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Abstract

We present the full one-loop radiative corrections to pair production of neutralinos ine+e− collisions within the Minimal
Supersymmetric Standard Model. Particular attention is paid to the definition of weak and QED corrections. The non-univer
QED corrections are extracted by subtracting the initial state radiation. We give numerical results for two differen
scenarios fore+e− → χ̃0

1 χ̃0
2 ande+e− → χ̃0

2 χ̃0
2. The weak and QED corrections are up to several percent or even larger a

need to be taken into account at future linear collider experiments.
 2004 Elsevier B.V.

1. Introduction

In the Minimal Supersymmetric Standard Model (MSSM)[1], one has two charginos̃χ±
1 andχ̃±

2 , which are the
fermion mass eigenstates of the supersymmetric partners of theW± and the charged Higgs statesH±

1,2. Likewise,

there are four neutralinos̃χ0
1–χ̃0

4 , which are the fermion mass eigenstates of the supersymmetric partners
photon, theZ0 boson, and the neutral Higgs bosonsH 0

1,2. Their mass matrix depends on the parametersM, M ′, µ,
and tanβ , whereM andM ′ are the SU(2) and U(1) gauge mass parameters, and tanβ = v2

v1
with v1,2 the vacuum

expectation values of the two neutral Higgs doublet fields. If supersymmetry is realized in nature, chargi
neutralinos should be found in the next generation of high energy experiments at Tevatron, LHC and a futue+e−
collider. Especially at a lineare+e− collider, it will be possible to perform measurements with high precision[2,
3]. In particular, it has been shown in[2] that the masses of charginos and neutralinos can be measured with
an accuracy of�mχ̃±,0 = 0.1–1 GeV. It is therefore obvious that such a high precision requires equally ac
theoretical predictions. Despite the complexity, for some SUSY processes the full one-loop corrections have

been calculated: fore+e− → χ̃±
i χ̃∓

j , i, j = 1,2 in [4], for e+e− → l̃i
¯̃
lj , l = e,µ, i, j = L,R in [5], e+e− → f̃i

¯̃
f j ,

f = q, l, ν (including the third generation) in[6,7]. As to decays, the full one-loop corrections were calculated fo
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q̃i → qχ̃0
i , i = 1–4, andq̃i → qχ̃±

k , k = 1,2 in [8], and for the decaysA0 → f̃1
¯̃

f 2, f̃2 → f̃1A0 in [9], whereA0

is the pseudoscalar Higgs particle. For earlier calculations of radiative corrections to SUSY processes, we
the review in[10]. All these calculations have shown that the corrections are important for precise predict
cross sections, branching ratios and asymmetries.

In this Letter, we present the calculation of the complete one-loop corrections to the neutralino pro
e+e− → χ̃0

i χ̃0
j , i, j = 1–4.

For the calculation of higher order corrections, renormalization of the MSSM is necessary. For this p
one has to employ appropriate renormalization conditions, or equivalently, one has to fix the counter term
SUSY parameters. In this Letter, we adopt the on-shell scheme for the chargino and neutralino system of[11].
Equivalent methods were developed in[8,12]. The schemes only differ in the fixing of the counter terms of
parametersM, M ′ andµ. Hence the meaning of these parameters is different at loop-level. The schemes, h
yield the same results for observablesas masses, cross sections, widths, etc.

Starting from the tree-level inSection 2, we outline the calculation of the one-loop corrections inSection 3
discussing the renormalization both of the SUSY and SM parameters. The process-independent correctio
neutralino mass matrix are included in an improved tree-level. Particular attention is paid to a proper defin
the weak and QED corrections as the latter play an important rôle. InSection 4, we represent a detailed numeric
analysis fore+e− → χ̃0

1 χ̃0
2 ande+e− → χ̃0

2 χ̃0
2 for a higgsino and a gaugino scenario forχ̃0

1 andχ̃0
2 . Conclusions

are given inSection 5.

2. Tree-level

In the MSSM the neutralino sector is specified by the gaugino mass parametersM andM ′, the higgsino mas
parameterµ and the Higgs mixing angle tanβ , all appearing in the neutralino mass matrix (in the bino,W3-ino,
H1,2-ino basis)

(1)Y =



M ′ 0 −mZ sinθW cosβ mZ sinθW sinβ

0 M mZ cosθW cosβ −mZ cosθW sinβ

−mZ sinθW cosβ mZ cosθW cosβ 0 −µ

mZ sinθW sinβ −mZ cosθW sinβ −µ 0


 .

With the unitary matrixN , which diagonalizes the mass matrixY

(2)diag(mχ̃0
1
,mχ̃0

2
,mχ̃0

3
,mχ̃0

4
) = N∗YN†,

we can rotate from the gauge eigenstatesψ̃0
j = (−iλ̃′,−iλ̃3, ψ̃1

H1
, ψ̃2

H2
)
j

to the neutralino mass eigenstate ba

χ̃0
i = Nij ψ̃

0
j .

At tree-level and neglecting the electron mass in all Yukawa couplings the production process

e+e− → χ̃0
i χ̃0

j (i, j = 1,2,3,4)

contains contributions from the Feynman diagrams shown inFig. 1: the directs-channel due to theZ0 exchange
and the crossedt- andu-channel due to thẽeL,R exchanges.

From the interaction Lagrangian

(3)LZ0ēe = − g

cosθW

Z0
µēγ µ[CLPL + CRPR]e,

(4)LZ0χ̃0
i χ̃0

j
= g

2 cosθW

Z0
µχ̃0

i γ µ
[
O ′′L

ij PL + O ′′R
ij PR

]
χ̃0

j ,

(5)Leẽχ̃0
i

= gf L
i ēPRχ̃0

i ẽL + gf R
i ēPLχ̃0

i ẽR + h.c.,
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Fig. 1. Tree-level.

we obtain the couplings

(6)CL,R = I3L,R + sin2 θW , I3L = −1

2
, I3R = 0,

(7)O ′′L
ij = −O ′′R∗

ij = −1

2
Ni3N

∗
j3 + 1

2
Ni4N

∗
j4,

(8)f L
i = −

√
2

2
(tanθWNi1 + Ni2), f R

i = √
2 tan θWN∗

i1.

3. One-loop corrections

The radiative corrections to the neutralino pair production include the following generic structure of on
loop Feynman diagrams: the virtual vertex correctionsFig. 2, the corrections to thẽeL,R and Z0 propagators
Fig. 3, and the box graph contributionsFig. 4. The notationF , V , andS stands for all possible fermion, vect
and scalar particles in the MSSM, respectively.U denotes the FP ghosts. Diagrams with loops on the exte
fermion lines are included in the definition of the counter terms as wave function corrections. In this wo
the complete set of Feynman graphs is calculated with help of the packages FeynArts and FormCalc[13]. We
implemented our renormalization procedure into these packages. For a proper treatment of the appea
divergencies, counter terms are introduced in the on-shell renormalization scheme. To preserve supers
the used regularization scheme is dimensional reduction (DR). The loop graphs with virtual photon exchange a
introduce IR singularities. Therefore, real photon emission has to be included to obtain a finite result:

(9)σ corr(e+e− → χ̃0
i χ̃0

j

) = σ ren(e+e− → χ̃0
i χ̃0

j

) + σ
(
e+e− → χ̃0

i χ̃0
j γ

)
.

For the numerical analysis, we have also used the programs LoopTools and FF[14].

3.1. Renormalization

3.1.1. Wave function counter terms
In the prescription of the used on-shell renormalization scheme all involved fields get the following sh

obtain the so-called wave function corrections:

(10)χ̃0
i → (

δij + 1
2δZ̃L

ijPL + 1
2δZ̃R

ijPR

)
χ̃0

j ,

(
fL

fR

)
→

(
1+ 1

2δZL 0
0 1+ 1

2δZR

)(
fL

fR

)
,

(11)Zµ → (
1+ 1

2δZZZ

)
Zµ + 1

2δZZγ Aµ,

(
f̃L

f̃R

)
→

(
1+ 1

2δZ
f̃
L 0

0 1+ 1
2δZ

f̃
R

)(
f̃L

f̃R

)
,

with the definition of the renormalization constants

(12)δZZZ = −�Π̇ZZ

(
m2

Z

)
, δZZγ = 2�ΠZγ (0)

m2
Z

,
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Fig. 2. Generic vertex corrections.

Fig. 3. Generic propagator corrections.

(13)δZ
f̃

L = −�Π̇
f̃

LL

(
m2

f̃L

)
, δZ

f̃

R = −�Π̇
f̃

RR

(
m2

f̃R

)
,

(14)

δZL = �
[
−ΠL

(
m2

f

) − m2
f

(
Π̇L

(
m2

f

) + Π̇R
(
m2

f

)) + 1

2mf

(
ΠSL

(
m2

f

) − ΠSR
(
m2

f

))
− mf

(
Π̇SL

(
m2

f

) + Π̇SR
(
m2

f

))]
,
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Fig. 4. Generic box corrections.

(15)

δZ̃L
ii = �

[
−ΠL

ii

(
m2

χ̃0
i

) − m2
χ̃0

i

(
Π̇L

ii

(
m2

χ̃0
i

) + Π̇R
ii

(
m2

χ̃0
i

)) + 1

2mχ̃0
i

(
ΠSL

ii

(
m2

χ̃0
i

) − ΠSR
ii

(
m2

χ̃0
i

))

− mχ̃0
i

(
Π̇SL

ii

(
m2

χ̃0
i

) + Π̇SR
ii

(
m2

χ̃0
i

))]
,

(16)δZ̃L
ij = cij�

[
m2

χ̃0
j

ΠL
ij

(
m2

χ̃0
j

) + mχ̃0
i
mχ̃0

j
ΠR

ij

(
m2

χ̃0
j

) + mχ̃0
i
ΠSL

ij

(
m2

χ̃0
j

) + mχ̃0
j
ΠSR

ij

(
m2

χ̃0
j

)]
,

(17)δZR = δZL(L ↔ R), δZ̃R
ii = δZ̃L

ii(L ↔ R), δZ̃R
ij = δZ̃L

ij (L ↔ R),

whereΠ(ij)(k
2) = /kPLΠL

(ij)
(k2) + /kPRΠR

(ij)
(k2) + PLΠSL

(ij)
(k2) + PRΠSR

(ij)
(k2), Π̇(m2) = [ ∂

∂k2Π(k2)]k2=m2 and

cij = 2/(m2
χ̃0

i

−m2
χ̃0

j

). For the neutralinos it holdsΠR
ij (p2) = ΠL

ji(p
2),Π

SR/L
ij (p2) = Π

SR/L
ji (p2), because of thei

Majorana nature. Since we neglect the selectron mixing, no sfermion mixing angle need to be renormalize

3.1.2. Neutralino and sfermion mass matrix renormalization
In the MSSM, the four neutralino masses depend on the SUSY parametersM ′, M, µ, and tanβ and the

SM parametersmZ and sinθW . As M, µ and tanβ also enter the chargino mass matrix, the renormalizatio
the neutralino, chargino and SM sectors is interrelated. Therefore, it is necessary to take into account
corrections to thẽχ0 masses and the rotation matrix. For the on-shell renormalization two different approac
essentially known in the literature[11] and[8,12]. Although the corrections in the neutralino masses are in ge
small, these shifts can lead to large effects near the threshold. It would be possible to adopt a renorm
scheme for each channel in such a way, that the two produced neutralinos are input parameters and do not obtai
mass corrections. A threshold shift would thus be avoided, but this leaves us with the problem that the reno
processes have unequal counter terms for different production channels, which would lead to different m
of the neutralino and chargino mass parameters. Here we use the on-shell scheme described in[11]. We define an
improved tree-level, where the process-independent massmatrix renormalization is already included and separa
from the residual weak corrections. Absorbing the finite correction�Nij to the rotation matrixNij in the improved
tree-level is equivalent to defining an effective coupling matrixNij + �Nij .

This yields the following counter terms for the neutralino mass matrixδYij and the rotation matrixδNij .

(18)δYij = 1

2

4∑
l,n=1

NliNnj�
[
mχ̃0

l
ΠL

nl

(
m2

χ̃0
l

) + mχ̃0
n
ΠR

ln

(
m2

χ̃0
n

) + ΠSR
nl

(
m2

χ̃0
l

) + ΠSL
ln

(
m2

χ̃0
n

)]
,

(19)δNij = 1

4

4∑
k=1

(
δZ̃L

ik − δZ̃R
ki

)
Nkj .

The same renormalization prescription can be applied to the sfermion sector. Counter terms for the SUSY
massesMQ̃,L̃ andMŨ,D̃,Ẽ , both entering the sfermion mass matrices, are introduced. FixingMQ̃,L̃ in the down-
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type mass matrices results in a correction to the up-type masses and mixing angles[15]. Hence, in our case, w
have no additional corrections to the selectron masses. The correction to the electron sneutrino mass, w
appears in loop graphs, is of higher order and do not need to be considered.

3.1.3. Renormalization of the SM parameters
Since we use as input parameter forα theMS value at theZ pole,α ≡ α(mZ)|MS = e2/(4π), we get the counte

term[9,16]

(20)

δe

e
= 1

(4π)2

e2

6

[
4
∑
f

N
f
C e2

f

(
∆ + log

Q2

x2
f

)
+

∑
f̃

2∑
m=1

N
f
C e2

f

(
∆ + log

Q2

m2
f̃m

)

+ 4
2∑

k=1

(
∆ + log

Q2

m2
χ̃+

k

)
+

2∑
k=1

(
∆ + log

Q2

m2
H+

k

)
− 22

(
∆ + log

Q2

m2
W

)]
,

with xf = mZ ∀mf < mZ and xt = mt . N
f

C is the colour factor,Nf

C = 1,3 for (s)leptons and (s)quark
respectively.∆ denotes the UV divergence factor,∆ = 2/ε − γ + log4π .

The masses of theZ boson and theW boson are fixed as the physical (pole) masses,

(21)δm2
Z = �ΠZZ

(
m2

Z

)
, δm2

W = �ΠWW

(
m2

W

)
,

and sin2 θW is fixed by cosθW = mW/mZ .

3.2. Definition of weak and QED corrections

As mentioned before, the full one-loop corrections become IR convergent if also real photon emis
included in the calculation. Because of these large additional corrections, it is desirable to treat the w
QED parts separately. The easiest way to define pure “weak corrections” would be to separate off all Feynm
graphs with an additional photon attached to the tree-level diagrams. However, in our case this cannot be
gauge invariant and UV finite way due to the selectron exchange channels. Another possibility would be to
soft photon approximation[17], where only “soft” photons up to a maximal energy�E are included:σweak= σ soft

andσQED = σ hard. The weakness of this definition is the large�E dependence of the weak and QED compone

∝ log �E2

s
. The sum of both is, however, cutoff independent. Therefore, we extract the�E terms and the leadin

logarithmsα
π
Le ≡ α

π
log s

m2
e
, caused by collinear soft photon emission,from the weak corrections and add them

the QED corrections[18]. With this definition, both corrections are now�E independent. The main part of th
QED corrections arises from these leading logarithmsLe , originating from photons in beam direction. This lea
to a large dependence on experimental cuts and detector specifications. We therefore use the structure func
formalism[19] and subtract the leading logarithmicO(α) terms of the initial state radiation,σ ISR,LL (s). After
subtraction of these process-independent terms, only thenon-universal QED corrections remain. This gives for
total cross section the final expression:

(22)σ total(s) = σ tree(s) + σweak(s) + σQED(s),

(23)σweak(s) = σ soft(s) + α

π

(
(1− Le) log

�E2

s
− 3

2
Le

)
σ tree(s),

(24)σQED(s) = σ hard(s) − α

π

(
(1− Le) log

�E2

s
− 3

2
Le

)
σ tree(s) − σ ISR,LL (s),
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(25)σ ISR,LL (s) = α

π
Le

1∫
0

dx Φ(x)σ tree(xs),

(26)Φ(x) = lim
ε→0

{
δ(1− x)

[
3

2
+ 2 log(ε)

]
+ θ(1− x − ε)

1+ x2

1− x

}
.

Further improvements would be to consider a more realistic electron spectrum and incorporate bremsstra
the calculations. Due to their strong dependence on the actual experimental conditions, we do not inclu
effects.

4. Numerical results

For the numerical analysis, we concentrate on the production channels

e+e− → χ̃0
1 χ̃0

2 and e+e− → χ̃0
2 χ̃0

2 .

They are of special interest for future experiments because of their decayproducts and for kinematical reaso
[2]. Due to the tree-level coupling structure, we study here two different scenarios: in the higgsino scen
two lightest neutralinos are both nearly pure higgsinos and therefore the process is dominated by thes-channelZ0

exchange. In the gaugino scenario with a bino and a wino asχ̃0
1 and χ̃0

2 states, the selectron exchange diagra
play the most important role. In the following, we distinguish between the naive tree-level, the improved tre
with the corrections to the neutralino massesmχ̃0

i
and the rotation matrixNij included, and the conventional wea

and QED corrections to the improved tree-level as discussed in the last section. For the SM input param
useα(mZ) = 1/127.922,mZ = 91.1876 GeV, andmW = 80.423 GeV.

4.1. Higgsino scenario

For the definition of the higgsino scenario we use the following MSSM on-shell parameters in the con
[11]: tanβ = 10; µ = −100 GeV; M2 = 2M1 = 400 GeV; MQ,L = MU,D,E = 350 GeV; Af = 400 GeV;
MA0 = 700 GeV. This gives the one-loop corrected neutralino masses:

χ̃0
1 (94% higgsino): 87.8 GeV, χ̃0

2 (97% higgsino): 110.0 GeV,

χ̃0
3 (94% bino): 209.4 GeV, χ̃0

4 (96% wino): 415.2 GeV.

In Fig. 5, we show the naive tree-level cross section for five different channels. The double higgsino product
e+e− → χ̃0

i χ̃0
i with i = 1,2 is highly suppressed due to the behaviour of theZ0χ̃0

i χ̃0
j coupling.

Numerical results for the radiative corrections to theχ̃0
1 χ̃0

2 production are given inFig. 6. The total non-universa
weak and QED corrections are in the range of−12% in the investigated parameter region and thus have to be
into account in future experiments. In the case ofχ̃0

2 χ̃0
2 production,Fig. 7, the small tree-levelZ0χ̃0

2 χ̃0
2 coupling

leads to an enhancement of the corresponding vertex corrections and to large box graph contributions. For
reason, the effect owing to the neutralino rotation matrix correctionNij is also highly increased. Therefore, the
is a big difference between the naive and improved tree-level cross section.

4.2. Gaugino scenario

In the case of the gaugino scenario, we use as input the SPS1aDR benchmark values[20], defined at the scal
Q = 454.7 GeV. With these values, we can calculate our on-shell parameters in a consistent way by subtract
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Fig. 5. Neutralino pair production in the naive tree-level approximation with {full, dashed, dotted, dash-dotted, dash
dotted}= {χ̃0

1 χ̃0
1 , χ̃0

1 χ̃0
2 , χ̃0

2 χ̃0
2 , χ̃0

3 χ̃0
3 , χ̃0

3 χ̃0
4 }.

Fig. 6. Corrections to thẽχ0
1 χ̃0

2 higgsino scenario. Left: the total cross-section in the naive tree-level approximation (dotted line), the im
tree-level (dashed line), and the fullO(α) corrected without ISR (solid line). Right: the fullO(α) without ISR (solid line), weak (dashed line
and non-universal QED (dash-dotted line) corrections relative to the improved tree-level.

of the corresponding counter terms, e.g.,M1 = MDR
1 (Q) − δY11(Q), and obtain: tanβ = 10.2; µ = 353.1 GeV;

M1 = 97.9 GeV;M2 = 197.6 GeV;MA0 = 393.6 GeV.
In the sfermion sector, we only needthe selectron mass parameters:ML = 198.0 GeV;ME = 138.0 GeV. For

all other parameters, we can use theDR or on-shell values. The differences are of higher order for our calcula
For the neutralino states we get:

χ̃0
1 (97% bino): 94.8 GeV, χ̃0

2 (88% wino): 181.5 GeV,

χ̃0
3 (99% higgsino): 360.3 GeV, χ̃0

4 (88% higgsino): 377.4 GeV.

Note that the SPS1a scenario is defined byDR parameter values. Thus the one-loop on-shell parameters give
can differ from those calculated in other renormalization schemes. The on-shell masses are of course the sam
to higher orders.

In Fig. 8, we show the tree-level cross section for all three possible gaugino production channels and the
χ̃0

3 χ̃0
4 production. The double higgsino channele+e− → 2χ̃0

i with i = 3,4 or mixed gaugino–higgsinochannels a
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Fig. 7. Corrections to thẽχ0
2 χ̃0

2 higgsino scenario. Left: the total cross section in the naive tree-level approximation (dotted line), the im
tree-level (dash-dotted line), with the weak corrections (dashed line), and the fullO(α) corrected one without ISR (solid line). Right: the full
O(α) without ISR (solid line), weak (dashed line) and non-universal QED (dash-dotted line) corrections relative to the improved tree-leve
The dotted line shows the effect of the mass matrix corrections relative to the naive tree-level.

Fig. 8. Neutralino pair production in the naive tree-level approximation with {full, dashed, dotted, dash-dotted}= {χ̃0
1 χ̃0

1 , χ̃0
1 χ̃0

2 , χ̃0
2 χ̃0

2 , χ̃0
3 χ̃0

4 }.

suppressed due to the given coupling structure. The fullO(α) radiative corrections for thẽχ0
1 χ̃0

2 production, given
in Fig. 9, are only in the few percent range because of the cancellation between the weak and QED correctio
especially near the threshold.While the QED corrections for thẽχ0

2 χ̃0
2 channel, seeFig. 10, are also moderate an

show a behaviour similar to the previous case, the weak corrections strongly depend on
√

s. For large
√

s this can
be studied in the so-called Sudakov approximation[21]. The corrections are−10% at≈ 750 GeV and even large
at higher energies. One reason is that theχ̃0

2 , being mainly a wino, has also an 11% higgsino component, w
effects the weak corrections in a way similar to theχ̃0

2 pair production in the higgsino scenario. This results i
large negative correction for the sum of the QED and weak part.

5. Conclusions

We have calculated the full one-loop electroweak corrections to the neutralino pair production ine+e−
collisions. The chosen renormalization scheme can be used for the complete MSSM parameter spac



282 W. Öller et al. / Physics Letters B 590 (2004) 273–283

d with
d

d with
)
atrix

lino
ropriate
ial
es even

e work
o.
Fig. 9. Corrections to thẽχ0
1 χ̃0

2 SPS1a scenario. Left: the total cross-section in the naive tree-level approximation (dotted line) an
weak (dashed line), and fullO(α) (solid line) corrections without ISR. Right: the fullO(α) without ISR (solid line), weak (dashed line) an
non-universal QED (dash-dotted line) corrections relative to the improved tree-level.

Fig. 10. Corrections to thẽχ0
2 χ̃0

2 SPS1a scenario. Left: the total cross-section in the naive tree-level approximation (dotted line) an
weak (dashed line), and fullO(α) (solid line) corrections without ISR. Right: the fullO(α) without ISR (solid line), weak (dashed line
and non-universal QED (dash-dotted line) corrections relative to the improved tree-level. The dotted line shows the effect of the mass m
corrections relative to the naive tree-level.

production channelse+e− → χ̃0
i χ̃0

j with i, j = 1,2,3,4. The process independent corrections to the neutra
mass matrix are included in the definition of an improved tree level. We paid particular attention to an app
definition of weak and QED corrections. We extracted the non-universal QED corrections by subtracting the init
state radiation (ISR). The full one-loop corrections without ISR are in the range of 5–20% and in some cas
larger, and thus have to be taken into account in future linear collider experiments.
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