P_{3}-FACTORIZATION OF COMPLETE BIPARTITE GRAPHS

Kazuhiko USHIIO
Department of Industrial Engineering, Faculty of Science and Technology, Kinki University, 577 Osaka, Japan

Received 25 July 1986
Revised 3 August 1987

> In this paper, it is shown that a necessary and sufficient condition for the existence of a P_{3}-factorization of $K_{m, n}$ is (i) $m+n \equiv 0(\bmod 3)$, (ii) $m \leqslant 2 n$, (iii) $n \leqslant 2 m$ and (iv) $3 m n / 2(m+$ $n)$ is an integer.

1. Introduction

Let P_{3} be a path on 3 points and $K_{m, n}$ be a complete bipartite graph with partite sets V_{1} and V_{2}, where $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=n$. A spanning subgraph F of $K_{m, n}$ is called a P_{3}-fuctor if each component of F is isomorphic to P_{3}. If $K_{m, n}$ is expressed as a line-disjoint sum of P_{3}-factors, then this sum is called a P_{3}-factorization of $K_{m, n}$.

In this paper, a necessary and sufficient condition for the existence of a P_{3}-factorization of $K_{m, n}$ will be given.

2. P_{3}-factor of $K_{m, n}$

The following theorem is on the existence of P_{3}-factors of $K_{m, n}$.
Theorem 1. $K_{m, n}$ has a P_{3}-factor if and only if (i) $m+n \equiv 0(\bmod 3)$, (ii) $m \leqslant 2 n$ and (iii) $n \leqslant 2 m$.

Proof. Suppose that $K_{m, n}$ has a P_{3}-factor F. Let t be the number of components of F. Then $t=\frac{1}{3}(m-n)$. Hence, Condition (i) is necessary. Among these t components, let x and y be the number of components whose endpoints are in V_{2} and V_{1}, respectively. Then, since F is a spanning subgraph of $K_{m, n}$, we have $x+2 y=m$ and $2 x+y=n$. Hence $x=\frac{1}{3}(2 n-m)$ and $y=\frac{1}{3}(2 m-n)$. From $0 \leqslant x \leqslant m$ and $0 \leqslant y \leqslant n$, we must have $m \leqslant 2 n$ and $n \leqslant 2 m$. Conditions (ii) and (iii) are, therefore, necessary.

For those parameters m and n satisfying (i)-(iii), let $x=\frac{1}{3}(2 n-m)$ and $y=\frac{1}{3}(2 m-n)$. Then x and y are integers such that $0 \leqslant x \leqslant m$ and $0 \leqslant y \leqslant n$. Hence $x+2 y=m$ and $2 x+y=n$. Using x points in V_{1} and $2 x$ points in V_{2}, consider $x P_{3}$'s whose endpoints are in V_{2}. Using the remaining $2 y$ points in V_{1} and the
remaining y points in V_{2}, consider $y P_{3}$'s whose endpoints are in V_{1}. Then these $x+y P_{3}$'s are line-disjoint and they form a P_{3}-factor of $K_{m, n}$.

Corollary 1. $K_{n, n}$ has a P_{3}-factor if and only if $n \equiv 0(\bmod 3)$.

3. $\boldsymbol{P}_{\mathbf{3}}$-factorization of $\boldsymbol{K}_{\boldsymbol{m}, \boldsymbol{n}}$

Our main theorem is on the existence of P_{3}-factorizations of $K_{m, n}$.
Theorem 2. $K_{m, n}$ has a P_{3}-factorization if and only if (i) $m+n \equiv 0(\bmod 3)$, (ii) $m \leqslant 2 n$, (iii) $n \leqslant 2 m$ and (iv) $3 m n / 2(m+n)$ is an integer.

Proof. Suppose that $K_{m, n}$ is factorized into $r P_{3}$-factors. By Theorem 1, Conditions (i)-(iii) are obviously necessary. Let t be the number of components of each P_{3}-factors. Then $t=\frac{1}{3}(m+n)$ and $r=3 m n / 2(m+n)$. Hence, condition (iv) is necessary. The proof of sufficiency will be given in Subsection 3.2.

3.1. Extension theorem of P_{3} factorization of $K_{m, n}$

We prove the following extension theorem, which we use later in the paper.
Theorem 3. If $K_{m, n}$ has a P_{3}-factorization, then $K_{s m, s n}$ has a P_{3}-factorization for every positive integer s.

Proof. Let V_{1}, V_{2} be the independent sets of $K_{s m, s n}$ where $\left|V_{1}\right|=s m$ and $\left|V_{2}\right|=s n$. Divide V_{1} and V_{2} into s subsets of m and n points each, respectively. Construct a new graph G with a point set consisting of the subsets which were just constructed. In this graph, two points are adjacent if and only if the subsets come from disjoint independent sets of $K_{s m, s n} . G$ is a complete bipartite graph $K_{s, s}$. Noting that the cardinality of each subset identified with a point set of G is m or n and that $K_{s, s}$ has a 1 -factorization, we see that the desired result is obtained. 1 -factorizations of $K_{s, s}$ are discussed in [1,2].

3.2. The proof of the sufficiency of Theorem 2

There are three cases to consider.
Case (1) $m=2 n$: In this case, from Theorem 3, $K_{2 n, n}$ has a P_{3}-factorization since $K_{2,1}$ is just P_{3}.

Case (2) $n=2 m$: Obviously, $K_{m, 2 m}$ has a P_{3}-factorization.
Case (3) $m<2 n$ and $n<2 m$: In this case, let $x=\frac{1}{3}(2 n-m), y=\frac{1}{3}(2 m-n)$, $t=\frac{1}{3}(m+n)$ and $r=3 m n / 2(m+n)$. Then from Conditions (i)-(iv), x, y, t, r
are integers and $0<x<m$ and $0<y<n$. We have $x+2 y=m$ and $2 x+y=n$. Hence $r=(x+y)+x y / 2(x+y)$. Let $z=x y / 2(x+y)$, which is a positive integer. And let $(x, 2 y)=d, x=d p, 2 y=d q$, where $(p, q)=1$. Then $d p$ is even and $z=d p q / 2(2 p+q)$. The following lemmas can be verified.

Lemma 1. $(p, q)=1 \Rightarrow(p q, p+q)=1$.
Lemma 2. $(p, q)=1 \Rightarrow(p q, 2 p+q)=1(q:$ odd $)$ or $2(q:$ even $)$.
Using these p, q, d the parameters m and n satisfying Conditions (i)-(iv) are expressed as follows:

Lemma 3. $(p, q)=1$ and $d p q / 2(2 p+q)$ is an integer
(I) $m=2(p+q)(2 p+q) s, n=(4 p+q)(2 p+q) s$ when q is odd,
$\Rightarrow \quad$ (II) $m=2\left(p+2 q^{\prime}\right)\left(p+q^{\prime}\right) s, n=2\left(2 p+q^{\prime}\right)\left(p+q^{\prime}\right) s$ when $q=2 q^{\prime}$ and
q^{\prime} is odd,
(III) $m=\left(p+4 q^{\prime \prime}\right)\left(p+2 q^{\prime \prime}\right) s, \quad n=2\left(p+q^{\prime \prime}\right)\left(p+2 q^{\prime \prime}\right) s$ when $q=4 q^{\prime \prime}$,
where s is a positive integer.
We use the following notations for sequences.
Notation. Let A and B be two sequences of the same size such as
A: $a_{1}, a_{2}, \ldots, a_{u}$
$B: b_{1}, b_{2}, \ldots, b_{u}$.
If $b_{i}=a_{i}+c(i=1,2, \ldots, u)$, then we write $B=A+c$. If $b_{i}=\left(\left(a_{i}+c\right) \bmod w\right)$ $(i=1,2, \ldots, u)$, then we write $B=A+c \bmod w$, where the residuals $a_{i}+c$ $\bmod w$ are integers in the set $\{1,2, \ldots, w\}$.

For the parameters m and n in (I)-(III) when $s=1$, we can construct a P_{3}-factorization of $K_{m, n}$.

Lemma 4. $(p, q)=1$ and q is odd

$$
m=2(p+q)(2 p+q), n=(4 p+q)(2 p+q)
$$

$\Rightarrow K_{m, n}$ has a P_{3}-factorization.
Proof. The proof is by construction (Algorithm I). Let $x=\frac{1}{3}(2 n-m), y=$ $\frac{1}{3}(2 m-n), t=\frac{1}{3}(m+n), r=3 m n / 2(m+n)$. Then we have $x=2 p(2 p+q), y=$ $q(2 p+q), t=(2 p+q)^{2}, r=(p+q)(4 p+q)$. Let $r_{1}=p+q, r_{2}=4 p+q, m_{0}=$ $m / r_{1}=2(2 p+q), n_{0}=n / r_{2}=2 p+q$. Consider two sequences R and C of the same size $4(2 p+q)$.
$R: 1,1,2,2, \ldots, 2(2 p+q), 2(2 p+q)$
$C: 1,2, \ldots, 4(2 p+q)-1,4(2 p+q)$.

Construct p sequences R_{i} such that $R_{i}=R+2(i-1)(2 p+q)(i=1,2, \ldots, p)$. Construct p sequences C_{i} such that $C_{i}=(C+2(i-1) \bmod 4(2 p+q))+4(i-$ 1) $(2 p+q)(i=1,2, \ldots, p)$. Consider two sequences R^{\prime} and C^{\prime} of the same size $2(2 p+q)$.

$$
\begin{aligned}
& R^{\prime}: 1,2, \ldots, 2(2 p+q)-1,2(2 p+q) \\
& C^{\prime}: 1,3, \ldots, 2 p+q, 2,4, \ldots, 2 p+q-1,1,3, \ldots, 2 p+q, 2,4, \ldots, 2 p+ \\
& q-1
\end{aligned}
$$

Construct q sequences R_{i}^{\prime} such that $R_{i}^{\prime}=R^{\prime}+2(i-1)(2 p+q)+2 p(2 p+q)$ $(i=1,2, \ldots, q)$. Construct q sequences C_{i}^{\prime} such that $C_{i}^{\prime}=\left(C^{\prime}+(i-1)+\right.$ $2 p \bmod 2 p+q)+(i-1)(2 p+q)+4 p(2 p+q)(i=1,2, \ldots, q)$. Consider two sequences I and J of the same size.

$$
\begin{aligned}
& I: R_{1}, R_{2}, \ldots, R_{p}, R_{1}^{\prime}, R_{2}^{\prime}, \ldots, R_{q}^{\prime} \\
& J: C_{1}, C_{2}, \ldots, C_{p}, C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{q}^{\prime}
\end{aligned}
$$

Then the size of I or J is $2 t$. Let i_{k} and j_{k} be the k th element of I and J, respectively $(k=1,2, \ldots, 2 t)$. Join two points i_{k} in V_{1} and j_{k} in V_{2} with a line $\left(i_{k}, j_{k}\right)(k=1,2, \ldots, 2 t)$. Construct a graph F with two point sets $\left\{i_{k}\right\}$ and $\left\{j_{k}\right\}$ and a line set $\left\{\left(i_{k}, j_{k}\right)\right\}$. Then F is a P_{3}-factor of $K_{m, n}$. This graph is called a P_{3}-factor constructed with two sequences I and J.
Construct r_{1} sequences I_{i} such that $I_{i}=I+(i-1) m_{0} \bmod m\left(i=1,2, \ldots, r_{1}\right)$.
Construct r_{2} scquences J_{j} such that $J_{j}=J+(j-1) n_{0} \bmod n\left(j=1,2, \ldots, r_{2}\right)$. Construct $r_{1} r_{2} P_{3}$-factors $F_{i j}$ with I_{i} and $J_{j}\left(i=1,2, \ldots, r_{1} ; j=1,2, \ldots, r_{2}\right)$. Then it is easy to show that $F_{i j}$ are line-disjoint and that their sum is a P_{3}-factorization of $K_{m, n}$.

Lemma 5. $(p, q)=1$ and $q=2 q^{\prime}\left(q^{\prime}:\right.$ odd $)$

$$
\begin{aligned}
& m=2\left(p+2 q^{\prime}\right)\left(p+q^{\prime}\right), n=2\left(2 p+q^{\prime}\right)\left(p+q^{\prime}\right) \\
\Rightarrow & K_{m, n} \text { has a } P_{3} \text {-factorization. }
\end{aligned}
$$

Proof. The proof is by construction (Algorithm II). Let $x=\frac{1}{3}(2 n-m), y=$ $\frac{1}{3}(2 m-n), t=\frac{1}{3}(m+n), r=3 m n / 2(m+n)$. Then we have $x=2 p\left(p+q^{\prime}\right), y=$ $2 q^{\prime}\left(p+q^{\prime}\right), t=2\left(p+q^{\prime}\right)^{2}, r=\left(p+2 q^{\prime}\right)\left(2 p+q^{\prime}\right)$. Let $r_{1}=p+2 q^{\prime}, r_{2}=2 p+q^{\prime}$, $m_{0}=m / r_{1}=2\left(p+q^{\prime}\right), n_{0}=n / r_{2}=2\left(p+q^{\prime}\right)$. Consider two sequences R and C of the same size $4\left(p+q^{\prime}\right)$.
$R: 1,1,2,2, \ldots, 2\left(p+q^{\prime}\right), 2\left(p+q^{\prime}\right)$
$C: 1,2, \ldots, 4\left(p+q^{\prime}\right)-1,4\left(p+q^{\prime}\right)$.
Construct p sequences R_{i} such that $R_{i}=R+2(i-1)\left(p+q^{\prime}\right)(i=1,2, \ldots, p)$. Construct p sequences C_{i} such that $C_{i}=\left(C+2(i-1) \bmod 4\left(p+q^{\prime}\right)\right)+4(i-$

1) $\left(p+q^{\prime}\right)(i=1,2, \ldots, p)$. Consider two sequences R^{\prime} and C^{\prime} of the same size $4\left(p+q^{\prime}\right)$.

$$
\begin{aligned}
& R^{\prime}: 1,2, \ldots, 4\left(p+q^{\prime}\right)-1,4\left(p+q^{\prime}\right) \\
& C^{\prime}: 1,3, \ldots, 2\left(p+q^{\prime}\right)-1,1,3, \ldots, 2\left(p+q^{\prime}\right)-1,2,4, \ldots, 2\left(p+q^{\prime}\right) \\
& \quad 2,4, \ldots, 2\left(p+q^{\prime}\right)
\end{aligned}
$$

Construct q^{\prime} sequences R_{i}^{\prime} such that $R_{i}^{\prime}=R^{\prime}+4(i-1)\left(p+q^{\prime}\right)+2 p\left(p+q^{\prime}\right)$ $\left(i=1,2, \ldots, q^{\prime}\right)$. Construct q^{\prime} sequences C_{i}^{\prime} such that $C_{i}^{\prime}=\left(C^{\prime}+2(i-1)+\right.$ $\left.2 p \bmod 2\left(p+q^{\prime}\right)\right)+2(i-1)\left(p+q^{\prime}\right)+4 p\left(p+q^{\prime}\right)\left(i=1,2, \ldots, q^{\prime}\right)$.
Consider two sequences I and J of the same size $2 t$.

$$
I: R_{1}, R_{2}, \ldots, R_{p}, R_{1}^{\prime}, R_{2}^{\prime}, \ldots, R_{q}^{\prime}
$$

$$
J: C_{1}, C_{2}, \ldots, C_{p}, C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{q^{\prime}}^{\prime}
$$

Construct r_{1} sequences I_{i} such that $I_{j}=I+(i-1) m_{0} \bmod m\left(i=1,2, \ldots, r_{1}\right)$. Construct r_{2} sequences J_{j} such that $J_{j}=J+(j-1) n_{0} \bmod n\left(j=1,2, \ldots, r_{2}\right)$. Construct $r_{1} r_{2} P_{3}$-factors $F_{i j}$ with I_{i} and $J_{j}\left(i=1,2, \ldots, r_{1} ; j=1,2, \ldots, r_{2}\right)$. Then it is easy to show that $F_{i j}$ are line-disjoint and that their sum is a P_{3}-factorization of $K_{m, n}$.

Lemma 6. $(p, q)=1$ and $q=4 q^{\prime \prime}$

$$
m=\left(p+4 q^{\prime \prime}\right)\left(p+2 q^{\prime \prime}\right), n=2\left(p+q^{\prime \prime}\right)\left(p+2 q^{\prime \prime}\right)
$$

$\Rightarrow K_{m, n}$ has a P_{3}-factorization.

Proof. The proof is by construction (Algorithm III). Let $x=\frac{1}{3}(2 n-m), y=$ $\frac{1}{3}(2 m-n), \quad t=\frac{1}{3}(m+n), \quad r=3 m n / 2(m+n)$. Then we have $x=p\left(p+2 q^{\prime \prime}\right)$, $y=2 q^{\prime \prime}\left(p+2 q^{\prime \prime}\right), t=\left(p+2 q^{\prime \prime}\right)^{2}, r=\left(p+\uparrow q^{\prime \prime}\right)\left(p+q^{\prime \prime}\right)$. Let $r_{1}=p+4 q^{\prime \prime}, r_{2}=p+$ $q^{\prime \prime}, m_{0}=m / r_{1}=p+2 q^{\prime \prime}, n_{0}=n / r_{2}=2\left(p+2 q^{\prime \prime}\right)$. Consider two sequences R and C of the same size $2\left(p+2 q^{\prime \prime}\right)$.
$R: 1,1,2,2, \ldots, p+2 q^{\prime \prime}, p+2 q^{\prime \prime}$
$C: 1,2, \ldots, 2\left(p+2 q^{\prime \prime}\right)-1,2\left(p+2 q^{\prime \prime}\right)$.
Construct p sequences R_{i} such that $R_{i}=R+(i-1)\left(p+2 q^{\prime \prime}\right)(i=1,2, \ldots, p)$. Construct p sequences C_{i} such that $C_{i}=\left(C+2(i-1) \bmod 2\left(p+2 q^{\prime \prime}\right)\right)+2(i-$ 1) $\left(p+2 p^{\prime \prime}\right)(i=1,2, \ldots, p)$. Consider two sequences R^{\prime} and C^{\prime} of the same size $4\left(p+2 q^{\prime \prime}\right)$.

$$
\begin{aligned}
& R^{\prime}: 1,2, \ldots, 4\left(p+2 q^{\prime \prime}\right)-1,4\left(p+2 q^{\prime \prime}\right) \\
& C^{\prime}: 1,3, \ldots, 2\left(p+2 q^{\prime \prime}\right)-1,2,4, \ldots, 2\left(p+2 q^{\prime \prime}\right), 3,5, \ldots, 2\left(p+2 q^{\prime \prime}\right)-1,1, \\
& \quad 4,6, \ldots, 2\left(p+2 q^{\prime \prime}\right), 2
\end{aligned}
$$

Construct $q^{\prime \prime}$ sequences R_{i}^{\prime} such that $R_{i}^{\prime}=R^{\prime}+4(i-1)\left(p+2 q^{\prime \prime}\right)+p\left(p+2 q^{\prime \prime}\right)$ $\left(i=1,2, \ldots, q^{\prime \prime}\right)$. Construct $q^{\prime \prime}$ sequences C_{i}^{\prime} such that $C_{i}^{\prime}=\left(C^{\prime}+4(i-1)+\right.$
$\left.2 p \bmod 2\left(p+2 q^{\prime \prime}\right)\right)+2(i-1)\left(p+2 q^{\prime \prime}\right)+2 p\left(p+2 q^{\prime \prime}\right)\left(i=1,2, \ldots, q^{\prime \prime}\right)$. Consider two sequences I and J of the same size $2 t$.
$I: R_{1}, R_{2}, \ldots, R_{p}, R_{1}^{\prime}, R_{2}^{\prime}, \ldots, R_{q^{\prime \prime}}^{\prime}$
$J: C_{1}, C_{2}, \ldots, C_{p}, C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{q^{\prime \prime}}^{\prime}$.
Construct r_{1} sequences I_{i} such that $I_{i}=I+(i-1) m_{0} \bmod m\left(i=1,2, \ldots, r_{1}\right)$.
Construct r_{2} sequences J_{j} such that $J_{j}=J+(j-1) n_{0} \bmod n\left(j=1,2, \ldots, r_{2}\right)$. Construct $r_{1} r_{2} P_{3}$-factors $F_{i j}$ with I_{i} and $J_{j}\left(i=1,2, \ldots, r_{1} ; j=1,2, \ldots, r_{2}\right)$. Then it is easy to show that $F_{i j}$ are line-disjoint and that their sum is a P_{3}-factorization of $K_{m, n}$.

Applying Theorem 3 with Lemmas 4 to 6 , it can be seen that for the parameters m and n satisfying Conditions (i)-(iv), $K_{m, n}$ has a P_{3}-factorization. This completes the proof of Theorem 2.

Corollary 2. $K_{n, n}$ has a P_{3}-factorization if and only if $n \equiv 0(\bmod 12)$.

References

[1] G. Chartrand and L. Lesniak, Graphs \& digraphs, 2nd ed. (Wadsworth, California, 1986).
[2] F. Harary, Graph theory (Addison-Wesley, Massachusetts, 1972).

