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ReviewEarly Influences on the Development of Food
Alison K. Ventura1 and John Worobey2

The ability to perceive flavors begins in utero with the
development and early functioning of the gustatory and
olfactory systems. Because both amniotic fluid and breast
milk contain molecules derived from the mother’s diet,
learning about flavors in foods begins in the womb and
during early infancy. This early experience serves as the
foundation for the continuing development of food prefer-
ences across the lifespan, and is shaped by the interplay of
biological, social, and environmental factors. Shortly after
birth, young infants show characteristic taste preferences:
sweet and umami elicit positive responses; bitter and sour
elicit negative responses. These taste preferences may
reflect a biological drive towards foods that are calorie-
and protein-dense and an aversion to foods that are
poisonous or toxic. Early likes and dislikes are influenced
by these innate preferences, but are also modifiable.
Repeated exposure to novel or disliked foods that occurs
in a positive, supportive environment may promote the
acceptance of and eventually a preference for those foods.
Alternatively, children who are pressured to eat certain
foods may show decreased preference for those foods
later on. With increasing age, the influence of a number
of factors, such as peers and food availability, continue
to mold food preferences and eating behaviors.

Introduction
The development of food preferences begins at conception
and continues across the life course. This development
involves a complex interplay of biological tendencies and
environmental influences. Available data suggest that infants
are born ‘hard-wired’ to prefer tastes that signal beneficial
nutrients (for example, sweet tastes signal calories) and to
reject tastes that signal harmful compounds (for example,
bitter tastes signal poison) [1]. Infants and young children
show considerable plasticity in preferences [2], however,
enabling them to accept and learn to prefer the foods that
are available within their particular cultural and culinary
milieu [3].

The aim of this review is to compile research from several
disciplines to provide a comprehensive overview of the fac-
tors that contribute to the development of food preferences
during the prenatal, neonatal, infancy and early childhood
periods. We start with an overview of the development of
the senses taste and smell, and then consider the biological
and social influences on food preferences across early
development. We will focus on the development of food
preferences in children who are typically developing, as
research on children with developmental delays is beyond
the scope of our review. We focus on early life, not to
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discount the ability of food preferences to develop during
later childhood, adolescence and adulthood, but rather
because early life has been highlighted as a sensitive period
for the development of sensory perception and food prefer-
ences [4–6]. Aswill be further discussed below, strong corre-
lations have been found between food preferences during
early childhood and preferences in later childhood [7],
adolescence [8] and young adulthood [9], implicating early
experience as a foundation for food preference development
across the life course.

Development of Gustatory and Olfactory Systems
Taste and flavor perception are central to the development
of food preferences, as both taste and flavor preferences
have been highlighted as primary drivers of food preferences
during early life [10]. Additionally, food preferences are
the strongest predictors of young children’s food accep-
tance [11,12]. Thus, an understanding of how and when
gustatory and olfactory systems develop is an important
basis for examining the development of food preferences
and acceptance.
Taste sensations result from activation of the gustatory

system and are limited to the sensations of sweet, bitter,
sour, salty, and umami or savory; however, evidence is
mounting for additional basic tastes, such as fat and calcium
[13,14]. In contrast, thousands of different odors stimulate
the olfactory system to create smell sensations. Flavor
perception results from the integration of taste and smell
sensory systems: the combination of odors sensed ortho-
nasally and retro-nasally with tastes sensed by receptors in
the oral cavity (Figure 1) is what creates flavor sensations,
such as vanilla or strawberry.
The capacity for sensing postnatal flavors begins in utero

with the development of the gustatory and olfactory sys-
tems. These systems are functionally mature and have
achieved adult-like form by the end of gestation. The
presence of gustatory and olfactory systems in utero pro-
vides the opportunity for early sensory learning that is
theorized to prepare the fetus for postnatal experiences.
Both the morphological and functional development of

taste cells begin in the first trimester. Fungiform, foliate,
and circumvallate papillae appear by the 10th week of gesta-
tion [15–17], and taste cell synaptogenesis is increasingly
apparent duringweeks 8–13 [18]. Taste papillae are function-
ally mature by the beginning of the second trimester [18,19],
and the number and distribution of papillae that are present
during late gestation are strikingly similar to those seen in
childhood and adulthood [20].
Development of the olfactory system also begins during

the first trimester. By the 8th week of gestation, the olfactory
bulb has differentiated from the forebrain, and primary
olfactory receptors have appeared [21]. Olfactory marker
proteins, an indication of olfactory receptor maturity, are
present by the 28th–29th week of gestation [22]. The nasal
plugs blocking the nasal passages dissolve between the
16th and 36th week of gestation, allowing the nasal passages
to be bathed in amniotic fluid [23].
Development of the gustatory and olfactory systems con-

tinues postnatally, but data on this development in humans
are limited due to a lack of longitudinal studies examining
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Figure 1. The anatomy of flavor perception.

Sagittal section of an infant head illustrating orthonasal (green arrow)
and retronasal (purple arrow) routes of olfaction and the spatial relation
between the oral cavity and olfactory bulb. (Adapted with permission
from [161].)
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intra-individual changes in these systems [10,24]. Available
research examining age differences in gustatory and olfac-
tory anatomy suggests the morphological development of
these systems is fairly complete at birth [25,26], but age-
related increases have been noted for brain activation and
higher-order information processing in response to gusta-
tory and olfactory cues (see [24] for a review). Thus, postnatal
changes in these systems appear to be focused on maturity
of neural systems underlying sensory perception [10,27].

Biological Influences on Food Preferences
Genetic Influences on Taste Perception and Preferences
Food preferences appear to be partially genetically deter-
mined, with high coefficients of heritability for preferences
for protein foods, fruit, vegetables and desserts [28,29].
One mechanism underlying genetic influences on food
preferences may be variation in taste perception and prefer-
ences. Recent research has identified several genes related
to individual differences in sweet [30], umami [31–33], and
bitter [34,35] taste perception. The perception of these
tastes involves G-coupled protein receptors encoded by
the TAS1R and TAS2R taste receptor gene families (in
contrast, salty and sour tastes are transduced by ion
channels in taste receptor cells [36,37]). Single nucleotide
polymorphisms in these gene families are associated with
functional variance in sweet, umami and bitter perception,
but the mechanisms underlying the majority of these associ-
ations have yet to be elucidated [38].

Variance in bitter taste perception has been the most
extensively studied and much of this research has focused
on the TAS2R38 gene. Two common alleles at the
TAS2R38 locus are associated with variation in sensitivity
to two synthetic substances, phenylthiocarbamide (PTC)
and 6-n-propylthiouracil (PROP) [34,35,39]. In particular,
an individual’s TAS2R38 genotype predicts whether these
two substances taste strongly bitter, moderately bitter, or
are tasteless. Adults with the bitter-sensitive alleles of
TAS2R38 also rate foods such as brassica vegetables
(watercress, mustard greens, turnip, broccoli [40]) as more
bitter compared to adults with the bitter-insensitive alleles.
This sensitivity may translate to preferences, as some
studies indicate both adults [41,42] and young children
[43,44] with greater sensitivity to the bitter taste of PTC and
PROP report lower preferences for and consumption of
bitter foods (such as bitter vegetables, grapefruit juice,
green tea, soy products). However, data for an association
between bitter sensitivity and preferences remain equivocal,
as other studies have found no association between PTC or
PROP sensitivity and food preferences and intake [45–47].
Genetic sensitivity to bitter taste may also influence

sensitivity to and preferences for other tastes. For example,
individuals more sensitive to the bitterness of PROP have
heightened perception of sweet tastes from sucrose [48]
and saccharin [49,50]. Mennella and colleagues [51] reported
that childrenwith the bitter-sensitive TAS2R38 genotype had
higher preferences for sweet foods and beverages. How-
ever, race/ethnicity was more strongly associated with
sweet preferences than TAS2R38 genotype in adults, sug-
gesting culture and experiencemay come to override effects
of genotype on food preferences during later life [51].

Unlearned Behavioral Responses to Taste Stimuli
Preferences for taste stimuli appear to be strongly influenced
by innate factors [52] and are believed to be present in utero.
Direct study of fetal origins of unlearned responses to taste
stimuli is difficult given obvious ethical and practical limita-
tions of experimentation with human fetuses. However, pre-
vious researchers have used indirect strategies, such as
measurement of fetal response to chemical input and study
of premature infants as a proxy for fetal development, to
understand affective responses to taste stimuli in utero.
The fetus both inhales and swallows significant amounts

of amniotic fluid by late gestation [23,53]. The amniotic fluid
contains many constituents, ranging from nutrients (such as
glucose and amino acids [54]) to the tastants and flavors
of the mother’s dietary and environmental exposures [3].
DeSnoo [55] found that injection of a sweet-tasting stimulus
into the amniotic fluid stimulated fetal swallowing, while Liley
[54] found that injection of a bitter stimulus inhibited fetal
swallowing. These reactions have been interpreted to be
positive and negative hedonic responses to sweet and bitter
tasting stimuli [56,57], respectively. Provision of glucose or
sucrose solutions to premature infants (born 25–36 weeks
gestational age) elicited stronger and more frequent sucking
compared to provision of water, responses the authors inter-
preted to be indicative of positive affect or acceptance
[58,59]. In contrast, pure lemon juice stimulates salivation,
vigorous sucking, or retching, whereas quinine (a bitter
stimulus) retards sucking. This body of indirect evidence
suggests that the fetus shows specific responses to taste
stimuli in the amniotic fluid during late gestation.
Newborn infants’ responses to tastants are similar to

those seen in utero. Figure 2 provides examples of charac-
teristic responses of neonates to sweet and bitter tastes
[60]. Neonates given sweet or umami solutions exhibit
behaviors that are interpreted to be positive hedonic re-
sponses [61]: elevation of the corners of the mouth, lip and
finger sucking, lip smacking, and rhythmic tongue protru-
sions [62–64]. Neonates also exhibit increased rates of suck-
ing and ingest larger volumes in response to sweet and
umami solutions compared to bitter, sour, salty and neutral
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Figure 2. Characteristic responses of neo-
nates to sweet and bitter tastes.

These photographs illustrate the range of
neonate’s characteristic responses to sweet
(sucrose) and bitter (quinine) solutions. The
top row of photographs (B–D) contains re-
sponses to the sweet solution and the bottom
row of photographs (E–G) contains re-
sponses to the bitter solution. (A) The resting
face is characterized by relaxed, closed eyes
and neutral expression, and can serve as a
comparison for examining responses to
sweet and bitter tastes. (B) Some infants
show a subtle response to sweet taste.
(C) The response to sweet is often character-
ized by sucking. (D) Elevation of the corners of
the mouth or pulling in of the lower lip is also a
common reaction to sweet taste. (E) Some
infants show a subtle response to bitter taste.
(F) The response to bitter is often character-
ized by head turning and grimacing.
(G) Gaping is also a common reaction to bitter
taste. (Adapted with permission from [60].)
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stimuli [65–68]. Neonates given bitter solutions exhibit
behaviors that are interpreted to be negative hedonic
responses [60,63]: frowning, arm flailing, head shaking,
gaping, and nose wrinkling [62,69], as well as a disruption
in sucking behavior [69,70]. Evidence for neonates’ re-
sponses to sour tastes is equivocal, as some neonates
exhibit lip pursing, gaping, nose wrinkling, arm flailing and
dampened sucking behavior [69,70], while others show
positive hedonic behaviors such as lip smacking and rhyth-
mic tongue protrusions [62,71]. Salt taste is unique in that
neonates exhibit neutral facial responses to salty solutions
[27,72], but also show lower rates of sucking compared to
when given water [68,73]. However, a preference for salt
taste develops after 4 months of age and continues into
childhood [27].

Unlearned taste preferences seen during the fetal and
neonatal periods are maintained and heightened during later
infancy and childhood and then diminish during adolescence
and adulthood. Compared to adults, children are more
sensitive to bitter tastes [51,74,75]. Children also prefer
solutions with significantly greater concentrations of sweet
[51,76–78], salt [79], and sour [80,81] tastes compared to
adults. These trends are likely a result of both biology and,
as will be discussed in the following sections, experiential
learning.

Specific affective reactions to differing taste and smell
stimuli are believed to be predominantly unlearned and
reflex-like for several reasons: first, they are remarkably
similar across species [62,82] and cultures [71,72]; second,
they occur in infants with anencephaly [83,84]; and third,
they can be reliably elicited in a concentration-dependent
manner in newborns with minimal extra-uterine taste and
feeding experience [85]. These reactions may represent an
evolutionary adaptive response to varied and uncertain
food environments [86]. Young children are trying to learn
what and how to eat; thus, it would be protective for children
to be highly sensitive to the vast array of flavors and foods to
which they are introduced.

Before food processing and labeling, human survival
depended on correctly discriminating foods that were
energy-dense and nutrient-rich from those that were toxic
or rancid. In nature, sweetness is often associated with
calorie-rich carbohydrate sources such as breastmilk or fruit
[87]; umami is associated with amino-acid or protein-rich
foods, such as meats [88]; and salt signals the presence of
an essential mineral [89]. In contrast, bitterness signals
toxins or poisons [90] and sour signals the presence of
strong acids [88]. Additionally, children may be most sensi-
tive to certain tastes (for example, sweet) during periods of
maximal growth [91,92], which has been hypothesized to
help these children select foods that will best support rapid
development [91]. Taken together, these data support
the hypothesized evolutionary need for unlearned taste
preferences and may partially explain changes in these
preferences across the life course.

Food Neophobia
Over the course of the first few years of life, young children
undergo a transition from a predominantly milk-based diet
to one consisting of adult table foods [93]. Young children
(especially 2–5 year olds) exhibit heightened levels of food
neophobia during this time of rapid dietary change. Food
neophobia is defined as an unwillingness to eat novel foods
and is thought to be an adaptive behavior, ensuring children
consume foods that are familiar and safe during a develop-
mental period when children are being exposed to a vast
number of new foods [94]. Rozin and colleagues [95,96]
have shown that distaste — dislike of the sensory character-
istics of a food — appears to be the strongest driver of neo-
phobia in young children, followed by potential harm or
sickness. Indeed, the two strongest predictors of young
children’s food preferences are familiarity and sweetness
[97], reflecting the unlearned preferences that have been
reviewed in this section. However, as will be discussed in
the following sections, these innate tendencies are paired
with a predisposition to learn from early experiences
through associative learning [98,99] and repeated exposure
[3,100,101], allowing the child to learn to accept and prefer
the foods that are available within his particular environment.

Social Influences on Food Preferences
Early Sensitive Periods for Flavor Learning
Much is learned about the foods of theworld long before they
are ever directly consumed. Both amniotic fluid and breast
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milk contain tastants and odor volatiles from the mother’s
dietary and environmental exposures (for example, garlic
[102], carrot [3], alcohol [103]). Experimental research sug-
gests that these flavors, when presented repeatedly within
the amniotic fluid and breast milk, influence the infants’
feeding behaviors and preferences immediately after birth
[104,105] and during weaning [3]. For example, infants
whose mothers were randomized to consume carrot juice
during the third trimester or during the first two months of
lactation consumed greater amounts of, and showed fewer
negative facial responses in response to, a carrot-flavored
cereal compared to infants whose mothers did not drink
carrot juice or eat carrots during pregnancy and lactation
[3]. Thus, flavors within both the amniotic fluid and breast
milk may help to guide infants toward flavors that will soon
be experienced in foods by shaping early preferences.

The early flavor experience of formula-fed infants is
markedly different from that of breast-fed infants. Psycho-
physical studies of human milk show that its predominant
taste quality is sweetness, and it also provides a myriad of
sensory experiences that are dynamic and vary both within
and between mothers [106,107]. In contrast, the flavor expe-
rience of formula-fed infants is constant and unchanging, as
the majority of formula-feeding mothers feed their infants a
single type of formula [108]. Despite this constancy, each
brand and type of formula has a unique flavor profile [109],
ranging from low levels of sweet and sour tastes in cows’
milk-based formulas (CMF), to sweet, sour, and bitter tastes
in soy protein-based formulas (SPF) to savory, sour, and
bitter tastes and unpleasant (to older children and adults)
odor volatiles in extensive protein hydrolysate formulas
(ePHF) [110]. These differences are attributed to differences
in composition and processing [111].

Formula-fed infants also show preferences for the flavors
experienced during early formula-feeding. Mennella and col-
leagues [112] showed that infants fed ePHF consumed
greater amounts of savory, sour, and bitter-flavored cereal
and made fewer facial expressions of distaste when fed
bitter and savory cereals compared to breast- or CMF-fed
infants. In contrast, CMF-fed infants showed preferences
for sweet, salty, and sour cereals [112]. Other research
suggests these preferences extend beyond weaning, as
ePHF-fed infants showed greater preference for savory
broths during later infancy [4] and greater preference for
sour-flavored juices at ages 4–5 years compared to CMF-
fed infants [113].

In sum, early flavor experiences, whether from amniotic
fluid, breast milk, or formula, may shape early preferences.
Furthermore, the influence of these preferences appears to
extend into early childhood and translate to later food prefer-
ences. For these reasons, the prenatal and early postnatal
periods have been described as sensitive periods for early
flavor and food preference learning [4]. However, as will be
discussed in the following section, social influences become
increasingly important for the development of food prefer-
ences and may either support or counter the preferences
learned during the prenatal and early postnatal periods.

Repeated Exposure, Associative Conditioning, and
Parent Feeding Practices
Experimental studies illustrate that neophobic tendencies
can be reduced and preferences can be increased by
exposing infants and young children repeatedly to novel
foods [100,101,114,115]. These studies suggest that young
children need to be exposed to a novel food between 6
and 15 times before increases in intake and preferences
are seen [100,101,114,115]. Furthermore, exposure needs
to include tasting the food, as merely seeing [101] or learning
[115] about a novel food on repeated occasions did not
promote children’s preferences for that food. A recent inter-
vention study found that repeatedly exposing children to a
novel food within a positive social environment was espe-
cially effective in increasing children’s willingness to try
and preference for the novel food, as well as other novel
foods not targeted by the intervention [116]. These findings
suggest the importance of both the act of repeatedly
exposing children to new foods and the context within which
this exposure occurs.
Post-ingestive consequences also influence preferences

[98] and can facilitate the acceptance of previously disliked
tastes, such as sour and bitter [117] (see [118] for a more
in-depth discussion of the role of associative conditioning
in shaping preferences). For example, children prefer flavors
that are paired with energy-dense (as opposed to energy-
dilute) foods [119]. When children have repeated opportu-
nities to consume two different versions of the same food
that differ in energy density (for example, a high-fat or low-
fat pudding) and have distinct flavor cues, children show
preference for the flavor paired with the higher energy-
density version [98,99,120]. Research using animal models
report similar findings [121,122], which suggests the predis-
position to prefer foods that confer positive post-ingestive
effects, as do energy-dense foods, is unlearned.
Parents may try to mold their children’s food preferences

by offering contingencies (for example, ‘‘if you eat your
peas you can have ice cream for dessert’’, or ‘‘you cannot
leave the table until you clean your plate’’) or pressuring
children to eat (for example, ‘‘finish your soup’’). These prac-
tices may have the immediate effect of increasing children’s
intake of the target food [123], but have the longer-term
effect of decreasing children’s preferences for the target
food [124–127]. In essence, these practices devalue the
target food relative to a contingency food and send the
unintentional message to children that the target food is
not preferable in and of itself.
Parents may also restrict children’s access to palatable

foods that are high in sugar, salt, and fat in an effort to
decrease their children’s preference for and intake of those
foods [128–131]. However, when children were presented
with two snack foods in a laboratory-based setting, one
restricted and the other freely accessible, children showed
a clear preference for the restricted food despite reporting
no difference in preferences for the two foods prior to the
restricted versus free-access presentations [132]. In addi-
tion, when later given free access to both snack foods,
children exhibited a greater behavioral response and higher
intake of the previously restricted snack food compared to
the freely accessed snack food [132]. That these labora-
tory-based findings translate to free-living situations is sup-
ported by observational studies showing that parents who
report higher levels of restriction have children who show
higher preference for and intake of energy-dense snack
foods when they are made freely available [128,130,133].
Cross-sectional and observational studies have shown

that the foods that parents consume and make available to
their children predict the types of foods their children
consume [134–136]. Experimental studies have provided
evidence that both adult and peer models are effective in
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Figure 3. Krondl’s food perception model.

This model illustrates that food preferences and choices arise from a
combination of three arms of influence: ‘‘Why?’’ or the sensory experi-
ences and beliefs associated with a food; ‘‘Who?’’ or the biological
needs of the individual; and ‘‘Where?’’ or the physical and social
environment within which the food is acquired. (Adapted with kind
permission of Springer Science+Business Media from [153].)
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promoting children’s acceptance of and preferences for
novel foods [137,138]. Thus, social facilitation, or an increase
in a behavior in the presence of others displaying the same
behavior [139], impacts children’s intake patterns and likely
serves to ensure that children are consuming foods that
have been demonstrated by others to be safe. As children
mature and become increasingly independent of their
parents for food choices and acquisition, social modeling
and food availability within the greater food environment
(for example, foodmarketing, schools, community organiza-
tions) become increasingly influential on food preferences
(a recent review by Fiese and Jones [140] provides an
excellent overview of these broader influences).

Emerging Research on Neural Responses to Taste
Stimuli
Emerging research has begun to focus on how neural
responses to taste stimuli, a function of both unlearned
and learned factors [24], may influence taste and food
preferences. Much of this work has focused on neural
responses to sweet taste (see [141] for a review). Stimulation
of sweet receptors activates pleasure-generating reward
centers in the brain [142] through circuitry and mechanisms
very similar to or overlappingwith that seen for the rewarding
properties of alcohol and drugs [143] (indeed, it has been
suggested that these addictive substances may be co-
opting neural pathways originally designed for sweet tastes
[144]). Thus, neural pathways linking sweet tastes to rewards
may be partially responsible for innate preferences for sweet
tastes, and may also be further strengthened by repeated
exposure to and intake of sweet foods.

The hedonic value of sweet taste may be further accentu-
ated by an analgesic effect of sweet taste during early child-
hood [145], which is also mediated by neural mechanisms
[146]. Specifically, infants given sucrose or other sweet-
tasting solutions after a painful stimuli, such as a heel stick,
cried for a significantly shorter amount of time compared
to when given water [145]. This effect is attributed to
taste perception, not post-ingestive events, as intra-gastric
administration of sucrose in preterm infants does not
induce the same calming effects [147] and non-caloric
sweeteners, such as aspartame, mimic the calming effects
of sucrose [61]. This response is similar across infants of
differing genders, gestational ages and postnatal ages at
the time of testing [148,149], and continues into childhood
[77,150,151]. Evidence for analgesic effects of sweet taste
during adulthood are inconsistent [146,150].

Changes in Food Preferences after Childhood
Although much of food-preference development occurs
during early childhood, food preferences continue to change
during adolescence and adulthood [9,152]. The factors that
influence this change become more complex as the individ-
ual matures (Figure 3) [153]. Adult food preferences are asso-
ciated with age, sex, health status, education, and income
[154,155], and the healthfulness of food preferences in-
creases with increasing age [156,157]. This indicates a shift
from primarily hedonic-based preferences early in life to
preferences that involve consideration of the health, social,
and economic impacts of foods later in life [158]. Addition-
ally, advanced age brings additional considerations for flavor
and food preferences, as older adults often experience
declines in normal taste (hypogeusia) or smell (hyposmia)
sensitivity, or distortion of normal taste (dysgeusia) or smell
(dysomia) functioning, all of which can be attributed to
normal aging (for example, reduction in number of taste
buds) or certain disease states (such as Alzheimer’s disease,
medications, or surgical interventions) [159,160].

Conclusions
Each individual’s unique preferences and aversions are
based on predisposed biological tendencies, but are further
cultivated and modified through experiential learning. Avail-
able data suggests that young children are biologically
primed to prefer and consume foods that are sweet, salty,
and savory, as well as flavors paired with energy density.
Fortunately, preferences are malleable and are shaped in
response to a number of social and environmental factors.
Preferences are a strong driver of dietary intake in both
children and adults [97,157]; thus, an understanding of these
factors is an essential basis for understanding how prefer-
ences can bemodified to best promote healthful diets across
the life course.
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