On graphs with small number of Laplacian eigenvalues greater than two

Yizheng Fan a,*, Jiongsheng Li b

aDepartment of Mathematics, Anhui University, Hefei, Anhui 230039, People’s Republic of China
bDepartment of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026,
People’s Republic of China

Received 24 July 2001; accepted 28 May 2002
Submitted by R.A. Brualdi

Abstract
All connected graphs with exactly one or two Laplacian eigenvalues greater than two are determined.
© 2002 Elsevier Science Inc. All rights reserved.
AMS classification: 05C50
Keywords: Graph; Laplacian eigenvalues; Matching number; Diameter

1. Introduction

Let $G = (V, E)$ be a simple graph with vertex set $V = V(G) = \{v_1, v_2, \ldots, v_n\}$ and edge set $E = E(G)$. The adjacency matrix of G is denoted by $A(G) = (a_{ij})$, where $a_{ij} = 1$ if v_i and v_j are adjacent and $a_{ij} = 0$ otherwise. The degree diagonal matrix of G is denoted by $D(G) = \text{diag}(d_1(G), d_2(G), \ldots, d_n(G))$, where $d_i(G)$ is the degree of v_i. Without loss of generality, we can assume that $d_1(G) \geq d_2(G) \geq \cdots \geq d_n(G)$. Then $L(G) = D(G) - A(G)$ is the Laplacian matrix of G. It is known that $L(G)$ is a singular, positive semidefinite symmetric matrix. The eigenvalues of $L(G)$ are called the Laplacian eigenvalues of G, and are denoted by $\lambda_1(G) \geq \lambda_2(G) \geq \cdots \geq \lambda_n(G) = 0$. It is proved in [1, Theorem 1] that if λ is a Laplacian

* Supported by the National Natural Science Foundation of China (Grant No. 19971086).
* Corresponding author.
E-mail addresses: fanyz@mars.ahu.edu.cn (Y. Fan), lijs@ustc.edu.cn (J. Li).

0024-3795/03/$ - see front matter © 2002 Elsevier Science Inc. All rights reserved.
PII: S0024-3795(02)00458-5
eigenvalue of G, then $0 \leq \lambda \leq n$ and the multiplicity of 0 as a Laplacian eigenvalue of G equals the number of components of G, and the multiplicity of n equals one less than the number of components of the complement of G.

Let I be an interval of the real line. The number of Laplacian eigenvalues of G, multiplicities included, that belong to I, is denoted by $m_G(I)$. Especially, if $I = [\lambda]$, then $m_G(\lambda)$ is just the multiplicity of λ as a Laplacian eigenvalue of G. Grone et al. [2] and Merris [3] study the bounds of $m_G(I)$ for some certain I’s, especially for $I = (2, n]$. Ming and Wang [6] give a lower bound for $m_G(2, n]$ in terms of the matching number of G when G has no perfect matchings. Recently, Petrović et al. [9] consider a connected bipartite graph G with exactly two Laplacian eigenvalues greater than two, that is, $m_G(2, n] = 2$, and determined all those graphs. A special motivation for their study is discovered connection between photoelectron spectra of saturated hydrocarbons (alkanes) and the Laplacian eigenvalues of the underlying molecular graphs [7, 8]. The results they obtained in the work can, in principle, be of interest in the photoelectron spectroscopy of organic compounds [9]. In this paper, we shall extend their results to connected graphs G with $m_G(2, n] = 2$ and determine all those graphs. We also determine all graphs G such that $m_G(2, n] = 1$.

In order to present our results, we need some notations. Let $G = (V, E)$ be a simple graph on n vertices. A subset M of E is called a matching in G if any two edges in M are not incident. The maximum of cardinalities of all matchings of G is commonly known as its matching number denoted by $\mu(G)$. A matching M is called a perfect matching in G if each vertex of G must be incident to some edge in M. Denote by $G + e$ the graph obtained from G by inserting a new edge e. The complement of G, is $G^c = (V, E^c)$, where $e \in E(G^c) = E^c$ if and only if $e \notin E$. If $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are graphs on disjoint sets of r and s vertices, respectively, their union is the graph $G_1 + G_2 = (V_1 \cup V_2, E_1 \cup E_2)$, and their join is $G_1 \vee G_2 = (G_1^c + G_2^c)^c$, the graph on $r + s$ vertices obtained from $G_1 + G_2$ by inserting new edges from each vertex of G_1 to every vertex of G_2.

It follows from Courant–Weyl inequalities (see e.g. [10, Theorem 2.1]) that following is true.

Theorem 1.1. Let G be a graph on n vertices. Then the Laplacian eigenvalues of G interlace those of $G + e$, that is,

$$\lambda_1(G + e) \geq \lambda_1(G) \geq \lambda_2(G + e) \geq \lambda_2(G) \geq \cdots \geq \lambda_n(G + e) = \lambda_n(G) = 0.$$

Theorem 1.2 [2]. If T is a tree on n vertices with diameter d, then

$$m_T(0, 2) \geq \lfloor d/2 \rfloor \leq m_T(2, n),$$

where square brackets indicate the greatest integer function.

Theorem 1.3 [6]. Let G be a connected graph on n vertices. If $n > 2\mu(G)$, then $m_G(2, n] \geq \mu(G)$.

2. Main results

Denote by $H_1, H_2, H_3, H_4, H_5, H_6, H_7, H_8 = H_8(p, m, q) (p \geq 0, m \geq 1, q \geq 0), H_9 = H_9(p, m, q) (p \geq 0, m \geq 0, q \geq 0)$ the graphs displayed in Fig. 1. Denote by S the set consisting of the following graphs:

$P_2 = H_9(p, 0, 0), P_3 = H_9(1, 1, 0) = H_9(0, 1, 1), C_4 = H_9(0, 1, 0)$, $S_1, p + 1 = H_8(p, 0, 0) (p \geq 2), S_1, q + 1 = H_8(0, 0, q) (q \geq 2)$.

Theorem 2.1. The graphs $H_1 - H_9$ shown in Fig. 1, except those in \mathcal{S}, hold the property that $m_{H_i}(2, n) = 2$ for each $i = 1, 2, \ldots, 9$.

Proof. By [9, Theorem 5] and direct calculation, the graphs $H_1 - H_6$, and $H_9 = H_9(p, 0, q)$, except those in \mathcal{S}, hold the property that $m_{H_i}(2, n) = 2$ for each $i = 1, 2, \ldots, 9$.

For the graph $H_9 = H_9(p, m, q) (m \geq 1)$, if $p = q \geq 1$, then $d_1 = d_1(H_9) = d_2(H_9) = m + p + 1 \geq 3$. By [11, Lemma 4] and its proof, $\lambda_1(H_9) \geq \lambda_2(H_9) \geq d_2(H_9) \geq 3$ and $\lambda_3(H_9) = \frac{1}{2} \left(d_1 + 2 - \sqrt{d_1^2 - 4p} \right)$. If $\lambda_3(H_9) > 2$, then $p + 1 \leq m + p = d_1 - 1 < p$, impossible.

For the other cases, H_9 contains a cycle C_3 as its subgraph. By Theorem 1.1, $\lambda_2(H_9) \geq \lambda_2(C_3) = 3$. We can construct a new graph $H = H_9(p + 1, m, p + 1)$ from H_9 by inserting some new vertices and edges. By Theorem 1.1 and the discussion above, $\lambda_3(H_9) \leq \lambda_3(H) \leq 2$. The result follows. \qed
Let G be a connected graph with the property

$$\lambda_3(G) \leq 2.\quad (1)$$

Property (1) is hereditary because, as a direct consequence of Theorem 1.1, for any (not necessarily induced) subgraph $H \subset G$, H also satisfies (1). The hereditarity of property (1) implies that there are minimal connected graphs that do not obey (1); such graphs are called forbidden subgraphs. It is easy to verify that the three graphs shown in Fig. 2 are forbidden subgraphs. They will play an important role in our discussion.

Lemma 2.2. Let G be a connected graph on $n \leq 6$ vertices with the property P: $m_G(2,n) \leq 2$. Then G is one of the following graphs: $H_1 - H_7$, and H_8, H_9 with at most 6 vertices, shown in Fig. 1, except those in \mathcal{F}.

Proof. By [9, Theorem 5], it is sufficient to consider the case for G containing a cycle with odd length at following. If $n = 3$, $C_3 = H_9(0,1,0)$ is the unique graph with the property P. If $n = 4$, G contains a cycle C_3. Since $G_1 = K_4$ is forbidden, the only two graphs with the property P are $H_9(1,1,0), H_9(0,2,0)$. If $n = 5$, the only five graphs with the property P are $H_9(2,1,0), H_9(1,1,1), H_9(1,2,0), H_9(0,3,0)$ and H_4 since G_1, G_2 are forbidden. For the last case of $n = 6$, since G_1, G_2, G_3 are forbidden, the only nine graphs with the property P are $H_9(3,1,0), H_9(2,1,1), H_9(2,2,0), H_9(1,2,1), H_9(1,3,0), H_9(0,4,0)$ and H_5, H_6, H_7. The result follows. \[\Box\]

Lemma 2.3. Let T be a tree on n vertices. If $n \geq 7$ and $m_T(2,n) \leq 2$, then T must be one of the following graphs: $S_{1,n-1}, H_8(p,1,n-p-3), (1 \leq p \leq n-4), H_9(p,0,n-p-2), (1 \leq p \leq n-3)$.

Proof. Let d be the diameter of T. By Theorem 1.2, $d \leq 5$. If $d = 1$, then $T = P_2$, a contradiction. If $d = 2$, then $T = S_{1,n-1}$. If $d = 3$, there exists a path $P_3 = \{u_1, u_2, u_3, u_4\}$ as a subgraph of T, where u_1, u_4 are the vertices with degree 1 in the path. Any other vertex of T except those of the path is adjacent to u_2 or u_3; otherwise $d \geq 4$, a contradiction. So $T = H_9(p,0,n-p-2)(1 \leq p \leq n-3)$ at this case. If $d = 4$, there exists a path $P_3 = \{u_1, u_2, u_3, u_4, u_5\}$ as a subgraph of T, where u_1, u_5 are the vertices with degree 1 in the path. If there exists some vertex v of T, except
those of the path, adjacent to u_3, then T has a connected subgraph T_1 with 7 vertices which contains v and the vertices of the path, and has a matching with three edges. By Theorem 1.1 and Theorem 1.3, $m_T(2, n) \geq m_T(2, n) \geq 3$, a contradiction. So $T = H_8(p, 1, n - p - 3) (1 \leq p \leq n - 4)$ at this case. For the last case of $d = 5$, there exists a path P_6 in T, and a vertex of T, except those of the path, adjacent to one vertex of the path. By a similar discussion above, this is impossible. The result follows.

The following is our main result in this paper.

Theorem 2.4. Let G be a connected graph on n vertices. Then $m_G(2, n) = 2$ if and only if G is one of graphs shown in Fig. 1, except those in \mathcal{F}.

Proof. The sufficiency holds by Theorem 2.1. We consider the necessity at following. If $n \leq 6$, the necessity holds by Lemma 2.2. Suppose $n \geq 7$ at following, and let T be one of the spanning trees of G. By Theorem 1.1, $\lambda_3(T) \leq \lambda_3(G) \leq 2$. So $m_T(2, n) \leq 2$, and consequently T is one of graphs in Lemma 2.3.

If $T = S_{1,n-1}$, then G can be written as the form $G = \{u\} \cup \{G_1 + \cdots + G_k\}$ ($k \geq 1$), where G_i is connected for each $i = 1, 2, \ldots, k$. If G_1, G_2, \ldots, G_k are all isolated vertices, then $G = T$, and $m_G(2, n) = 1$, a contradiction. If there is exactly one graph (let it be G_1) among G_1, G_2, \ldots, G_k with at least two vertices, then by [4, Theorem 2], $n, \lambda_1(G_1) + 1, \lambda_2(G_1) + 1$ are Laplacian eigenvalues of G. By [11, Lemma 2], $d_2(G_1) + 1 \geq \lambda_2(G_1) + 1 \geq 2$. So $d_2(G_1) = 1$, and G_1 is one of P_2, P_3 and $S_{1,m} (m \geq 3)$. Also $\lambda_1(G_1) \geq d_1(G_1) + 1 \geq 2$ [5]. So the other cases can not happen and $G = H_9(n - m - 2, m, 0) (m \geq 1)$.

If $T = H_8(p, 1, n - p - 3) (1 \leq p \leq n - 4) = F_1$ shown in Fig. 3, then the subgraph of G induced by vertex set $V(K_{r}^e) \cup V(K_{n-p-3}^e)$ has no edges. Otherwise, G has a connected subgraph with seven vertices which contains a matching with three edges, and consequently $m_G(2, n) \geq 3$. Since G_2 is forbidden, w can not be adjacent to any vertex in $V(K_{p}^e) \cup V(K_{n-p-3}^e)$. So the possible edges in G, except those of T, are those between u and some vertices in $V(K_{r}^e)$, v and some vertices in $V(K_{n-p-3}^e)$. Therefore, G is one graph of H_8 with $n \geq 7$ vertices.
If \(T = H_0(p, 0, n - p - 2) \) (1 \(\leq p \leq n - 3 \)) = \(F_2 \) shown in Fig. 3, we just need to discuss it at the following two cases:

(A) \(p = 1, n - p - 2 > 1 \), \hspace{1cm} \(\text{B) } p > 1, n - p - 2 > 1 \).

Case (A). We know that the induced subgraph of \(G \) by \(V(K_{n-p-2}^c) \) has no edges because \(G_2 \) is forbidden. Let \(V(K_p^c) = \{w\} \). If there exists some vertex in \(V(K_{n-p-2}^c) \) adjacent to \(u \), then \(w \) can not be adjacent to any vertex of \(V(K_{n-p-2}^c) \) because \(G_2 \) is forbidden. So \(G = H_0(0, m, n - m - 2) \) (\(m \geq 2 \)) or \(G = H_0(1, m, n - m - 3) \) (\(m \geq 1 \)). Otherwise, the possible edges in \(G \), except those of \(T \), are those between \(w \) and \(v \), \(w \) and some vertices in \(V(K_{n-p-2}^c) \). So \(G = H_0(0, m, n - m - 2) \) (\(m \geq 1 \)) or \(G = H_0(0, m, n - m - 2) \) (\(m \geq 1 \)).

Case (B). Both of the subgraphs of \(G \) induced by \(V(K_p^c) \) and \(V(K_{n-p-2}^c) \) have no edges because \(G_2 \) is forbidden. Also there are no edges between some vertices of \(V(K_p^c) \) and some of \(V(K_{n-p-2}^c) \); otherwise \(G \) would have a connected subgraph with seven vertices which contains a matching with three edges, impossible. So the possible edges of \(G \), except those of \(T \), are those between \(u \) and some vertices of \(V(K_{n-p-2}^c) \), \(v \) and some of \(V(K_p^c) \). Hence, \(G = H_0(t, 0, n - t - 2) \) (\(2 \leq t \leq n - 4 \)) or \(G = H_0(t, m, n - t - m - 2)(m \geq 1) \).

The result follows. □

Finally, we shall discuss a connected graph \(G \) with exactly one eigenvalue greater than two, that is, \(m_G(2, n) = 1 \).

Theorem 2.5. Let \(G \) be a connected graph on \(n \geq 3 \) vertices. Then \(m_G(2, n) = 1 \) if and only if \(G \) is one of graphs \(P_3, P_4, C_4, S_{1,n-1}(n \geq 4) \), that is, \(G \) is one graph in \(\mathcal{F} \), except \(P_2 \).

Proof. The sufficiency holds obviously. Let \(T \) be a spanning tree of \(G \). Then \(m_T(2, n) = 1 \) because \(\lambda_1(T) \geq d_1(T) + 1 \geq 3 \) [5]. By Theorem 1.2, the diameter \(d \) of \(T \) satisfies \(d \leq 3 \). If \(d = 1 \), then \(T = P_2 \), impossible. If \(d = 3 \) and \(n \geq 5 \), there exists a connected subgraph with five vertices of \(T \) which contains a matching with two edges. It is impossible by Theorem 1.3. So \(G \) is a graph on four vertices, and \(G = P_4 \) or \(G = C_4 \) at this case. For the last case of \(d = 2 \), then \(T = S_{1,n-1} \), and consequently \(G = \{u\} \lor \{G_1 + \cdots + G_k\} \) (\(k \geq 1 \)), where \(G_i \) is connected for each \(i = 1, 2, \ldots, k \). If there exists some \(G_i \) among \(G_1, G_2, \ldots, G_k \) with at least 2 vertices, then by [4, Theorem 2], \(n \geq 3, \lambda_1(G_i) + 1 \) are eigenvalues of \(G \). So \(d_1(G_i) + 2 \leq \lambda_1(G_i) + 1 \leq 2 \) [5]. Consequently, \(d_1(G_i) = 0 \), a contradiction. Therefore, \(G = P_3 \) or \(G = S_{1,n-1}(n \geq 4) \) at this case. The result follows. □

Corollary 2.6. Let \(G \) be a connected graph on \(n \geq 2 \) vertices. Then \(m_G(2, n) = 1 \) or 2 if and only if \(G \) is one graph shown in Fig. 1, except \(P_2 \).
References