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Abstract The deep-sea brines of the Red Sea include some of the most extreme and unique envi-

ronments on Earth. They combine high salinities with increases in temperature, heavy metals,

hydrostatic pressure, and anoxic conditions, creating unique settings for thriving populations of

novel extremophiles. Despite a recent increase of studies focusing on these unusual biotopes, their

viral communities remain unexplored. The current survey explores four metagenomic datasets

obtained from different brine–seawater interface samples, focusing specifically on the diversity of

their viral communities. Data analysis confirmed that the particle-attached viral communities

present in the brine–seawater interfaces were diverse and generally dominated by Caudovirales,

yet appearing distinct from sample to sample. With a level of caution, we report the unexpected

finding of Phycodnaviridae, which infects algae and plants, and trace amounts of insect-infecting

Iridoviridae. Results from Kebrit Deep revealed stratification in the viral communities present in
nces and
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the interface: the upper-interface was enriched with viruses associated with typical marine bacteria,

while the lower-interface was enriched with haloviruses and halophages. These results provide first

insights into the unexplored viral communities present in deep-sea brines of the Red Sea, represent-

ing one of the first steps for ongoing and future sampling efforts and studies.
Introduction

The development and widespread use of molecular-based

methods in environmental microbiology revealed that
microbes dominate our planet. Ocean-dwelling bacteria are
estimated to outnumber stars in the universe by several orders
of magnitude (total numbers are 1029 and 1021, respectively)

[1], with even higher values for viruses. Viruses are the most
abundant biological entities on Earth (1030 for total number
of prokaryotic viruses or phages) [2], and harbor the second

greatest biomass, after prokaryotes [3,4]. Furthermore, they
are crucial ecological factors, which affect microbial diversity,
population dynamics, and the genomes of their hosts [5]. Their

impact extends from influencing microbial evolution, to
playing an indirect but significant role in the Earth’s
biogeochemical cycles [5–7].

Despite a historically stronger focus on medically-relevant
viruses, recent years novel technologies brought forth
increasing activities in the field of environmental virology,
with multiple studies centered in marine and aquatic envi-

ronments, as well as several extreme environments. Such
ongoing efforts have led to the discovery and description
of multiple new viruses and increased our understanding

of viral communities (e.g., [2,5,8–10]). Since viruses lack a
shared universal phylogenetic marker such as universal ribo-
somal DNA (rDNA), genetic diversity of environmental

viral communities is increasingly assessed through metage-
nomic sequencing, which provides more and more informa-
tion about viral diversity and evolution [11,12].
Nonetheless, metagenomic data have shown that we have

yet to discover the majority of viruses present in the envi-
ronment: over 70% of the genes in the oceanic viral fraction
cannot be associated with known viruses [7]. Furthermore,

studies on extreme environments, which include a few
metagenomic-based surveys (e.g., [13,14]), have uncovered
that hypersaline environments host the highest viral densities

reported for aquatic systems [15], yet still very little is
known about them.

The deep-sea brines of the Red Sea include some of the

most extreme and inaccessible environments on Earth,
combining high salinities with increase in temperature,
heavy metals, hydrostatic pressure, and anoxic conditions
[16]. The microbiology of these brines received considerable

attention in the last few years, with studies using an
array of culture-dependent [17–21] and molecular-based
approaches, including metagenomic studies [22–33].

Nonetheless, the viral communities of these extreme bio-
topes remain unexplored.

This study makes use of four metagenomic samples,

obtained from different brine–seawater interfaces from the
Red Sea, providing the first, though partial, insights into the
viral diversity and community structure present in these

environments.
Results and discussion

In this study, we used the DMAP’s comparison module,

associated taxonomic browsing, and filtering capabilities to
explore the viral subset of annotations of four metagenomic
samples (AT, DD, KU, and KL) obtained from the brine–
seawater interfaces of different deeps in the Red Sea. The

resulting taxonomic comparison of these samples showed
the relative proportions of bacteria, archaea, and viruses
(Table 1). While the number of genes associated with

viruses might seem relatively low, it should be noted that
our source data refers only to reads recovered from the
0.1-lm fraction (i.e., particle-attached or from infected

cells). The ensuing analysis is therefore restricted to
only part of the total viral diversity present in these
environments.

General viral diversity

Analysis of the metagenomic datasets confirmed that the
particle-attached viral communities present in the brine–sea-

water interfaces were diverse and, despite some similarities,
distinct from sample to sample (Figure 1). This is likely a
reflection of differences in microbial community profiles,

which are specific to each location, and imparted from changes
in physicochemical conditions [16,26,30–33].

As a general trend, we observed a clear dominance of

dsDNA viruses, which accounted for 45%–85% of the viruses
detected (Figure 1). Further scrutinization indicated that
dsDNA viruses are mostly Caudovirales (Figure 2). Caudovi-

rales can be further classified as Syphoviridae, Myoviridae,
and Podoviridae, while various proportions of them remained
unclassified (Figure S1). Caudovirales are tailed bacterio-
phages, which are known to dominate in marine and other

aquatic environments [9,34,35].
Other viral families were detected at much lower abun-

dances, including the unexpected Phycodnaviridae (4%–

6%), which infect algae and plants, and trace amounts
of insect-infecting Iridoviridae (<1%). These viral taxa
are likely derived from the particles originated away from

the brines, including host lysis products that act as virus
scavengers [5]. We hypothesize that these particles sink
through the water column, and are eventually trapped
and accumulated in the density gradient of the brine–sea-

water interface. Viruses (and DNA, in general) have been
previously reported as having longer-term stability, and
can be preserved in such deep-sea brines [36–38]. Similar

observations have been reported for other marine loca-
tions, particularly when transitioning from oxic to anoxic
conditions [9]. Detection of these unexpected viral taxa

would thus be the result of a ‘‘pickling” effect, rather than
reflecting the presence of specific hosts in close proximity
to the brines.



Table 1 Breakdown of genes based on taxonomic assignment

Category Atlantis II Deep Discovery Deep Kebrit Deep (lower) Kebrit Deep (upper)

Archaea 7102 13,715 58,033 41,752

Bacteria 32,286 84,872 137,482 236,709

Viruses 1210 6498 4781 6499

Total genes 40,598 105,085 200,296 284,960

Percentage of viruses (%) 2.98 6.18 2.39 2.28

KLKU

AT DD

Unclassified archaeal viruses 

ssDNA viruses 

Unclassified phages

Environmental samples

dsDNA viruses (no RNA stage)

Others

Figure 1 Relative abundances of members of different viral taxa

Samples were collected on 0.1-lm filters from the brine–seawater interfaces of the Red Sea at different locations. All taxonomical

categories mentioned in this study are based on the NCBI Taxonomy database. ‘‘Others” include Adenoviridae, Ascoviridae,

Baculoviridae, Bicaudaviridae, Fuselloviridae, Herpesvirales, Iridoviridae, Marseilleviridae, Poxviridae, Polydnaviridae, and Salter-

proviridae. AT, Atlantis II Deep; DD, Discovery Deep; KU, Kebrit Deep upper brine–seawater interface; KL, Kebrit Deep lower

brine–seawater interface; dsDNA, double-stranded DNA; ssDNA, single-stranded DNA.
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Samples from Atlantis II Deep had a more divergent

profile, with a large, but not dominant proportion of
dsDNA viruses (45%) associated with a slightly higher
number of unclassified phages (47%; Figure 1). The vast

majority of these phages were environmental halophages
(data viewable with the taxonomy browser option of
DMAP; www.cbrc.kaust.edu.sa/DMAP), which were related

to the ones described in a previous study [39]. Further-
more, a significant percentage of dsDNA viruses were also
unclassified (40%; Figure 2) and belonged mostly to halo-
viruses (data viewable with the taxonomy browser option

of DMAP; www.cbrc.kaust.edu.sa/DMAP). The unusual
combination of very high temperatures and salinities at
Atlantis II Deep, which creates one of the harshest envi-

ronments on Earth and provides a unique prokaryotic host
community, might be the main reason behind such high
numbers of unclassified viruses. Therefore, one expects that

the brine–seawater interface of Atlantis II Deep is a partic-
ularly interesting environment for future exploration, with
a high potential for discovery of novel viruses infecting

polyextremophiles.
Stratification in viral communities

An additional highlight of our analysis is the stratification of

the viral communities within the brine–seawater interface
observed for Kebrit Deep. Differences between upper, and
lower interface samples from Kebrit Deep were in accordance
with the relative position of these layers. Indeed, the upper

interface, which is in closer proximity with seawater, was
enriched with viruses associated with more typical marine bac-
teria (e.g., Pelagibacter and Synechococcus), whereas the lower

interface, which is closer to the brine, was enriched in halo-
viruses and halophages (Table 2). Furthermore, such stratifica-
tion of viral communities is in agreement with previous reports

obtained for microbial communities inhabiting brine–seawater
interfaces both in the Red Sea and the Mediterranean (e.g.,
[26,30,40]).

Although there is some agreement between our results and

such previous microbial studies, special care must be taken to
avoid inferring direct correlations between microbial and viral
communities, due to several well-known limitations and biases.

The main caveat of viral metagenomics is that most sequences

http://www.cbrc.kaust.edu.sa/DMAP
http://www.cbrc.kaust.edu.sa/DMAP


KL

AT

KU

Caudovirales

Unclassified dsDNA viruses

Unclassified dsDNA phages

Phycodnaviridae

Miniviridae

Tectiviridae

Others

DD

Figure 2 Relative abundances of double-stranded DNA (dsDNA) viruses

Samples were collected on 0.1-lm filters from the brine–seawater interfaces of the Red Sea at different locations. All taxonomical

categories mentioned in this study are based on the NCBI Taxonomy database. ‘‘Others” include retro-transcribing viruses, satellites,

ssRNA viruses, unassigned viruses, unclassified virophages, and unclassified viruses. AT, Atlantis II Deep; DD, Discovery Deep; KU,

Kebrit Deep upper brine–seawater interface; KL, Kebrit Deep lower brine–seawater interface; dsDNA, double-stranded DNA; ssDNA,

single-stranded DNA.
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are unique and thus have no matches in databases [13]. Indeed,
while much of the global microbial metagenome has now

been sampled, the same cannot be said for the global viral
metagenome [11].

Most of our knowledge on viruses still relies heavily on

in vitro cultured phage–host systems. Surveys of viral
diversity are therefore bottlenecked by the lack of environ-
mental isolates with ecological relevance, which frequently

evade standard cultivation techniques, resulting in the
dominance of culture-independent ‘‘unknowns” [41]. Most
viral research focuses on strains amenable to laboratorial
manipulation, rather than the most relevant or abundant

ones [8]. Accordingly, most phage genomes in GenBank
are isolated using bacteria from only 3 of the 45
known bacteria phyla (Actinobacteria, Firmicutes, and

Gammaproteobacteria), so many others that infect environ-
mental microbes are largely unstudied and unknown [41].
Furthermore, and despite generally being perceived as

host-specific predators, information on true host ranges
for many viruses is lacking and might be wider than antic-
ipated [5].
Overview and future work

Despite the aforementioned limitations, results from this study
provide important first insights into the unexplored viral com-

munities present in deep-sea brines of the Red Sea and thus
represent the first step for ongoing, and future sampling efforts
and studies. Future work should circumvent the constraints of

this study by including targeted sampling of the viral commu-
nity (i.e., <0.1 lm fraction) for metagenomic assessment, as
well as isolation/characterization, along with studies to deter-

mine viral–host dynamics.
Materials and methods

Metagenomic samples and DNA sequencing

Metagenomic reads from the four brine–seawater interface

libraries were obtained from a previous study (see [22] for fur-
ther details). Briefly, samples were collected on 0.1-lm filters
from the brine–seawater interfaces of Atlantis II Deep,
Discovery Deep, and Kebrit Deep, Red Sea. Atlantis II Deep

and Discovery Deep are both examples of ‘‘hot brines” (with
temperatures of 68 �C and 45 �C, respectively), while Kebrit
Deep is a colder brine (temperature of 23 �C), which is notori-

ous for its very high sulfur concentration (see [16] for detailed
information).

DNA extraction and sequencing were carried out at the

American University of Cairo using GS FLX Roche Titanium
library guide (see [22] for details).

Bioinformatics processing of metagenomic reads

Metagenomic data were processed with a focus on viral com-
munities using the Dragon Metagenomic Analysis Platform
(DMAP; www.cbrc.kaust.edu.sa/DMAP). Reads were assem-

bled using Newbler software with iterative reference (NCBI
RefSeq genomes) and de novo assembly procedure, and anno-
tation was carried out using the DMAP annotation module

(www.cbrc.kaust.edu.sa/DMAP). Briefly, the module predicts
and annotates RNA and protein-coding genes. During annota-
tion, BLAST best hit genes are considered for assigning

taxonomic or function information to predicted genes. For
taxonomic assignment to RNA genes, NCBI’s small sub-unit
(SSU) RNAs and other non-coding RNAs from the European
Bioinformatics Institute (EBI) Rfam database are used. For

http://www.cbrc.kaust.edu.sa/DMAP
http://www.cbrc.kaust.edu.sa/DMAP
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protein-coding genes, the UniProt Knowledgebase (www.
uniprot.org), KEGG (www.kegg.jp), eggNOG (http://eggnogdb.
embl.de), Conserved Domain Database (CDD, http://www.

ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml), and InterPro
(http://www.ebi.ac.uk/interpro) databases are used (see associ-
ated help provided at DMAP website; www.cbrc.kaust.edu.sa/

DMAP). From all the databases described above only
archaeal, bacterial, and viral sequences were considered. The
following parameters were considered when analyzing these

datasets. An E value of 1E�3 and BLAST coverage of 50%
was considered for BLAST-based analysis, while for other
methods, such as InterProscan for domain detection or Infer-
nal for Rfam’s ncRNA predictions, parameters optimized in

the source profiles were considered with trusted cutoffs. Anno-
tation results with taxonomic and functional assignments were
deposited to the DMAP data warehouse and DMAP compar-

ison module for systematic studies.
Total hit numbers for viral assignments at different taxo-

nomic levels and general statistics for the contigs/singletons

are provided as Tables S1 and S2, respectively. All data and
analysis tools are openly accessible through the DMAP web-
site at www.cbrc.kaust.edu.sa/DMAP.
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