Discrete Mathematics 72 (1988) 361–366 North-Holland

P3-FACTORIZATION OF COMPLETE BIPARTITE GRAPHS

Kazuhiko USHIO

Department of Industrial Engineering, Faculty of Science and Technology, Kinki University, 577 Osaka, Japan

Received 25 July 1986 Revised 3 August 1987

In this paper, it is shown that a necessary and sufficient condition for the existence of a P_3 -factorization of $K_{m,n}$ is (i) $m + n \equiv 0 \pmod{3}$, (ii) $m \leq 2n$, (iii) $n \leq 2m$ and (iv) 3mn/2(m + n) is an integer.

1. Introduction

Let P_3 be a path on 3 points and $K_{m,n}$ be a complete bipartite graph with partite sets V_1 and V_2 , where $|V_1| = m$ and $|V_2| = n$. A spanning subgraph F of $K_{m,n}$ is called a P_3 -factor if each component of F is isomorphic to P_3 . If $K_{m,n}$ is expressed as a line-disjoint sum of P_3 -factors, then this sum is called a P_3 -factorization of $K_{m,n}$.

In this paper, a necessary and sufficient condition for the existence of a P_3 -factorization of $K_{m,n}$ will be given.

2. P_3 -factor of $K_{m,n}$

The following theorem is on the existence of P_3 -factors of $K_{m,n}$.

Theorem 1. $K_{m,n}$ has a P_3 -factor if and only if (i) $m + n \equiv 0 \pmod{3}$, (ii) $m \leq 2n$ and (iii) $n \leq 2m$.

Proof. Suppose that $K_{m,n}$ has a P_3 -factor F. Let t be the number of components of F. Then $t = \frac{1}{3}(m-n)$. Hence, Condition (i) is necessary. Among these t components, let x and y be the number of components whose endpoints are in V_2 and V_1 , respectively. Then, since F is a spanning subgraph of $K_{m,n}$, we have x + 2y = m and 2x + y = n. Hence $x = \frac{1}{3}(2n - m)$ and $y = \frac{1}{3}(2m - n)$. From $0 \le x \le m$ and $0 \le y \le n$, we must have $m \le 2n$ and $n \le 2m$. Conditions (ii) and (iii) are, therefore, necessary.

For those parameters *m* and *n* satisfying (i)-(iii), let $x = \frac{1}{3}(2n - m)$ and $y = \frac{1}{3}(2m - n)$. Then *x* and *y* are integers such that $0 \le x \le m$ and $0 \le y \le n$. Hence x + 2y = m and 2x + y = n. Using *x* points in V_1 and 2x points in V_2 , consider *x* P_3 's whose endpoints are in V_2 . Using the remaining 2y points in V_1 and the

remaining y points in V_2 , consider y P_3 's whose endpoints are in V_1 . Then these $x + y P_3$'s are line-disjoint and they form a P_3 -factor of $K_{m,n}$. \Box

Corollary 1. $K_{n,n}$ has a P_3 -factor if and only if $n \equiv 0 \pmod{3}$.

3. P_3 -factorization of $K_{m,n}$

Our main theorem is on the existence of P_3 -factorizations of $K_{m,n}$.

Theorem 2. $K_{m,n}$ has a P_3 -factorization if and only if (i) $m + n \equiv 0 \pmod{3}$, (ii) $m \leq 2n$, (iii) $n \leq 2m$ and (iv) 3mn/2(m+n) is an integer.

Proof. Suppose that $K_{m,n}$ is factorized into $r P_3$ -factors. By Theorem 1, Conditions (i)-(iii) are obviously necessary. Let t be the number of components of each P_3 -factors. Then $t = \frac{1}{3}(m+n)$ and $r = \frac{3mn}{2}(m+n)$. Hence, condition (iv) is necessary. The proof of sufficiency will be given in Subsection 3.2.

3.1. Extension theorem of P_3 -factorization of $K_{m,n}$

We prove the following extension theorem, which we use later in the paper.

Theorem 3. If $K_{m,n}$ has a P_3 -factorization, then $K_{sm,sn}$ has a P_3 -factorization for every positive integer s.

Proof. Let V_1 , V_2 be the independent sets of $K_{sm,sn}$ where $|V_1| = sm$ and $|V_2| = sn$. Divide V_1 and V_2 into s subsets of m and n points each, respectively. Construct a new graph G with a point set consisting of the subsets which were just constructed. In this graph, two points are adjacent if and only if the subsets come from disjoint independent sets of $K_{sm,sn}$. G is a complete bipartite graph $K_{s,s}$. Noting that the cardinality of each subset identified with a point set of G is m or n and that $K_{s,s}$ has a 1-factorization, we see that the desired result is obtained. 1-factorizations of $K_{s,s}$ are discussed in [1, 2]. \Box

3.2. The proof of the sufficiency of Theorem 2

There are three cases to consider.

Case (1) m = 2n: In this case, from Theorem 3, $K_{2n,n}$ has a P_3 -factorization since $K_{2,1}$ is just P_3 .

Case (2) n = 2m: Obviously, $K_{m,2m}$ has a P_3 -factorization.

Case (3) m < 2n and n < 2m: In this case, let $x = \frac{1}{3}(2n - m)$, $y = \frac{1}{3}(2m - n)$, $t = \frac{1}{3}(m + n)$ and $r = \frac{3mn}{2}(m + n)$. Then from Conditions (i)–(iv), x, y, t, r

are integers and 0 < x < m and 0 < y < n. We have x + 2y = m and 2x + y = n. Hence r = (x + y) + xy/2(x + y). Let z = xy/2(x + y), which is a positive integer. And let (x, 2y) = d, x = dp, 2y = dq, where (p, q) = 1. Then dp is even and z = dpq/2(2p + q). The following lemmas can be verified.

Lemma 1. $(p, q) = 1 \Rightarrow (pq, p + q) = 1$.

Lemma 2. $(p, q) = 1 \Rightarrow (pq, 2p + q) = 1$ (q: odd) or 2 (q: even).

Using these p, q, d the parameters m and n satisfying Conditions (i)-(iv) are expressed as follows:

Lemma 3. (p, q) = 1 and dpq/2(2p + q) is an integer

(I)
$$m = 2(p+q)(2p+q)s$$
, $n = (4p+q)(2p+q)s$ when q is odd,

- - (III) m = (p + 4q'')(p + 2q'')s, n = 2(p + q'')(p + 2q'')s when q = 4q'', where s is a positive integer.

We use the following notations for sequences.

Notation. Let A and B be two sequences of the same size such as

A: a_1, a_2, \ldots, a_u B: b_1, b_2, \ldots, b_u . If $b_i = a_i + c$ $(i = 1, 2, \ldots, u)$, then we write B = A + c. If $b_i = ((a_i + c) \mod w)$ $(i = 1, 2, \ldots, u)$, then we write $B = A + c \mod w$, where the residuals $a_i + c \mod w$ are integers in the set $\{1, 2, \ldots, w\}$.

For the parameters m and n in (I)-(III) when s = 1, we can construct a P_3 -factorization of $K_{m,n}$.

Lemma 4.
$$(p, q) = 1$$
 and q is odd
 $m = 2(p+q)(2p+q), n = (4p+q)(2p+q)$
 $\Rightarrow K_{m,n}$ has a P₃-factorization.

Proof. The proof is by construction (Algorithm I). Let $x = \frac{1}{3}(2n - m)$, $y = \frac{1}{3}(2m - n)$, $t = \frac{1}{3}(m + n)$, r = 3mn/2(m + n). Then we have x = 2p(2p + q), y = q(2p + q), $t = (2p + q)^2$, r = (p + q)(4p + q). Let $r_1 = p + q$, $r_2 = 4p + q$, $m_0 = m/r_1 = 2(2p + q)$, $n_0 = n/r_2 = 2p + q$. Consider two sequences R and C of the same size 4(2p + q).

R: 1, 1, 2, 2, ...,
$$2(2p+q)$$
, $2(2p+q)$
C: 1, 2, ..., $4(2p+q) - 1$, $4(2p+q)$.

Construct p sequences R_i such that $R_i = R + 2(i-1)(2p+q)$ (i = 1, 2, ..., p). Construct p sequences C_i such that $C_i = (C + 2(i-1) \mod 4(2p+q)) + 4(i-1)(2p+q)$ (i = 1, 2, ..., p). Consider two sequences R' and C' of the same size 2(2p+q).

$$R': 1, 2, \ldots, 2(2p+q) - 1, 2(2p+q)$$

$$C': 1, 3, \ldots, 2p+q, 2, 4, \ldots, 2p+q-1, 1, 3, \ldots, 2p+q, 2, 4, \ldots, 2p+q-1.$$

Construct q sequences R'_i such that $R'_i = R' + 2(i-1)(2p+q) + 2p(2p+q)$ (i = 1, 2, ..., q). Construct q sequences C'_i such that $C'_i = (C' + (i-1) + 2p \mod 2p+q) + (i-1)(2p+q) + 4p(2p+q)$ (i = 1, 2, ..., q). Consider two sequences I and J of the same size.

I: $R_1, R_2, \ldots, R_p, R'_1, R'_2, \ldots, R'_q$ *J*: $C_1, C_2, \ldots, C_n, C'_1, C'_2, \ldots, C'_q$.

Then the size of I or J is 2t. Let i_k and j_k be the kth element of I and J, respectively (k = 1, 2, ..., 2t). Join two points i_k in V_1 and j_k in V_2 with a line (i_k, j_k) (k = 1, 2, ..., 2t). Construct a graph F with two point sets $\{i_k\}$ and $\{j_k\}$ and a line set $\{(i_k, j_k)\}$. Then F is a P_3 -factor of $K_{m,n}$. This graph is called a P_3 -factor constructed with two sequences I and J.

Construct r_1 sequences I_i such that $I_i = I + (i-1)m_0 \mod m$ $(i = 1, 2, ..., r_1)$. Construct r_2 sequences J_j such that $J_j = J + (j-1)n_0 \mod n$ $(j = 1, 2, ..., r_2)$. Construct r_1r_2 P_3 -factors F_{ij} with I_i and J_j $(i = 1, 2, ..., r_1; j = 1, 2, ..., r_2)$. Then it is easy to show that F_{ij} are line-disjoint and that their sum is a P_3 -factorization of $K_{m,n}$. \Box

Lemma 5.
$$(p, q) = 1$$
 and $q = 2q' (q': odd)$
 $m = 2(p + 2q')(p + q'), n = 2(2p + q')(p + q')$
 $\Rightarrow K_{m,n}$ has a P₃-factorization.

Proof. The proof is by construction (Algorithm II). Let $x = \frac{1}{3}(2n - m)$, $y = \frac{1}{3}(2m - n)$, $t = \frac{1}{3}(m + n)$, r = 3mn/2(m + n). Then we have x = 2p(p + q'), y = 2q'(p + q'), $t = 2(p + q')^2$, r = (p + 2q')(2p + q'). Let $r_1 = p + 2q'$, $r_2 = 2p + q'$, $m_0 = m/r_1 = 2(p + q')$, $n_0 = n/r_2 = 2(p + q')$. Consider two sequences R and C of the same size 4(p + q').

R: 1, 1, 2, 2, ...,
$$2(p+q')$$
, $2(p+q')$
C: 1, 2, ..., $4(p+q') - 1$, $4(p+q')$.

Construct p sequences R_i such that $R_i = R + 2(i-1)(p+q')$ (i = 1, 2, ..., p). Construct p sequences C_i such that $C_i = (C + 2(i-1) \mod 4(p+q')) + 4(i-1)$ 1)(p + q') (i = 1, 2, ..., p). Consider two sequences R' and C' of the same size 4(p + q').

$$R': 1, 2, \dots, 4(p+q') - 1, 4(p+q')$$

$$C': 1, 3, \dots, 2(p+q') - 1, 1, 3, \dots, 2(p+q') - 1, 2, 4, \dots, 2(p+q'),$$

$$2, 4, \dots, 2(p+q').$$

Construct q' sequences R'_i such that $R'_i = R' + 4(i-1)(p+q') + 2p(p+q')$ (i = 1, 2, ..., q'). Construct q' sequences C'_i such that $C'_i = (C' + 2(i-1) + 2p \mod 2(p+q')) + 2(i-1)(p+q') + 4p(p+q')$ (i = 1, 2, ..., q'). Consider two sequences I and J of the same size 2t.

I: $R_1, R_2, \ldots, R_p, R'_1, R'_2, \ldots, R'_{q'}$ *J*: $C_1, C_2, \ldots, C_p, C'_1, C'_2, \ldots, C'_{q'}$.

Construct r_1 sequences I_i such that $I_j = I + (i-1)m_0 \mod m$ $(i = 1, 2, ..., r_1)$. Construct r_2 sequences J_j such that $J_j = J + (j-1)n_0 \mod n$ $(j = 1, 2, ..., r_2)$. Construct $r_1r_2 P_3$ -factors F_{ij} with I_i and J_j $(i = 1, 2, ..., r_1; j = 1, 2, ..., r_2)$. Then it is easy to show that F_{ij} are line-disjoint and that their sum is a P_3 -factorization of $K_{m,n}$. \Box

Lemma 6.
$$(p, q) = 1$$
 and $q = 4q''$
 $m = (p + 4q'')(p + 2q''), n = 2(p + q'')(p + 2q'')$
 $\Rightarrow K_{m,n}$ has a P₃-factorization.

Proof. The proof is by construction (Algorithm III). Let $x = \frac{1}{3}(2n - m)$, $y = \frac{1}{3}(2m - n)$, $t = \frac{1}{3}(m + n)$, $r = \frac{3mn}{2}(m + n)$. Then we have x = p(p + 2q''), y = 2q''(p + 2q''), $t = (p + 2q'')^2$, r = (p + 4q'')(p + q''). Let $r_1 = p + 4q''$, $r_2 = p + q''$, $m_0 = \frac{m}{r_1} = p + 2q''$, $n_0 = n/r_2 = 2(p + 2q'')$. Consider two sequences R and C of the same size 2(p + 2q'').

- R: 1, 1, 2, 2, ..., p + 2q'', p + 2q''
- C: 1, 2, ..., 2(p + 2q'') 1, 2(p + 2q'').

Construct p sequences R_i such that $R_i = R + (i-1)(p+2q'')$ (i = 1, 2, ..., p). Construct p sequences C_i such that $C_i = (C+2(i-1) \mod 2(p+2q'')) + 2(i-1)(p+2p'')$ (i = 1, 2, ..., p). Consider two sequences R' and C' of the same size 4(p+2q'').

$$R': 1, 2, \dots, 4(p + 2q'') - 1, 4(p + 2q'')$$

$$C': 1, 3, \dots, 2(p + 2q'') - 1, 2, 4, \dots, 2(p + 2q''), 3, 5, \dots, 2(p + 2q'') - 1, 1, 4, 6, \dots, 2(p + 2q''), 2.$$

Construct q'' sequences R'_i such that $R'_i = R' + 4(i-1)(p+2q'') + p(p+2q'')$ (i = 1, 2, ..., q''). Construct q'' sequences C'_i such that $C'_i = (C' + 4(i-1) + q'')$ $2p \mod 2(p+2q'') + 2(i-1)(p+2q'') + 2p(p+2q'')$ (i = 1, 2, ..., q''). Consider two sequences I and J of the same size 2t.

I: $R_1, R_2, \ldots, R_p, R'_1, R'_2, \ldots, R'_{q''}$ *J*: $C_1, C_2, \ldots, C_p, C'_1, C'_2, \ldots, C'_{q''}$

Construct r_1 sequences I_i such that $I_i = I + (i-1)m_0 \mod m$ $(i = 1, 2, ..., r_1)$. Construct r_2 sequences J_j such that $J_j = J + (j-1)n_0 \mod n$ $(j = 1, 2, ..., r_2)$. Construct r_1r_2 P_3 -factors F_{ij} with I_i and J_j $(i = 1, 2, ..., r_1; j = 1, 2, ..., r_2)$. Then it is easy to show that F_{ij} are line-disjoint and that their sum is a P_3 -factorization of $K_{m,n}$. \Box

Applying Theorem 3 with Lemmas 4 to 6, it can be seen that for the parameters m and n satisfying Conditions (i)-(iv), $K_{m,n}$ has a P_3 -factorization. This completes the proof of Theorem 2.

Corollary 2. $K_{n,n}$ has a P_3 -factorization if and only if $n \equiv 0 \pmod{12}$.

References

- [1] G. Chartrand and L. Lesniak, Graphs & digraphs, 2nd ed. (Wadsworth, California, 1986).
- [2] F. Harary, Graph theory (Addison-Wesley, Massachusetts, 1972).