 2m)/bγ5 − 2i(b · ∂)γ5

]
.

Since we are interested in getting the Chern–Simons term, which have at most one derivative in the Aμ field, we use the Campbell–
Hausdorff–Baker formula to get

(9)e−s(�+ig/A/∂+mg/A) � e−s�e−s(ig/A/∂+mg/A)e− s2
2 [�,ig/A/∂+mg/A],

where [�, ig/A/∂ + mg/A] � 2ig(∂α/A)/∂∂α + 2mg(∂α/A)∂α , up to irrelevant terms with the second derivative in the Aμ. The result is

(10)Sb = −i Tr

∞∫
0

ds e−sm2
e−s(ig/A/∂+mg/A)e−s2(ig(∂α/A)/∂+mg(∂α/A))∂α [

(g/A + 2m)/bγ5 − 2i(b · ∂)γ5
]
e−s�,

where we have used the cyclic property of the trace. By expanding the exponentials in this expression up to the third order in /A and
up to the first order in ∂α/A, we get
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Sb = −i Tr

∞∫
0

ds e−sm2
[

1 − s(ig/A/∂ + mg/A) + s2

2
(ig/A/∂ + mg/A)2 − s3

6
(ig/A/∂ + mg/A)3

]

(11)× [
1 − s2ig(∂α/A)/∂∂α − s2mg(∂α/A)∂α

][
(g/A + 2m)/bγ5 − 2i(b · ∂)γ5

]
e−s� + · · · ,

where the derivatives act on every function to its right. By dimensional reasons, only the mass-independent terms can produce UV
divergences. Thus, the divergent contribution to the Chern–Simons action proportional to bμAν∂λAρ , after we use the definition of
the trace

(12)Tr Ô = trD tr
∫

d4x 〈x|Ô|x′〉|x′=x = trD tr
∫

d4xOδ(x − x′)|x′=x,

yields

S
(2)
div = g2 trD tr

∫
d4x

∞∫
0

ds e−sm2[−s2(∂α/A)/∂∂α/A/bγ5 + 2s3/A/∂(∂α/A)/∂∂αb · ∂γ5

(13)− s/A(/∂/A)/bγ5 + s2/A(/∂/A)/∂b · ∂γ5
]
e−s�δ(x − x′)|x′=x,

where trD means trace over Dirac matrices, tr means trace over group indices, and, except for the derivatives inside the parenthesis,
all the derivatives are applied in the delta function. By taking the trace over Dirac matrices and using the Fourier representation of
the delta function, we obtain

(14)S
(2)
div = −4ig2 tr

∫
d4x

∞∫
0

ds e−sm2
bμAν∂λAρ

∫
d4k

(2π)4
esk2(

s2εανλρkαkμ + s2εμναρkαkλ + sεμνλρ
)
.

Proceeding in a similar way, we can show that the divergent part proportional to bμAνAλAρ is equal to

(15)S
(3)
div = ig3 trD tr

∫
d4x

∞∫
0

ds e−sm2
[
s2

2
/A/∂/A/∂/A/bγ5 − s3

3
/A/∂/A/∂/A/∂(b · ∂)γ5

]
e−s�δ(x − x′)|x′=x,

so that we have

(16)S
(3)
div = 4g3 tr

∫
d4x

∞∫
0

ds e−sm2
bμAνAλAρ

∫
d4k

(2π)4
esk2

(
s2

2
εμνλρk2 − s2εμναρkαkλ + s3

3
εανλρkαkμk2

)
.

By substituting the following integrals∫
d4k

(2π)4
esk2 = i

16π2s2
,

∫
d4k

(2π)4
esk2

kμkν = −i

32π2s3
gμν,

(17)
∫

d4k

(2π)4
esk2

kμkνkλkρ = i

64π2s4
(gμνgλρ + gμλgνρ + gμρgνλ)

in (14) and (16), we can see that the several monomials cancel each other, resulting in S
(2)
div = S

(3)
div = 0.

It remains to study the finite part of (11) that contributes to the Chern–Simons action. The bμAν∂λAρ finite terms of (11), after
disregarding the zero-trace terms or terms vanishing by symmetric integration, yields

S
(2)
fin = g2 trD tr

∫
d4x

∞∫
0

ds e−sm2[
s2m2/A(/∂/A)/bγ5 + 2m2s3/A/∂(∂α/A)∂α/bγ5

(18)+ 2m2s3/A(∂α/A)∂α/∂/bγ5
]
e−s�δ(x − x′)|x′=x,

which after the calculation of the trace, gives

(19)S
(2)
fin = −4ig2 tr

∫
d4x

∞∫
0

ds e−sm2
bμAν∂λAρ

∫
d4k

(2π)4
esk2

s2m2εμνλρ.

Now, by using the first expression in (17) and the integration over the parameter s,

(20)

∞∫
ds e−sm2

sz−1 = �(z)

m2z
,

0



T. Mariz et al. / Physics Letters B 661 (2008) 312–318 315
we obtain

(21)S
(2)
fin = − g2

4π2
tr

∫
d4x εμνλρbμAν∂λAρ.

Finally, the relevant bμAνAλAρ finite terms of (11) are given by

S
(3)
fin = −ig3 trD tr

∫
d4x

∞∫
0

ds e−sm2
[
s2

2
m2/A/A/A/bγ 5 + s3

3
m2(/A/∂/A/∂/A + /A/∂/A/A/∂ + /A/A/∂/A/∂)/bγ5

(22)− s3

3
m2(/A/∂/A/A + /A/A/∂/A + /A/A/A/∂)b · ∂γ5 − s3

3
m4/A/A/A/bγ 5

]
e−s�δ(x − x′)|x′=x

or, taking into account the trace of Dirac matrices,

S
(3)
fin = −4g3 tr

∫
d4x

∞∫
0

ds e−sm2
bμAνAλAρ

(23)×
∫

d4k

(2π)4
esk2

(
s2

2
m2εμνλρ + s3

3
m2εμνλρk2 + s3

3
m2εανλρkαkμ − s3

3
m4εμνλρ

)
.

Thus, by integrating over the momenta k and the parameter s, we obtain

(24)S
(3)
fin = ig3

6π2
tr

∫
d4x εμνλρbμAνAλAρ.

Therefore, combining both contributions, Eqs. (21) and (24), we find the result

(25)SCS = − g2

4π2
tr

∫
d4x εμνλρbμ

(
Aν∂λAρ − 2ig

3
AνAλAρ

)
,

which is exactly the non-Abelian Chern–Simons term [37]. Its coefficient coincides with one of the values gotten in [31] where it
was calculated in two different regularization schemes.

3. Induced gravitational Chern–Simons term

The action in which we are now interested is the one of the spinors coupled to the gravity with the inclusion of a Lorentz-breaking
term proportional to the constant vector bμ [32],

(26)S =
∫

d4x eeμ
aψ̄

(
iDμγ a − bμγ aγ5

)
ψ,

where eμ
a is the tetrad (vierbein), and e ≡ det eμ

a . The covariant derivative is given by

(27)Dμψ = ∂μψ − i

4
ωμbcσ

bcψ,

where wμ
bc is the spin connection and σbc = i

2 [γ b, γ c]. Using these expressions and adding a massive term we can rewrite the
Eq. (26) as follows

(28)S =
∫

d4x eψ̄(i/∂ − m − /bγ5 + /ω)ψ,

where γ μ = eμ
aγ

a and ωμ = 1
4ωμbcσ

bc . The corresponding one-loop effective action of the ωμbc can be expressed as

(29)Seff = −i Tr ln(i/∂ − m − /bγ5 + /ω).

Observe that this expression is similar to Eq. (2), when we change /ω → −g/A. So, the effective action becomes

(30)S′
eff = −i Tr ln

[−� + i/ω/∂ + m/ω − m2 + (/ω − 2m)/bγ5 + 2i(b · ∂)γ5 − b2].
As this equation is also similar to expression (4), the divergent and finite contributions are similar to those obtained in the non-
Abelian case, expressions (14), (16), (21), and (24), respectively. The only difference is in the trace over Dirac matrices due to the
presence of the σbc matrices. Nevertheless, as these modifications do not affect the tensorial structure the divergent terms in this
case also vanish. From now on, we shall only concentrate in the finite terms from which the gravitational Chern–Simons term must
appear.
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Thus, the finite contribution proportional to bμ∂νωλabωρ
ba is given by

(31)S
(2)
fin = trD

∫
d4x

∞∫
0

ds e−sm2[
s2m2/ω(/∂/ω)/bγ5 + 2m2s3/ω/∂(∂α/ω)∂α/bγ5 + 2m2s3/ω(∂α/ω)∂α/∂/bγ5

]
e−s�δ(x − x′)|x′=x.

Here, we have another modification due to the introduction of the geodesic bi-scalar σ(x, x′) in the delta function as follows [41,42]

(32)δ(x − x′) =
∫

d4k

(2π)4
eikαDασ(x,x′).

But as in the limit x′ → x we have

(33)DαDβσ(x, x′)|x′=x = gαβ,

it is sufficient to complete the covariant derivatives in (31) by using the expression (27), through the substitution ∂α = Dα + iωα .
We get

S
(2)
fin = trD

∫
d4x

∞∫
0

ds e−sm2[
s2m2/ω(/∂/ω)/bγ5 + 2m2s3/ω/D(∂α/ω)Dα/bγ5 + 2m2s3/ω(∂α/ω)Dα/D/bγ5

(34)−2m2s3/ω/ω(∂α/ω)ωα/bγ5 − 2m2s3/ω(∂α/ω)ωα/ω/bγ5
]
e−s�δ(x − x′)|x′=x,

where the last two terms do not contribute to the gravitational Chern–Simons term. By performing the trace over matrices and using
(17) and (20), we obtain

S
(2)
CS = i

4

∫
d4x

∞∫
0

ds e−sm2
bμωνab∂λωρcd

∫
d4k

(2π)4
esk2

s2m2εμνλρ
(
gacgbd − gadgbc

)

(35)= 1

32π2

∫
d4x εμνλρbμ∂νωλabωρ

ba,

with εμνλρ = eeμ
ae

ν
be

λ
ce

ρ
dεabcd . Finally, the relevant bμωνabωλ

bcωρc
a finite terms are given by

S
(3)
fin = i trD

∫
d4x

∞∫
0

ds e−sm2
[
s2

2
m2/ω/ω/ω/bγ 5 + s3

3
m2(/ω/D/ω/D/ω + /ω/D/ω/ω/D + /ω/ω/D/ω/D)/bγ5

(36)− s3

3
m2(/ω/D/ω/ω + /ω/ω/D/ω + /ω/ω/ω/D)b · Dγ5 − s3

3
m4/ω/ω/ω/bγ 5

]
e−s�δ(x − x′)|x′=x.

Thus, after calculating the trace the above expression can be written as

S
(3)
CS = − i

16

∫
d4x

∞∫
0

ds e−sm2
bμωνabωλcdωρef

×
∫

d4k

(2π)4
esk2

(
s2

2
m2εμνλρ + s3

3
m2εμνλρk2 + s3

3
m2εανλρkαkμ − s3

3
m4εμνλρ

)

(37)×[
gaf

(
gbcgde − gbdgce

) + gae
(
gbdgcf − gbcgdf

) + gad
(
gbf gce − gbegcf

) + gac
(
gbegdf − gbf gde

)]
.

By integrating over the momenta k and the parameter s, we have

(38)S
(3)
CS = − 1

48π2

∫
d4x εμνλρbμωνabωλ

bcωρc
a,

so that combining this expression with (35) we find the gravitational Chern–Simons term [38] given by

(39)SCS = 1

32π2

∫
d4x εμνλρbμ

(
∂νωλabωρ

ba − 2

3
ωνabωλ

bcωρc
a

)
.

This expression can be treated as a four-dimensional analog of the result found in [36]. By using the expressions of the vierbein
and spin connection in terms of the metric fluctuation hμν , eμa = gμa + 1

2hμa and ωμab = − 1
2∂ahμb + 1

2∂bhμa , respectively, we
can easily verify that in the weak field approximation this term does not reproduce the value of the numerical coefficient for the



T. Mariz et al. / Physics Letters B 661 (2008) 312–318 317
linearized gravitational Chern–Simons term obtained in [32]. Comparing with [32], we note that in the case of the proper-time
method, the limit m2 → 0 is not necessary because the divergent contributions vanish.

4. Summary

We have applied the proper-time method for the calculation of the Lorentz-breaking Chern–Simons terms in the four-dimensional
Yang–Mills and non-linearized gravity theories. These contributions are shown to be finite. For the gravity theory, we did not
reproduce the result obtained earlier in [32], and therefore we can conclude that the gravitational Chern–Simons term has a finite but
regularization dependent coefficient, similarly to what happens with the Chern–Simons coefficient in the Lorentz-breaking Yang–
Mills theory. It is natural to suggest that, in the case of gravity, the undetermined value of this coefficient is a natural implication
of the gravitational triangle anomaly [39]. The important feature of our result for the gravitational Chern–Simons term is that it is
obtained without any restrictions on the field configuration and approximations. At the same time, the result for the Yang–Mills
theory is shown to reproduce one of the results obtained in [31] in different regularizations scheme.
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