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The present paper deals with the use of simulated experiments to improve the design of an actual
mechanical test. The analysis focused on the identification of the orthotropic properties of composites
using the unnotched Iosipescu test and a full-field optical technique, the grid method. The experimental
test was reproduced numerically by finite element analysis and the recording of deformed grey level
images by a CCD camera was simulated trying to take into account the most significant parameters that
can play a role during an actual test, e.g. the noise, the failure of the specimen, the size of the grid printed
on the surface, etc. The grid method then was applied to the generated synthetic images in order to
extract the displacement and strain fields and the Virtual Fields Method was finally used to identify
the material properties and a cost function was devised to evaluate the error in the identification. The
developed procedure was used to study different features of the test such as the aspect ratio and the fibre
orientation of the specimen, the use of smoothing functions in the strain reconstruction from noisy data,
the influence of missing data on the identification. Four different composite materials were considered
and, for each of them, a set of optimized design variables was found by minimization of the cost function.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The characterization of the mechanical properties of materials
by experimental tests is one of the important issues in engineer-
ing. Depending on the type of material and the property to deter-
mine, many different tests have been devised during the years,
some of which have become standards in industrial practice.
Looking at mechanical properties, such as elastic modulus, Pois-
son’s ratio, yield strength, toughness, damage, etc., the experi-
mental procedure usually consists in submitting a specimen to
different loading conditions and measuring the applied force
and specimen deformation. Examples of this kind of experiments
are tensile tests, upsetting tests, shear tests, punch tests, bulge
tests, etc. When the material behaviour is more complex and sev-
eral parameters must be identified in the constitutive equation, as
occurs for instance in composites, anisotropic metals or rubbers,
the characterization becomes more difficult and multiple tests
have to be used.

Recently, the improvement in full-field measurement tech-
niques and digital camera performances has led to the design of
novel test procedures (Avril et al., 2008a; Grédiac, 2004). The idea
ll rights reserved.
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is to use a test configuration that induces heterogeneous stress and
strain fields in the specimen so that more parameters of the
material constitutive equations can be activated at the same time.
The full-field measurement technique is employed to measure the
displacement field of the specimen surface. At this point, the mea-
sured data are used to identify the material properties by inverse
approaches, e.g. the finite element updating method (Cooreman
et al., 2008; Lecompte et al., 2007; Le Magorou et al., 2002;
Meuwissen et al., 1998; Kajberg and Lindkvist, 2004), the constitu-
tive equation gap method (Latourte et al., 2008; Geymonat and
Pagano, 2003), the equilibrium gap method (Claire et al., 2004),
the reciprocity gap method (Bui et al., 2004) or other techniques
(Rossi et al., 2008).

An alternative is the Virtual Fields Method (VFM) which is a
well established technique to characterize the material properties
directly from full-field measurements (Grédiac et al., 2006). A
number of different applications have already been considered in
past studies, e.g. the elastic stiffness of composites (Grédiac and
Vautrin, 1990; Moulart et al., 2006), damping measurements on
vibrating plates (Giraudeau and Pierron, 2005), elasto-plasticity
(Grédiac and Pierron, 2006) etc.

The pattern of the displacement field generated by the experi-
ment and the optical technique adopted to measure it play an
important role in the final identification of the parameters. The
intention of this paper is to develop a procedure to design an
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optimized test configuration for a given class of materials and type
of test. This has scarcely been addressed in the literature
(Le Magorou et al., 2002; Pierron et al., 2007; Syed-Muhammad
et al., 2009) and a lot of improvements can still be made in this
field.

The best configuration comes from the minimization of a cost
function that represents the average error in the identification as
a function of the design variables. It is not practically feasible to
use real experiments in the optimization process because of the
great amount of different configurations that have to be tested
and the difficulty of controlling the experimental conditions. For
this reason the experiments have been simulated using a combina-
tion of FE models and data post-processing. A great attention is
necessary on reproducing real experiments to avoid the presence
of numerical artifacts that could lead to unexpected results. Similar
procedures were already used, for instance, to assess the error in
digital image correlation measurements with simulated white-
light speckle patterns (Bornert et al., 2009).

In this paper, the study focused on the unnotched Iosipescu
test (Pierron and Grédiac, 2000) used to determine the constitu-
tive parameters of orthotropic materials such as carbon or glass
epoxy composites. The four in-plane stiffness components can
be determined from one test using the VFM. A first attempt to
optimize the test configuration of a Iosipescu test was addressed
in a previous paper by Pierron et al. (2007) where the sensitivity
to noise was used as the variable to minimize a cost function.
Although an improvement in the quality of the identification
was obtained, some limitations were noticed in such an approach.
Mainly, the optimization procedure did not include the effect of
the spatial resolution of the measurement technique, besides,
only one source of error was considered, the uncorrelated white
noise on the strain field.

The present work represents a continuation and an extension of
that study. In order to overcome the mentioned limitations, the in-
tent here is trying to numerically reproduce the whole measure-
ment process as accurately as possible. Synthetic images were
generated to simulate a real acquisition with a CCD camera and
the noise was applied directly to the grey level images. A full-field
technique, the grid method, was used to extract the strain field
from the images and the data were used to identify the parameters
with the VFM. In this way the effect of the spatial resolution is
introduced and the influence of noise is more realistic.

The developed procedure gives a versatile tool to study and
optimize an experimental setup and several practical aspects can
be efficiently evaluated, for instance the effect of smoothing proce-
dures to derive the strains from the displacements or the influence
of missing data, two very important practical features. Moreover
the same procedure could be easily extended to take into account
other important aspects like the existence of optical distortions or
the pixel fill factor.

To the best knowledge of the authors, this is the first time that
the whole measurement and identification chain is simulated and
used to optimize a test configuration.
2. Description of the techniques used in the simulated
experiments

The identification process is based on two specific techniques,
the grid method, used to measure a two-dimensional displacement
field on a loaded specimen, and the Virtual Fields Method, used to
identify the material properties from full-field measurements. An
in-depth treatment of the subject can be found in the cited refer-
ences, nevertheless a brief description of the methods is given be-
low to provide a background for the reader and produce a better
understanding of the following sections.
2.1. The grid method

The grid method is a full-field optical technique that allows to
measure the displacement field on a specimen surface with a high
resolution and therefore it is particularly suitable for the small dis-
placements obtained in the elastic range (Avril et al., 2004a,c;
Surrel, 1994).

A grid pattern is printed onto the surface of the specimen using
appropriate techniques (Piro and Grédiac, 2004) and a digital im-
age of the surface is achieved using a CCD camera. The intensity
of the digitized light at a given pixel M0, that corresponds to the
material point determined by the position vector R

!ðx; yÞ in the
reference cartesian frame, can be expressed by:

Ið R
!Þ ¼ I0f1þ c frng½2p F

!� R
!�g ð1Þ

where

� I0 is the local intensity bias,
� c is the contrast,
� frng is a 2p-periodic continuous function,
� 2p F

!� R
!

is the phase of function frng,
� F
!

is the spatial frequency vector. It is orthogonal to the grid
lines and its amplitude is the spatial frequency of the grid. If
the grid lines are vertical (parallel to the y-axis), the spatial fre-
quency vector writes F

!ðf0;0Þ. If the grid lines are horizontal, the
spatial frequency vector writes F

!ð0; f0Þ.

When a load is applied, the material and consequently the grid
are deformed. The phase of the function frng at pixel M0 varies of
�2p F

!� u!ð R
!Þ from the undeformed to the deformed state, where

u!ð R
!Þ is the displacement vector. The ux(x,y) and uy(x,y) displace-

ment components relative to the unloaded reference condition
are calculated from the respective phase differences D/x (for
vertical lines) and D/y (for horizontal lines) introduced by the
deformation:

uxðx; yÞ ¼ �
p

2p
D/xðx; yÞ ð2Þ

uyðx; yÞ ¼ �
p

2p
D/yðx; yÞ ð3Þ

with p equal to the pitch size of the grid. It has to be pointed out
that the grid method and the computation of the displacement
using Eqs. (2) and (3) is valid only under the hypothesis of small dis-
placement. The strain field is obtained consequently by a differenti-
ation of the displacement field:

eij ¼
1
2
@ui

@xj
þ @uj

@xi

� �
; i; j 2 ½1—3� ð4Þ

Routines to extract the phase fields by using the spatial phase
shifting method, i.e. the Windowed Discrete Fourier Transform
(WDTF) algorithm with a triangular window, have been already
implemented in Matlab and can be directly applied to the digital
images (Surrel, 1996, 1997). Considering the first harmonic of
function frng, Eq. (1) has three unknowns, so a minimum sampling
of 3 pixels per period is necessary. The practical experience dem-
onstrated that a good compromise is to have the period p of the
grid sampled by about five pixels. Increasing the number of pixels
per period will reduce the spatial resolution while going under five
pixels will start to deteriorate the phase detection.

Another practical issue is the minimum size of the grid which is
possible to print on the specimen. Although microgrids have been
successfully used for measurements at the microscale (Moulart
et al., 2007, 2009), in applications at the macroscale level the min-
imum grid pitch is around 100 lm (Piro and Grédiac, 2004), which
is the value adopted here. Most of the full-field optical techniques



Fig. 1. Schematic view of the unnotched Iosipescu test.
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have similar problems, for example, using digital image correlation
on white light speckles the ultimate spatial resolution is equal to
the size of the correlation subset (Bornert et al., 2009), however,
practically, the size of the correlation subset is limited by the min-
imum size of the speckles painted onto the specimen surface.

2.2. The Virtual Fields Method (VFM)

The VFM is based on the principle of virtual work that, for a so-
lid of any shape of volume V and boundary surface @V, in the case of
small perturbations and absence of body forces, can be written as:Z

V
r : e� dV ¼

Z
@V

F
!� u�!dS ð5Þ

where r is the stress tensor, F
!

the surface forces acting at the
boundary, u�

�!
a kinematically admissible virtual field and e⁄ the

corresponding virtual strain field. In the case of an in-plane test, if
t is the constant thickness of the volume V and S the planar surface,
the problem reduces to a 2-D situation and Eq. (5) becomes:

t
Z

S
r : e� dS ¼ t

Z
@S

F
!� u�!dl ð6Þ

The constitutive equation for linear orthotropic materials, using
the conventional notation for contracted indices xx ? x, yy ? y,
xy ? s, writes:

rx

ry

rs

0
B@

1
CA ¼ Q xx Qxy 0

Q xy Q yy 0
0 0 Q ss

2
64

3
75 ex

ey

es

0
B@

1
CA ð7Þ

Q is the in-plane stiffness matrix and the four independent compo-
nents are the parameters to be identified. The stress tensor in Eq. (6)
can be rewritten in terms of the strain tensor using Eq. (7):

Q xx

Z
S
exe�x dSþ Q yy

Z
S
eye�y dSþ Q xy

Z
S

exe�y þ eye�x
� �

dS

þ Q ss

Z
S
ese�s dS ¼

Z
@S

Fxu�x dlþ
Z
@S

Fyu�y dl ð8Þ

At this point, introducing four independent virtual fields in Eq.
(8), four linear equations are obtained that can be used to identify
directly the four unknown parameters Qxx, Qyy, Qxy and Qss. The
strain components ex, ey and es are measured on the specimen sur-
face using a full-field optical technique, and in order to solve the
system, the virtual displacements have to be chosen in such a
way that the only information involved in the second term of Eq.
(8) is the global load measured by the load cell of the experimental
equipment.

In the specific case of the unnotched Iosipescu test, the area S of
Eq. (8) is the dashed area in the schematic view of Fig. 1. The virtual
fields have to fulfill the following virtual boundary conditions:

u�x ¼ 0
u�y ¼ 0

( �����
x¼0

and
u�x ¼ 0
u�y ¼ c

( �����
x¼L

ð9Þ

where c is a constant. Under these conditions, the only boundary
force involved in the second term of Eq. (8) becomes Fy when
Fig. 2. FEM model of the unnotched Iosipescu test, mesh size, bou
x = L, multiplied by a constant. The constant c can be taken out of
the integral and the integral of Fy along @S returns the total force
F applied to the moving clamp divided by the thickness. The total
force can be experimentally measured by a load cell. More details
are given in Pierron and Grédiac (2000).

An infinite number of virtual fields which satisfy the boundary
conditions can be found. The choice of appropriate virtual fields is
one of the critical points of the method and has been discussed in
several papers (Grédiac et al., 2002a; Grédiac et al., 2002b). In the
present work the approach proposed by Avril et al. (2004b) is used,
where a set of optimized virtual fields can be automatically gener-
ated by minimizing the sensitivity to noise.

3. Simulated experiments

The simulated experiment is the unnotched Iosipescu test, per-
formed according to the experimental configuration described in
Pierron et al. (2007) and Chalal et al. (2006). A finite element model
of this test was developed and the computed displacement field
was used to reconstruct synthetic images that simulate an actual
acquisition with a CCD camera. The whole process will be dis-
cussed in details.

3.1. Finite elements simulations

A parametric model was built up using ABAQUS Standard and
Python routines, all the simulations can be run in background un-
der a Matlab environment and easily inserted in optimization
programs.

The model is illustrated in Fig. 2, 2-D quadratic elements,
named CPS4, were used to simulate the specimen deformation un-
der plane stress condition while the clamps were simulated using
four rigid contact bodies, two at each side. The specimen can be di-
vided in three parts, at the sides there are the zones held by the
clamps and at the center there is the area of measurement, where
the displacement field is supposed to be measured with the full-
field optical technique. A fixed 0.33 mm mesh size was adopted
in each configuration. The reason why only the middle part of
the specimen is considered for the measurement is that the two
ndary conditions, material coordinate system at the element.
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other parts (in the clamps) undergo little deformation. Also, mea-
suring over the whole length will deteriorate the spatial resolution
because of the large aspect ratio of the specimen.

The rigid bodies on the left side are fixed while a vertical dis-
placement U0

Y is given to the rigid bodies on the right to simulate
the shear loading. A friction coefficient l = 0.05 is used in the con-
tact properties to prevent sliding in the horizontal direction. The
applied force F is obtained as sum of the vertical reactions of the
rigid bodies at the right.

Two systems of cartesian coordinates are introduced, the refer-
ence global coordinate system ð0; X

!
; Y
!Þ, fixed, and the material

coordinate system ð0; x!; y!Þ in which the x-axis is aligned with
the fibre orientation. The angle a measures the rotation of the
material coordinate system with respect to the global one and is
the first design variable. The second is the free length of the spec-
imen L, illustrated in Fig. 2.

All the other geometric parameters are kept constants, the
height H is set equal to 20 mm and the part of the specimen
grabbed by the clamps measures 23 mm. The reason for this choice
is that the fixture can only accommodate a fixed width whereas it
can be used for different free lengths (Pierron, 1994).

It is worth noting that although only two parameters of the test
configuration have been taken into consideration, L and a respec-
tively, their variation modifies the stress and strain fields inside
the measurement area in a non trivial way. Indeed, the stress state
in the unnotched Iosipescu test is a composition of compression,
bending and shear as illustrated in Fig. 3. Looking at the stress
components expressed in the global coordinate system, in the Y-
direction the normal stress is mainly compressive and concen-
trated near the contact zones; in the X-direction the stress state
is due to bending and exhibits both tension and compression;
shear stresses are also present, as expected from such a shear test.
The relationship between the three components strongly depends
on the specimen aspect ratio and stiffness which are functions of
the chosen design variables.

The thickness of the specimen is set to 3 mm. However, because
of the plane stress assumption, this value does not influence the
Fig. 3. Stress state in the Iosipescu test (global coordinate system): compression stress
shear stress. The specimen has a free length L = 30 mm and a fibre angle a = 30�, the ma
identification though in practice, thick specimens are very difficult
to load in plane (Pierron, 1998).
3.2. Force and displacement scaling

In an actual measurement, the magnitude of the measured dis-
placement field impacts directly the signal to noise ratio. In gen-
eral, the scatter of the identified parameters decreases as the
maximum displacement (or the applied load) increases. This has
been observed, for instance, in some experimental results obtained
for similar applications (Xavier et al., 2007).

In order to compare different specimen configurations, which
exhibit different stiffness, a normalization procedure is necessary.
For example, in Syed-Muhammad et al. (2009), where different test
configurations have been studied to identify the bending rigidities
of an anisotropic plate, the minimization criterion was normalized
with respect to the maximum deflection.

In this work, the normalization was performed during the com-
putation of the displacement field. For each evaluated configura-
tion, the displacement field is the one that corresponds to the
maximum force that can be applied to the specimen. The maxi-
mum allowable force can be determined using a failure criterion.
In practical experiments, the load is limited by the premature frac-
ture of the specimen or by the deviation from linear elastic
behaviour.

Many theories are available to predict failure in composites, a
good review and a comparison between different approaches can
be found in Soden et al. (1998, 2004). The maximum stress failure
criterion was adopted here for the sake of simplicity. It states that
the material is undamaged when the following conditions are
fulfilled:

S�x 6 rx 6 Sþx; S�y 6 ry 6 Sþy; jssj 6 Ss ð10Þ

where S+x and S+y are the maximum allowable tensile stresses along
and transverse to the fibre directions, respectively, S�x and S�y are
the maximum allowable compressive stresses and Ss is the ultimate
near the contact zones in the Y-direction, stress due to bending in the X-direction,
terial is glass/epoxy UD and the applied force 100 N.
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in-plane shear stress. Obviously, the stress tensor is computed in
the material coordinate system.

Although this assumption is quite simplistic, the model is
widely used in practice and even more complex theories utilize it
to restrict the elastic range where no damage is observed (Zinoviev
et al., 1998; Zinoviev et al., 2002). Here it is just used to provide a
more physical normalization of the stress and strain levels.

Under the assumption of small displacement and linear elastic
behaviour, the stress and strain fields are proportional to the ap-
plied force. If F is the force computed by the FEM as the vertical
resultant of the imposed fixed displacement U0

y on the right part
of the fixture, the maximum allowable force, according to the fail-
ure criterion, is obtained by scaling the FE reaction force by a factor
k, with

k¼min max
ri

x

Sþx

� 	
;max

ri
x

S�x

� 	
;max

ri
y

Sþy

 !
;max

ri
y

S�y

 !
;max

si
s

Ss

� 	" #

ð11Þ

and ri
x; ri

y and si
s the stress components at each ith Gauss point of

the numerical model and max(�) is the maximum over all the Gauss
points. In the same way, the displacement field corresponding to
the maximum allowable force is then obtained by the same scaling
factor k.

Two different composites have been investigated, glass/epoxy
and carbon/epoxy, looking at two different fibre configurations,
unidirectional (UD) and 0�/90�, for a total of four materials. Typical
properties for the materials can be found in various technical or
commercial catalogues, the values used in this work are listed in
Table 1. The idea here was to explore the effect of anisotropy on
the optimal configuration.

3.3. Synthetic images

Analytically, a black and white image can be described as a con-
tinuous function Ið R

!Þ of the grey level, where R
!

is the position
vector of Section 2.1 defined over a spatial domain that represents
the image size. Let us consider Irð R

!Þ as the grey level function for
the reference image and Idð R

!Þ that of the deformed image,
distorted according to a given material transformation UM. The
two functions can be put in relation using the optical flow
conservation:

Idð R
!Þ ¼ Ir U�1

M ð R
!Þ

� �
ð12Þ

In the general case of a displacement field u! the transformation
function becomes:

UM ¼ R
!þ u!ð R

!Þ ð13Þ

The function Irð R
!Þ represents, in terms of grey levels, the pat-

tern printed in the specimen surface before deformation starts.
For instance, using digital image correlation, the pattern will be a
Table 1
Reference properties for four composite materials. Data from www.performance-
composites.com (2010). For the glass/epoxy unidirectional, data from Tsai and Hahn
(1980).

Glass/epoxy Carbon/epoxy Glass/epoxy Carbon/epoxy
UD UD 0/90� 0/90�

Exx (GPa) 40 135 25 70
Eyy (GPa) 10 10 25 70
Gxy (GPa) 4 5 4 5
mxy 0.3 0.3 0.2 0.1
S+x (MPa) 1000 1500 440 600
S�x (MPa) �600 �1200 �425 �570
S+y (MPa) 40 50 440 600
S�y (MPa) �100 �250 �425 �570
Ss (MPa) 40 70 40 90
series of speckles with random size. An example of speckle simula-
tion can be found in Orteu et al. (2006). Working with the grid
method, the reference image is an equispaced grid which can be
described by the following analytical function:

Irð R
!Þ¼ I0 1þc cos

2pX
p

� 	
þcos

2pY
p

� 	
� cos

2pX
p

� 	
�cos

2pY
p

� 	����
����

� �
 �
ð14Þ

where I0 and c are the quantities defined in Eq. (1) and R
!¼ ðX;YÞ is

expressed in the global coordinate system, j�j is the absolute value.
The analytical function for the deformed image is obtained using Eq.
(12), UM is computed from Eq. (13) using the displacement from the
FE model, scaled according to the normalization proposed in Section
3.2.

At this point, two synthetic images are generated digitizing the
image functions Irð R

!Þ and Idð R
!Þ. The intent is to reproduce the

acquisition process of a digital camera. In a digital camera, an im-
age is projected through a lens onto the photoactive region, which
is usually a matrix of CCD sensors. Every pixel of the recorded im-
age corresponds to a CCD sensor of the camera. A CCD sensor is a
device able to accumulate an electric charge proportional to the
light intensity.

Let us consider a pixel M and the area AM which represents the
portion of the grid imaged by that pixel. The digital value stored in
M is an integer proportional to the average light intensity inside
the area AM. The area AM represents the sensitive part of the pixel
and could be varied to simulate different fill factors. In the present
case, the light intensity is represented by an analytical function
Ið R
!Þ, so the digital recorded value P(M) can be computed as

follows:

PðMÞ ¼ 1
AM

Z
AM

Ið R
!ÞdS

� 

ð15Þ

where b�e is the nearest integer to the value computed inside.
The integral in Eq. (15) is numerically computed using pixel

supersampling. The function Ið R
!Þ is evaluated at Np points inside

the pixel area AM and P(M) is computed as an average value:

PðMÞ ¼ 1
Np

XNp

i¼1

Ið R
!

iÞ
$ ’

ð16Þ

The generation process of a synthetic image of a grid starting from
the analytical function is illustrated in Fig. 4, a comparison with a
grid taken from an actual measurement is also shown.
Fig. 4. Generation of synthetic images: starting from the analytical function (Eq.
(14)) a synthetic image is generated using pixel supersampling and noise is added
to the grey level. In the final plot a real grid coming from experiments is shown as a
comparison.

http://www.performance-composites.com
http://www.performance-composites.com


Fig. 5. Strain fields obtained from synthetic images which reproduce an uniform
stretch equal to 5 � 10�4. The image size is 500 � 200 pixel and the grid pitch is 5
pixels. Two dynamic ranges are evaluated, 8-bit and 12-bit, and different sampling
points are chosen. No noise is introduced, the observed oscillations are caused by
the quantization error and the high spatial frequencies of the square grid which
disturb the phase detection.

Fig. 6. Full-field measurement: the number of pixels that can be really used during
the measurement depends on the aspect ratio of the CCD chip and the aspect ratio
of the specimen area to be framed.
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The approximation due to the numerical integration and the
quantization which occurs at the pixel level influences the phase
detection and consequently the measurement precision. To have
an idea of such effect a simple test is conducted, two synthetic
images are created in order to reproduce a small uniform stretch
in the X-direction equal to 5 � 10�4, then the grid method is used
to extract the displacement and compute the strain. The image size
is 500 � 200 pixels and the grid pitch is 5 pixel. Two different
dynamic ranges have been considered, 8-bit (256 grey levels) and
12-bit (4096 grey levels) respectively, furthermore three different
distributions of the resampling points inside the pixels have been
evaluated, the results are illustrated in Fig. 5. The obtained strain
maps are not constant and a variation is observed from the refer-
ence value of 5 � 10�4. Using an 8-bit dynamic range, the error
has a high frequency and it is not influenced by the resampling
points, it is mainly due to the quantization error. Using a 12-bit
dynamic range, the quantization error is reduced but the WDTF
algorithm is disturbed by the high spatial frequencies due to the
horizontal lines of the grid. The effect is influenced by the number
of resampling points and it disappears if only vertical lines are used
to compute the displacement in the horizontal direction instead of
a grid.

The synthetic images used in this work simulate the acquisition
of a CCD camera with a resolution of 1360 � 1024 pixels and a grey
level range of 12 bit. A matrix of 5 � 5 sampling points was used to
compute the grey level value at each pixel. In this case the errors
coming from the digitization are of much lower amplitude than
the errors due to the noise.

The noise is simulated by adding a standard Gaussian white
noise to the grey level value of each pixel. The mean of the intro-
duced noise is zero, the standard deviation can be varied to simu-
late different noise levels in the measurements.

The amount of noise in actual measurements depends on sev-
eral factors (camera, lighting, . . .) and varies largely for different
experimental set-ups. It can be measured by recording two pic-
tures of the same reference image and calculating the correspond-
ing displacement which should be zero in all pixels, if no noise was
present. To quantify the noise level, the standard deviation of this
‘‘displacement’’ can be taken (Surrel, 1999; Chalal et al., 2006).

Here a simple test was performed just to estimate a reasonable
noise level, in terms of grey levels, to input in the simulation rou-
tine. Two pictures of the same reference image were recorded and
the noise level was computed as the standard deviation of the dif-
ference of the grey levels at each pixel, divided by

ffiffiffi
2
p

to get the
standard deviation of the noise in a single image. Using a 12-bit
camera, which has 4096 grey levels, the obtained standard devia-
tion in different tests ranged from 20 to 25 grey levels, 0.5–0.6%
of the dynamic range. It would correspond to 1–2 grey levels for
an 8-bit camera. This value can largely change according to the
experimental conditions but the test gives an idea of the order of
magnitude.

3.4. Number of measurement points

In full-field optical techniques, displacements are measured at a
certain number of points over the surface. With the grid method it
is possible to have an independent measurement for each line of
the grid. The number of points influences the spatial resolution
of the measurement, that is the minimum distance between two
independent measurement points. Clearly, a higher spatial resolu-
tion will also produce a better identification of the constitutive
parameters. Nevertheless, it should be pointed out that a con-
verged FE model has usually at least one order of magnitude less
elements than pixels on a standard CCD chip. Therefore, increasing
the spatial resolution is mainly necessary for noise filtering
purposes.

The number of available measurement points depends also on
the shape of the framed area. As explained in Fig. 6, the window
of the digital camera is fixed, therefore, when a surface is framed,
there are some pixels that are not involved in the measurement
process, unless the specimen area has the exact aspect ratio of
the CCD chip.

In other words, this means that it is not convenient to use spec-
imens with too large aspect ratios, because it will decrease the spa-
tial resolution of the measurement. It is important to introduce this
aspect to compare the effectiveness of different specimen configu-
rations. This was the main limitation of the approach proposed in
Pierron et al. (2007) where only the sensitivity to noise was used in
the cost function. In that case it was noticed that the optimization
is not very sensitive to the variation of the free length of the spec-
imen. In fact, specimens with a very long or very short free length
can still exhibit a low sensitivity to noise. In a real experiment,
however, such kind of specimens will lead to a poor identification
because their aspect ratio is far from the aspect ratio of the CCD
chip.

In order to take this effect into account, a procedure has been
developed which finds the configuration that maximizes the num-
ber of measurement points, for each specimen geometry. First the
orientation of the camera is set to maximize the framed area. The
camera can be used in a vertical or horizontal position. Once the
best orientation has been defined, the grid pitch is chosen in order
to have a period every five pixels in the undeformed image.

As explained in Section 3.1, the height of the specimen is kept
constant while the free length is varied. As the length decreases,
the measurement area is reduced too. A magnification has to be
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performed to frame the whole area with the camera. As conse-
quence, the pitch of the grid has to be reduced in order to keep a
period each five pixels of the image. In actual applications, the grid
size cannot be reduced under a certain level, see Section 2.1. Here
the minimum allowable grid pitch is assumed to be 100 lm (Piro
and Grédiac, 2004), below this limit the magnification is kept con-
stant in order to preserve a period every five pixels and the camera
does not frame the whole measurement area.

The results obtained with the proposed procedure are summa-
rized in Fig. 7. The measurement points and the grid pitch size are
plotted as a function of the free length L. The measurement points
are given as a percentage of the maximum number of available
measurement points. The maximum number of available measure-
ment points depends on the type of camera. Using a CCD camera
with a resolution of 1360 � 1024 pixels, if all the pixels are in-
volved in the measurement and a measurement point can be ob-
tained every five pixels, theoretically it is possible to have
272 � 204 measurement points.

The maximum number of measurement points in the simulated
experiment is reached for L ’ 27 mm. In this case the aspect ratio
of the measurement area approaches the aspect ratio of the CCD
chip. Here, it also corresponds to the minimum of the grid pitch.
4. Results and discussion

Simulated experiments were then employed to study in detail
the unnotched Iosipescu test. The design variables that lead to
Fig. 8. Flow chart of the Matlab routine
the best identification were evaluated using a cost function. Differ-
ent materials have been taken into consideration to study the ef-
fect of anisotropy. Besides, other practical aspects have been
analyzed: the effect of smoothing and the influence of missing
data.

4.1. Cost function

A cost function has to be defined to compare different configu-
rations and find out which one provides the best identification of
the material parameters. For a given set of design variables, the
cost function represents the error in the identification averaged
over Ne simulated experiments, it writes:

UðL;aÞ ¼ 1
Ne

XNe

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ij

wij 1�
Q ðkÞij

Q ð0Þij

 !2
vuuut with ij ¼ ½xx; yy; xy; ss�

ð17Þ

Q ð0Þij are the reference parameters to be identified, Q ðkÞij are the
parameters identified at the kth simulated test and wij is a weight-
ing parameter that can be varied to give more or less importance to
a particular stiffness component during the optimization process.

A Matlab routine has been implemented to compute the cost
function automatically and it is summarized in the flow chart in
Fig. 8. The input data are the material properties, the design vari-
ables, the spatial resolution and dynamic range of the CCD camera
and the amount of noise. The program generates automatically the
FE model, computes the maximum allowable load for the current
configuration and the corresponding displacement field in the
measurement area. According to the CCD camera characteristics
two synthetic images are generated, for the reference and the de-
formed configuration, respectively. The noise is added to the
images and subsequently they are processed using the grid method
in order to extract the displacement and the strain fields. If the
introduced level of noise is particularly high, it is possible to utilize
smoothing functions to compute the strain. The constitutive
parameters are identified using the optimized VFM (see Section
2.2) and the cost function U is evaluated.

4.2. Parameter identification for a glass/epoxy unidirectional
composite

A first analysis was conducted on a glass/epoxy unidirectional
composite since experimental data are available for this material
(Pierron et al., 2007). The free length L was varied from 10 to
used to compute the cost function.
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60 mm with a step of 2 mm while the fibre angle a was varied from
0� to 90� with a step of 5�. The standard deviation of the added
noise is equal to 30 grey levels, which corresponds to 0.7% of the
total dynamic range. The strain field was computed using direct
differentiation and no smoothing. For each configuration, 30 simu-
lated experiments were run.

At the end of the simulation process, the identified parameters
are used to evaluate the cost function by Eq. (17). The cost function
can be plotted as a contour map in the plane of the design variables
L and a, Fig. 9. In this map, the cost function is computed using the
same weight for each parameter, wij = 0.25, so that it represents an
average of the identification error. The function itself is somewhat
noisy because of the random nature of the processed information
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and the limited number of trials (30). Therefore a Gaussian filter
was applied, using a standard convolution method, in order to
get a smoother function that can be minimized more easily (Had-
dad and Akansu, 1991). The convolution matrix involves 5 � 5
measurement points and it is computed using a Gaussian function
with a 0.75 standard deviation and 1 as normalized distance be-
tween two measurement points. Another option could have been
to increase the number of simulated experiments, but it would
have increased the computational time too much.

The best identification is obtained when the free length is be-
tween 20 and 35 mm and the angle between 50� and 75�. The cost
function for each stiffness can be studied separately by respec-
tively setting wij = 1 for one value of ij and wij = 0 for the others,
Fig. 10.

Looking at the scale of the contours parameter Qss is the easiest
to identify and parameter Qxy is the most difficult as expected from
Pierron et al. (2007). The identification of parameters Qxx and Qyy

principally depends on the fibre angle orientation, this is not sur-
prising since the two parameters represent respectively the
stiffness on the x and y directions, therefore the best situation is
when the fibres are aligned with the main direction of the bending
stress, 0� for Qxx and 90� for Qyy. The identification of Qss is better
when the fibre angle is around 0� or 90� where the shear stress
is predominant in the material coordinate system. For parameter
Qxy, the best situation occurs for an angle a ’ 60� and a length
L ’ 20 to 35 mm. All these considerations are in agreement with
what was already found in previous studies using different ap-
proaches (Pierron et al., 2007; Xavier et al., 2005).

The cost function represents an average of the identification er-
ror and takes into account both the bias and the standard devia-
tion. It could be interesting to evaluate the error distribution for
single configurations. In Fig. 11 a histogram is plotted with the
identification of the single parameter Qxx for two specimen config-
urations, L = 36 mm, a = 50� and L = 16 mm, a = 15� respectively. In
Fig. 11(a) simulated images have been used to obtain the strain
field. A level of noise of 30 grey levels and 100 test repetitions have
been used. The same test is then repeated without simulating the
measurement process but simply introducing a similar amount of
noise in the strain fields computed by FEM, Fig. 11(b), in this case
the only source of error is the noise itself. For the first configuration
the results are very similar, but in the second configuration which
represents a non optimal solution (see the cost function plot in
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Fig. 11. Histograms of the identified parameter Qxx for two specimen configuration, L = 36, a = 50� and L = 16, a = 15� respectively. A level of noise equal to 30 grey levels and
100 repetitions have been used. Subsequently, the same tests are reproduced without simulating the images, but simply introducing a similar amount of noise directly on the
strain field or on the displacement field computed by the FEM.
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Fig. 9) a bias is observed when synthetic images are used to com-
pute the strain fields and not when the FEM strain data are used.
Probably the bias is due to the lower spatial resolution obtained
in the second configuration where a non optimal aspect ratio is
used, for this reason the measurement technique is not able to cor-
rectly measure the strain in the zones of the specimen with a high
strain gradient. To be sure that the error is not related to the strain
computation, another test has been performed and illustrated in
Fig. 11(c). Here the noise was applied to the displacement field ob-
tained from the FEM and then the same strain computation proce-
dure adopted as in the first case was used to compute the strain
field. No bias is observed in this case either, confirming that the
bias comes from spatial resolution issues related to the full-field
measurement itself.

The analysis highlights that errors are hidden in the acquisition
process itself and they end up influencing in some way the identi-
fication. The advantage (and novelty) of the proposed approach is
that all these errors are embedded in the procedure and are implic-
itly introduced in the evaluation of the cost function.

The importance of the number of measurement points in the
identification can be proved by simulating a camera with a differ-
ent CCD chip aspect ratio. A hypothetical camera with a resolution
of 1360 � 512 pixels was used. As illustrated in Fig. 12, the shape
of the cost function is now totally different and it can be directly
related to the number of measurement points which is plotted be-
low the cost function maps as a function of the specimen length L.
The lowest values of the cost function are obtained where the
number of measurement points is maximum. Besides in the second
case the average value of the cost function is two times larger as
the size of the CCD chip is decreased by a half. This clearly indicates
the effect of the spatial resolution that the present procedure sim-
ulates efficiently.

It is beyond the purpose of this paper to give an experimental
validation of the proposed technique, an extended experimental
study will be conducted in the future. Nevertheless a first check
can be made using the results obtained by Pierron et al. (2007)
using the unnotched Iosipescu test on the same material, glass/
epoxy UD.

In this study, the unnotched Iosipescu test was performed on
two types of specimen, the first with L = 30 mm and a = 0� (5 rep-
etitions) and the second with L = 40 mm and a = 25� (6 repetitions).
The cost function U can be computed from the experimental data
using Eq. (17) and compared with the cost function obtained using
simulated experiments with the same geometry and fibre orienta-
tion. The reference values Q ð0Þij for the experiments are taken as the
average of the values measured at each test.

Actually, it is still not possible to compare directly the cost func-
tions because the level of noise in the experiments is not known,
therefore a normalized cost function is introduced. First the cost
function was evaluated separately for each parameters as seen be-
fore, then these values were normalized by the average error which
is obtained with wij = 0.25. The same procedure was repeated for
both the experimental and the simulated data. The comparison is
illustrated in the bar plot of Fig. 13.



Fig. 12. Effect of the number of measurement points. The size of the CCD chip changes the shape of the cost function. The lowest values are observed where the number of
measurement points is maximum.
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A mismatch is normal because of the low number of repetitions
available in the experimental tests. However the simulated proce-
dure is able to reproduce qualitatively the trend observed in the
experiments. Parameter Qxx is identified with good accuracy in
both configurations. The identification of Qyy however is much bet-
ter in the 25� configuration. Qss has a good identification in both
cases but the 0� configuration gives the best outcome. About Qxy,
which is the most difficult parameter to identify, more scatter is
expected, nevertheless the experiments show a better identifica-
Fig. 13. Comparison between simulated and actual experiments from Pierron et al.
(2007). The cost function was normalized dividing by the average error, two
configurations were evaluated.
tion in the 0� configuration and the same trend is obtained using
the simulated data.

This is only a first analysis, more experimental tests are needed.
However the developed procedure seems to be reliable in compar-
ing different configurations.

4.3. Sensitivity to scaling

The scaling procedure introduced in Section 3.2 influences the
cost function. The adopted failure criterion is quite simplistic and
the limit stresses listed in Table 1 are generic values for a class
of material. In order to have reliable results in the optimization,
it is important to verify that the cost function is not strongly
dependent on these parameters.

A sensitivity study was conducted on glass/epoxy UD. Accord-
ing to the maximum stress criterion, for each configuration, only
one of the five limit stresses will be involved in the scaling proce-
dure, see Eq. (11). The first plot of Fig. 14 shows the parameters
driving the scaling for glass/epoxy UD. This scaling is mainly driven
by the maximum stresses in the transverse direction (S�y and S+y).
In order to assess the sensitivity of the proposed procedure to the
scaling parameters, the cost function was evaluated using the same
test conditions but increasing the failure stresses S�y and S�y by
50%.

The comparison of the cost functions obtained with the in-
creased values and the reference one is also illustrated in Fig. 14.
The plots look similar, no remarkable changes are produced by
increasing the limit stress. This check suggests that the procedure
will return similar results if the material properties are chosen
within a reasonably wide range.

4.4. Effect of anisotropy

The cost function described previously can be used to optimize
the test configuration. Indeed the best set of design variables can
be considered as the one that minimizes the cost function. The pur-
pose of this section is to study how this choice is influenced by the
material anisotropy. Four different composite materials were ana-
lyzed, the mechanical properties have already been reported in Ta-
ble 1.

The cost function was evaluated using the same weight
(wij = 0.25) for the four parameters. The test conditions are the
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same adopted for the glass/epoxy UD, 30 repetitions per configura-
tion, standard deviation of the noise added to the images equal to
Table 2
Values of the design variables that minimize the cost function.

L (mm) a (�) U

Glass/epoxy UD 24.3 62.4 0.0122
37.2 52.9 0.0125

Carbon/epoxy UD 23.0 50.8 0.0258
33.6 50.3 0.0289

Glass/epoxy 0�/90� 31.2 48.6 0.0122
Carbon/epoxy 0�/90� 31.3 43.6 0.0233
30 grey levels. The strain field was computed by direct differentia-
tion from the displacement data.

The cost function for the different materials is plotted in Fig. 15.
For each material, the best set of design variables is the one corre-
sponding to the lowest value of the cost function. Since the func-
tion has been evaluated discretely (L = 10:2:60, a = 0:5:90), the
minimum point was obtained using a polynomial interpolation in
the neighborhood of the discrete minimum (Vanderplaats, 1984).
The optimized design variables for the four materials are reported
in Table 2.

For the UD materials two local minima can be found where the
cost function is almost equal. In the 0�/90� configuration the func-
tion U should be theoretically symmetrical with respect to 45�, but
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a small deviation from this condition is observed because of the
random noise.

As a general consideration, although the material properties are
rather different, the optimized solutions do not differ too much. A
free gauge length L = 30–35 mm gives good results in all cases. This
fact is due to the better spatial resolution gained thanks to the lar-
ger number of measurement points available in this case. As rule of
thumb, it can be concluded that a good test will be such that the
gauge area follows the aspect ratio of the CCD camera.

As for the fibre orientation, the optimum value for the 0�/90�
configurations is a = 45�, while it is slightly higher (a = 50–60�)
for the UD configurations.

However, the anisotropy influences the quality of the identifica-
tion. Indeed, looking at the scale of the contour maps, it follows
that the best identification is obtained for the glass/epoxy compos-
ites that have a less pronounced anisotropy than the carbon/epoxy
composites. In particular the most anisotropic material, the carbon
UD, shows the worst identification in terms of cost function.

The different levels of anisotropy also influence the shape of the
cost function in the two unidirectional composites. The identifica-
tion of the carbon/epoxy UD becomes particularly difficult when
the fibre angle orientation goes over 60�. This problem is less evi-
dent in the glass/epoxy UD, especially when the free length is less
than 30 mm.

4.5. Effect of smoothing

The strain field is not directly obtained from the measurements
but is computed as a differentiation of the displacement field. A
point to point differentiation tends to magnify the effect of noise,
for this reason smoothing functions are commonly introduced to
derive the strain field from the displacement field. Using a simu-
lated experiment the level of noise can be controlled and the influ-
ence of the smoothing in the identification can be studied in detail.
As an example, Fig. 16 shows the component eY of the strain
tensor computed with different noise levels. The simulated speci-
men has a free length of 30 mm and a fibre orientation of 50�.
On the left the strain is obtained through direct differentiation,
on the right using a smoothing function, namely second order
polynomial diffuse approximation (PDA), with a span radius of
12 pixels (Avril et al., 2010; Avril et al., 2008b). Three levels of
noise were considered: 10 grey levels (0.2% of the dynamic range),
30 grey levels (0.7% of the dynamic range) and 150 grey levels
(3.7% of the dynamic range). The strain field computed with direct
differentiation appears blurred while the PDA supplies a fine strain
reconstruction.

The effect of smoothing on the parameter identification is less
straightforward. A test was conducted on the same specimen
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configuration, L = 30 mm and a = 50�, at different levels of noise.
For each noise level, the strain was computed using direct differen-
tiation, PDA with a span radius of 12 pixels and a global polynomial
fitting with a 7th degree polynomial function. The cost function
was evaluated from the reconstructed strain data and plotted as
function of the noise level, Fig. 17.

The graph shows that smoothing improves the identification
only beyond a certain value of noise. In the studied configuration,
this noise threshold is around 15 grey level for the PDA and 40 grey
levels for the polynomial fitting. After 60 grey levels the polyno-
mial fitting returns the best identification. This behaviour can be
seen as surprising, since looking at the strain maps of Fig. 16, even
with a noise standard deviation of 10 grey levels, the strain field
computed with smoothing looks qualitatively much better com-
pared to the one computed with direct differentiation.

An explanation can be given on the basis of the VFM theory, see
Eq. (8). To identify the parameters, the measured strain compo-
nents are multiplied by the virtual strain components, which can
be viewed as weighting functions, and integrated over the surface.
The integration gives a first filtering of the strain data. Further-
more, using smoothing, the perturbation error due to the noise de-
creases but the approximation error increases because the
smoothing acts as a low-pass filter. The balance between these
two reconstruction errors makes the smoothing convenient only
after a certain noise threshold. The polynomial fitting, that pro-
vides strong smoothing of the data, works well for high levels of
noise but the reconstruction error is larger for small noise level
(bias).

This aspect has been studied more deeply using PDA. In fact, the
smoothing capability of PDA can be changed by varying the span
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radius R of the averaging function. The larger R the smoother the
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A series of tests were performed keeping constant the noise level
and varying the span radius of PDA. The results are illustrated in
Fig. 18 in terms of cost function and reconstruction error. The
reconstruction error is defined as the quadratic distance between
the reconstructed strain field and the exact one (Avril et al.,
2008b):
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
erec

x � eex
x

� �2 þ 2 erec
s � eex

s

� �2 þ erec
y � eex

y

� �2
r* +

Xm

ð18Þ

where h�iXm
is the average of the data over region Xm, the whole

measurement area.
Looking at the cost function, the span radius influences the

identifications only when a large noise is introduced in the mea-
surements. The same trend is not observed in the reconstruction
error, in this case an increasing R gives a better result also for
low levels of noise. It can be concluded that the reconstruction er-
ror measured on the whole area is not a reliable output to evaluate
the quality of the identification. Actually, the reconstruction error
gives the average error over the whole surface of the specimen.
However, some parts of this surface, for instance where the strains
are low, do not influence the identification and should not be taken
into consideration. The proposed cost function seems to be a more
relevant tool to decide which type of smoothing is convenient to
use in a real measurement. Of course, all these considerations are
valid under the hypothesis of a standard Gaussian distribution of
noise but it can be expected that trends will be the same for other
noise distributions.
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Another issue is how the smoothing function influences the
choice of the design variables, or, in other words, if the optimized
specimen configuration obtained for a given material in Section 4.4
is still valid when a smoothing function is applied.

The same procedure used to determine the optimal design vari-
ables on glass/epoxy UD was repeated using an increased level of
noise (standard deviation: 150 grey levels) and PDA to compute
the strains, with a large span radius of 20 pixel. Only 10 repetitions
were used at each configuration because of the long time required
by the PDA algorithm. The results are presented in Fig. 19, the ref-
erence plot is the cost function evaluated for the same material in
Fig. 9. Qualitatively, the two cost functions look similar. In this case
a minimum was found for L = 29.8 mm and a = 57.5�, not too far
from the values obtained previously and listed in Table 2. Clearly,
looking at the contour scales in the two cases, the average identi-
fication error is higher when more noise is introduced. In order
to prove the effectiveness of the PDA in reconstructing the strain
field it can be highlighted that, although the standard deviation
of the noise was increased five times, from 30 to 150 grey levels,
the average error in the identification increases only by a factor
of around two.

On the basis of these results, it seems reasonable to conclude
that an optimized configuration found using a low level of noise
and no smoothing will be effective also when a high level of noise
is encountered. From a practical point of view, the possibility of
excluding the smoothing process in the optimization algorithm,
where the cost functions have to be evaluated many times, allows
to save a lot of computational time.
4.6. Influence of missing data

During a real test it is always difficult to measure the displace-
ment at the free edges of the specimen and some data are
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Fig. 20. Identification error as a function of the pixels which are removed from the
edges of the specimen.
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commonly lost. This is particularly true for digital image correla-
tion but also to a lesser extent for the grid method where one line
at least is lost (5 pixels) because of the WDFT algorithm used to ex-
tract the phase (Surrel, 1996). The VFM requires the measurement
of the displacement field up to the free edges of the specimen
therefore, when data are missing on the top or on the bottom, an
error is inevitably introduced in the identification. In order to as-
sess the magnitude of this error, a test was conducted using a spec-
imen with L = 30 mm and a = 50� for which rows of data from the
top and the bottom of the specimen have been removed.

As illustrated in Fig. 20, the identification is rather dependent
on missing data. For instance, if 25 pixels are removed at the two
edges of the measurement area the error in the identification is al-
most double. In this specimen configuration, 25 pixels correspond
to around 1 mm in metric units. This strong dependence is proba-
bly due to the bending load in the Iosipescu test which has maxi-
mum bending stress and strain at the edges of the specimen.

Fig. 21 shows the cost function for glass/epoxy UD when five
rows of points are removed from the top and the bottom of the
measurement area. In a similar way as to what was observed for
the smoothing, the missing data slightly influence the shape of
the cost function with respect to the design variables but princi-
pally increase the mean value of the error. The average error is al-
most double compared to the reference plot, for the same material
and the same amount of noise. Comparing the two contour plots, it
can also be noticed that the missing data influence more the iden-
tification when the fibre angle varies between 10� and 35�.

In this case we considered only missing data at the edges of the
specimen. In actual experiments imperfections of the grid transfer
onto the sample surface could produces missing data also inside
the measurement area. Although such effect has not been taken
into account in the present study, it could be simulated using the
same proposed procedure.
5. Conclusions

This paper has presented a procedure to simulate numerically a
real experiment, namely the unnotched Iosipescu test. The work is
based on the simulation of the experimental process by FEM and
the reconstruction of synthetic images simulating a CCD camera
recording. The grid method was used to evaluate the displacement
and the strain field was obtained by differentiation. The main
objective was to reproduce as accurately as possible all the features
that characterize a real test. A failure criterion was introduced to
determine the maximum applicable load, the effect of the spatial
resolution, the minimum grid size, the effect of noise and the influ-
ence of missing data were taken into account.

Simulated experiments represent a powerful tool to design an
optimal experimental set-up, since all the characteristics can be
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easily varied. In the present case they were used to optimize the
free length and the fibre angle of the specimen for four composite
materials. The VFM was used to identify the constitutive parame-
ters and a cost function was introduced to evaluate the error and
find the best set of design variables.

The obtained results appear reasonable and in line with the
experiments conducted on similar materials with the Iosipescu
test. This gives a first confirmation of the effectiveness of the
adopted procedure.

The main outcomes from the present study are as follows.

� It has been demonstrated that it is possible to numerically
simulate, in a realistic way, an experimental test which uses
full-field measurements to identify the material properties of
composites. Simulated experiments represent a useful tool to
improve the design of actual tests.
� The spatial resolution of the measurement technique plays an

important role in the parameter identification. In designing
experiments, it is advisable to use specimen shapes that
approach the aspect ratio of the CCD chip.
� A high anisotropy has a detrimental influence on the identifica-

tion in terms of global error, however it influences less the
shape of the cost function and the choice of the optimal design
variables. As a consequence, the same test configuration can be
efficiently used to test different types of composites.
� The necessity of introducing smoothing in the identification

depends on the amount of noise. For a given specimen configu-
ration, smoothing becomes necessary beyond a certain noise
threshold which can be evaluated with the proposed procedure.
� Using the unnotched Iosipescu test and the VFM, the data mea-

sured close to the edges of the specimen bear a great impor-
tance in the parameter identification. A measurement
technique that allows to reduce the missing data at the edges
will considerably improve the reliability of the identification.

In the future, the idea is to use the present procedure to design
automatically more complex specimen shapes, that, for example,
will be less sensitive to the missing data at the edges. Other full-
field techniques, for instance digital image correlation, can be
introduced in the procedure. Finally, to have a definitive check of
the effectiveness of the developed procedure, a thorough experi-
mental study is needed to validate the numerical optimization.
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