Journal of Discrete Algorithms 8 (2010) 189-198

Contents lists available at ScienceDirect | & JOURNAL OF

Di: TE
ALGORITHMS.

Journal of Discrete Algorithms

www.elsevier.com/locate/jda

A faster algorithm for the single source shortest path problem
with few distinct positive lengths

James B. Orlin?, Kamesh Madduri®!, K. Subramani “*2, M. Williamson ¢

2 Sloan School of Management, MIT, Cambridge, MA, USA
b Computational Research Division, Lawrence Berkeley Laboratory, Berkeley, CA, USA
€ LDCSEE, West Virginia University, Morgantown, WV, USA

ARTICLE INFO ABSTRACT

Article history: In this paper, we propose an efficient method for implementing Dijkstra’s algorithm for
Received 2 November 2008 the Single Source Shortest Path Problem (SSSPP) in a graph whose edges have positive
Accepted 3 March 2009 length, and where there are few distinct edge lengths. The SSSPP is one of the most
Available online 20 March 2009 widely studied problems in theoretical computer science and operations research. On a
graph with n vertices, m edges and K distinct edge lengths, our algorithm runs in O (m)

's(fﬂigsﬁam problem time if nK < 2m, and O (mlog T;nl) time, otherwise. We tested our algorithm against some
Dijkstra’s algorithm of the fastest algorithms for SSSPP on graphs with arbitrary but positive lengths. Our
Linear time experiments on graphs with few edge lengths confirmed our theoretical results, as the
Red-blue graphs proposed algorithm consistently dominated the other SSSPP algorithms, which did not

exploit the special structure of having few distinct edge lengths.
© 2009 Published by Elsevier B.V.

1. Introduction

In this paper, we provide an algorithm for solving the Single Source Shortest Path Problem (SSSPP) on a graph whose
edges have positive length. The SSSPP is an extremely well-studied problem in both the operations research and the the-
oretical computer science communities because of its applicability in a wide range of domains. Ahuja et al. [2] describe a
number of applications of the SSSPP, as well as efficient algorithms for the same. This paper provides an efficient algorithm
for the SSSPP in the case where the number of distinct edge lengths is small. Our motivation for focusing on problems with
few distinct edge lengths comes from a problem that arises in social networks (see Section 3).

We consider a graph with n vertices, m edges, and K distinct edge lengths. We provide two algorithms: The first algo-
rithm is a simple implementation of Dijkstra’s algorithm that runs in time O(m + nK). The second algorithm modifies the
first algorithm by using binary heaps to speed up the FINDMIN() operation. Assuming that nK > 2m, its running time is
0(mlog).

For various ranges of the parameters n,m, and K, the running time of our algorithm is less than the running time of
Fredman and Tarjan’s Fibonacci Heap implementation [8], which runs in O (m + nlogn) time. In fact, it improves upon the
Atomic Heap implementation of Fredman and Willard [9], which runs in O(m + lggkl)g;n) time. (This latter paper relies on
a slightly different model of computation than is normally assumed in papers on algorithms.) In particular, our algorithm

* Corresponding author,
E-mail addresses: jorlin@mit.edu (J.B. Orlin), kmadduri@lbl.gov (K. Madduri), ksmani@csee.wvu.edu (K. Subramani), mwilli65@mix.wvu.edu
(M. Williamson).
1 This work was supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
2 This research has been supported in part by the Air Force Office of Scientific Research under grant FA9550-06-1-0050 and in part by the National
Science Foundation through Award CCF-0827397.

1570-8667/$ - see front matter © 2009 Published by Elsevier B.V.
doi:10.1016/j.jda.2009.03.001

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jda
mailto:jorlin@mit.edu
mailto:kmadduri@lbl.gov
mailto:ksmani@csee.wvu.edu
mailto:mwilli65@mix.wvu.edu
http://dx.doi.org/10.1016/j.jda.2009.03.001

190 J.B. Orlin et al. / Journal of Discrete Algorithms 8 (2010) 189-198

runs in O(m) time whenever nK = O (m). We also note that even if all edge lengths are distinct, the running time of our
algorithm is O (mlogm), which is the same time as the binary heap implementation of Dijkstra’s algorithm.
The main contributions of this paper are as follows.

(i) A new algorithm for the SSSPP problem that is parameterized by the number of distinct edge lengths.
(ii) An empirical analysis of our algorithm that demonstrates the superiority of our approach when the number of distinct
edge lengths is small.

The rest of this paper is organized as follows. Section 2 formally specifies the problem under consideration. Section 3
describes the motivation for our work. Related work in the literature is discussed in Section 4. Section 5 describes and ana-
lyzes the O (m + nK) implementation of Dijkstra’s algorithm. Section 6 describes the O (mlog %) implementation and also
provides a proof of its running time. In Section 7, we provide an empirical analysis, confirming the improved performance
of our algorithm on graphs with few distinct edge lengths. We offer brief conclusions in Section 8.

2. Statement of problem

We consider a directed graph G = (V, E), with a vertex set V with n vertices, and an edge set E with m edges. For each
vertex v € V, we let E(v) denote the set of edges directed out of v. Let L = {l,...,Ix} be the set of distinct nonnegative
edge lengths given in increasing order. We assume that L is provided as part of the input and stored as an array. Each edge
(i, j) € E has an edge length ¢;j e L.

Rather than store the edge length c;; explicitly, we assume that associated with each edge (i, j) is an index t;; such that
cij = ly;. We note that in practice, one can determine L and all of the indices in O (m + Klog K) expected time; we first use
perfect hashing to identify the K distinct edge lengths, and then sort the edge lengths.

There is a special vertex s € V called the source. We let §(v) denote the length of the shortest path in G from vertex s
to vertex v. If there is no path from s to v, then §(v) = oco. The goal of the SSSPP is to identify a shortest path from vertex
s to each other vertex that is reachable from vertex s.

3. Motivation

Our work was motivated by the “gossip” problem for social networks. Consider a social network, which is composed of
clusters of participants. We model the intra-cluster distance by the value 1 and the inter-cluster distances by a real number
I, where [> 1. The goal is then to determine the fastest manner in which gossip originating in a cluster can reach all the
participants in the social network. This is a special case of SSSPP in which K = 2.

Although the motivating example has K =2, we have extended our results to values of K that can grow with the input
size.

Given that the SSSPP problem arises in so many domains, researchers have called for a “toolbox” [5,10] of different
implementations that are efficient for different types of input. Possibly, the algorithm presented here would be appropriate
for such a toolbox.

4. Related work

The literature on the SSSPP problem is large; interested readers are referred to Ahuja et al. [1]. In what follows, we
briefly outline various paradigms in algorithmic advancement and provide a context for our work.

The first polynomial time algorithm for the SSSPP problem was devised by Dijkstra [7], the running time of the algorithm
depends upon the data structure used to implement the priority queue, which is part of the algorithm. Since then, advances
in algorithmic techniques have been along the following fronts:

(i) New design paradigms - Thorup provided a linear-time algorithm for the SSSPP when the graph edges are undirected
[14]. He exploited the connection between the Minimum Spanning Tree of an undirected graph and the Single Source
Shortest paths tree.

(ii) Data Structure improvements - Algorithms based on Dijkstra’s approach perform a series of EXTRACT-MIN() and

DECREASE-KEY() operations. Inasmuch as each vertex is extracted only once and each edge is processed at most once,
the running time of any such algorithm can be represented as: T (n, m) = n % EXTRACT-MIN() + m * DECREASE-KEY().
An optimized priority queue design balances the costs between the two operations; in the comparison based-model,
the most efficient priority queue for this pair of operations is the Fibonacci Heap. Dijkstra’s algorithm with Fibonacci
Heaps has a running time of O(m + nlogn). Other heaps proposed for this problem include the d-heap [3] and the
R-heap [6].

(iii) Parameterization — In this approach, the design focuses on a certain parameter (or parameters) that may be small
in magnitude for an interesting subset of problems. One such parameter is the largest edge length (say C); Ref. [2]
describes how Dijkstra’s approach can be made to run in O(m + n,/logC) time.

J.B. Orlin et al. / Journal of Discrete Algorithms 8 (2010) 189-198 191

(iv) Input restriction — Special-purpose algorithms have been designed for the case in which the edge lengths are drawn
from certain distributions. The analysis of such an algorithm exploits this distribution and provides an estimate of the
expected running time [12].

We believe that this is the first shortest path paper to express the running time in terms of the number of distinct
edge lengths. However, this parameter or a closely related parameter has been part of the analysis of algorithms for other
problems.

5. An O (m + nK) implementation of Dijkstra’s algorithm

In this section, we provide an O(m + nK) implementation of Dijkstra’s algorithm for solving the SSSPP. While running
Dijkstra’s algorithm, we maintain the following structures:

(i) the set S, which denotes the set of permanently labeled vertices, and
(ii) the set T =V — S, which denotes the set of temporarily labeled vertices.

The value d(j) is the distance label of vertex j. If j € S, then d(j) =§(j) is the length of the shortest path from vertex s to
vertex j in G. Finally, we let d* = max{d(j): j € S} be the distance label of the vertex most recently added to S.

When implemented naively, the bottleneck operation in Dijkstra’s algorithm is the FINDMIN() operation, which identifies
the minimum distance label of a vertex in T. Each FINDMIN() operation takes O (|T|) steps and thus the FINDMIN() operations
take O(n?) steps in all. All other updates take O(m) steps in total. In order to reduce the running time for the FINDMIN()
step, Dijkstra’s algorithm relies on one of many different implementations of a priority queue. Of these, the implementations
with the best asymptotic bounds are the Fibonacci Heap implementation [8] and the Atomic Heap implementation [9]. Here
we can dramatically speed up the FINDMIN() operations in the case that the number of distinct edge lengths is small.

Let L ={ly,...,lg} be the set of distinct edge lengths. For each t =1 to K, the algorithm will maintain a list E;(S) =
{(, j) € E: i€ S,cij=It}. These edges are sorted in the order that the tail of the edge is added to S. That is, if edge (i, j)
occurs prior to edge (i’, j') on E¢(S), then d(i) < d(i’). The algorithm also maintains CurrentEdge(t), which is the first edge
(i, j) of E¢(S) such that j € T. If no such edge exists in E;(S), then CurrentEdge(t) = @. If (i, j) = CurrentEdge(t), then we let
f () =d() +1, which is the length of the shortest path from vertex s to vertex i followed by edge (i, j). It is not necessarily
the case that f(t) =d(j) because there may be edges of other lengths directed into vertex j.

These additional data structures makes it possible to determine the vertex in T with minimum distance label by de-
termining argmin{f(t): 1 <t < K}. The time for this FINDMIN() operation is O(K) if implemented directly (and naively)
without any priority queue data structure. This leads to an improvement in the overall running time for Dijkstra’s algorithm
when K is small.

The subroutine UPDATE(t) moves the pointer CurrentEdge(t) so that it points to the first edge whose endpoint is in T
(or sets CurrentEdge(t) to @). If CurrentEdge(t) = (i, j), then UPDATE(t) also sets f(t) =d(i) + c;j. If CurrentEdge(t) =, then
UPDATE(t) sets f(t) = oo. The operator CurrentEdge(t).next moves the CurrentEdge pointer by one step in the linked list
representing E;(S) (Algorithm 5.1).

Theorem 5.1. Algorithm 5.2 determines the shortest path from vertex s to all other vertices in O (m + nK) time.

Function INITIALIZE()
1: S:={s}; T:=V —{s}.
2: d(s) :=0; pred(s) := 0.

3: for (each vertex v e T) do
4 d(v) = oo; pred(v) = .
5: end for

6: for (t=1to K) do

7 E:(S):=0.

8 CurrentEdge(t) := NIL.

9: end for

10: for each edge (s, j) do
11: Add (s, j) to the end of the list E¢(S), where I; =cs;.
12: if (CurrentEdge(t) = NIL) then

13: CurrentEdge(t) := (s, j)
14: end if
15: end for

16: for (t=1 to K) do
17: UPDATE(t)
18: end for

Algorithm 5.1. The initialization procedure.

192 J.B. Orlin et al. / Journal of Discrete Algorithms 8 (2010) 189-198

Function NEW-DIJKSTRA()

1: INITIALIZE()

2: while (T #) do

let r =argmin{f(t): 1<t<K}.
4 let (i, j) = CurrentEdge(r).

5: d(j) :=d(@) +1Iy; pred(j) :=i.

6: S=SU{jl T:=T—{j}
7:

8

for (each edge (j, k) € E(j)) do
: Add the edge (j, k) to the end of the list E¢(S), where It = cjj.
9: if (CurrentEdge(t) = NIL) then

10: CurrentEdge(t) := (j, k)
11: end if

12: end for

13: for (t=1 to K) do

14: UPDATE(t).

15: end for

16: end while

Algorithm 5.2. Dijkstra’s algorithm with few distinct edge lengths.

Function UPDATE(t)

1: Let (i, j) = CurrentEdge(t).

2: if (jeT)then

3 f(t):d(i)Jrc,-j.

4 return

5: end if

6: while ((j¢ T) and (CurrentEdge(t).next # NIL)) do
7 Let (i, j) = CurrentEdge(t).next.
8 CurrentEdge(t) = (i, j).

9: end while

10: if (j € T) then

11: f(t):d(i)+Cij.

12: else

13: Set CurrentEdge(t) to {.
14: f(t) =o0.

15: end if

Algorithm 5.3. The update procedure.

Proof. The algorithm is identical to Dijkstra’s algorithm except that it maintains some additional data structures to carry
out the FINDMIN() operation. Therefore, Algorithm 5.2 computes the shortest paths from vertex s correctly.

The initialization takes O (n) time. The potential bottleneck operations are the determining of r = argmin{f(t): 1<t <K}
and the time to perform UPDATE(t) over all iterations. All other steps have running times dominated by one of these two
steps. We first note that the time to compute (see Algorithm 5.3) r = argmin{f(t): 1 <t < K} is O(K) per iteration of the
while loop and O (nK) over all iterations.

We next consider the time needed to perform UPDATE(t) over all iterations. The procedure UPDATE(t) is called O (nk)
times, and its total running time is O(m + nK). To see this, first note that the running time as restricted to iterations
in which CurrentEdge(t) is not changed is O(nK). We now consider those iterations at which CurrentEdge(t) is changed.
Suppose (i, j) = CurrentEdge(t) at the beginning of an iteration, and suppose that i € S and j € S. Because the edges in
E¢(S) are scanned sequentially, the edge (i, j) is never scanned again after updating CurrentEdge(t). So, the running time
over all iterations in which CurrentEdge(t) is changed is O (m). We conclude that the total running time of Algorithm 5.2 is
O(m+nK). O

The original motivation for this paper was the case that K = 2, in which case the algorithm is particularly efficient. In
the next section, we show how to speed up the algorithm in the case that K is permitted to grow with the problem size.

6. A faster algorithm if K is permitted to grow with problem size

We now revise the algorithm to improve its running time in the case that K is not a constant. We let ¢ = % We
assume that g > 2; if not, Algorithm 5.2 runs in linear time. To simplify the exposition, we will assume that g is an integer
divisor of K, and we let h = % Since we are focused on asymptotic analysis, we can make this assumption without loss of
generality.

We will show that Algorithm 5.2 can be refined to run in time O(mloggq). In order to achieve this running time, we
need to speed up the bottlenecks in Algorithm 5.2 that depend on K. We need to compute r more efficiently, and we need
to call UrDATE(t) less frequently. We first address speeding up the computation of r.

In order to speed up the determination of r, we will store the values f() in a collection of h different binary heaps. The
first binary heap stores the values f(j) for j =1 to q, the second binary heap stores the values f(j) for j=q+ 1 to 2q,

J.B. Orlin et al. / Journal of Discrete Algorithms 8 (2010) 189-198 193

and so on. We denote the heaps as Hq, Ha, ..., Hy. Finding the element with minimum value in the binary heap H; takes
0 (1) steps. The time to insert an element into H; or delete an element from H; takes O(logq) steps. (For more details on
binary heaps see [3].)

We find the minimum f() value by first finding the element with minimum value in each of the h heaps and then
choosing the best of these h elements. Finding the minimum key in a heap takes O (1) steps; so the time for this imple-
mentation of the FINDMIN() operations is O(h) per iteration of the while loop, and O (hn) = O (m) overall. After finding
the minimum element in the h different heaps, we delete the element from its heap. This takes O (nlogq) steps over all
iterations.

We now address the time spent in UPDATE(). In order to minimize the time required by UPDATE(), we first relax the
requirement on CurrentEdge. If CurrentEdge(t) has both of its endpoints in S, we say that CurrentEdge(t) is invalid. We
permit CurrentEdge(t) to be invalid at some intermediate stages of the algorithm. We then modify the FINDMIN() again. If
the minimum element in heap H; is f(t) for some i, and if CurrentEdge(t) is invalid, the algorithm then performs UPDATE(),
followed by finding the new minimum element in H;. It iterates in this manner until the minimum element corresponds
to a valid edge. In this way, whenever the algorithm calls UpDATE(), it leads to a modification of CurrentEdge(). Moreover,
whenever the algorithm selects the minimum element among the g different heaps, the minimum element in each of the
heaps corresponds to a valid edge. Since every modification of CurrentEdge() leads to a change in one of the values in a
heap, and since there are at most m modifications of CurrentEdge(), the total running time for UPDATE() over all iterations
is O(mlogq).

We summarize the previous discussion with Theorem 6.1.

. B . . K . . . K .
Theorem 6.1. The binary heap implementation of Dijkstra’s algorithm with O (5) binary heaps of size 0(q) with q = ”ﬁ determines
the shortest path from vertex s to all other vertices in O (mlogq) time.

7. Empirical results
7.1. Experimental setup

We evaluate performance of our algorithms on several graph families. Some of the generators and graph instances are
part of the 9th DIMACS Shortest Path Implementation Challenge benchmark package [5]:

e Random graphs: We generate graphs according to the Erdos-Renyi random graph model, and ensure that the graph is
connected. The generator may produce parallel edges as well as self-loops. The ratio of the number of edges to the
number of vertices can be varied, and we experiment with both dense and sparse graphs. Random graphs have a low
diameter and a Gaussian degree distribution.

e Mesh graphs: This synthetic generator produces two-dimensional meshes with grid dimensions x and y. We generate
Long (x = %, y = 16) and Square grids (x =y = 4/n) in this study. The diameter of these graphs is significantly higher
than random graphs and all the vertices have a constant degree.

e Small-world graphs: We use the R-MAT graph model for real-world networks [4] to generate graphs with small-world
characteristics. These graphs have a low diameter and an unbalanced degree distribution.

The edge weights are chosen from a fixed set of distinct random integers, as our new algorithm is designed for networks
with small K.

We compare the execution time of our algorithm with the reference SSSPP solver used in the 9th DIMACS Shortest
Paths Challenge (an efficient implementation of Goldberg’s algorithm [11,13], which has expected-case linear running time,
and highly optimized for integer edge weights) and the baseline Breadth-First Search (BFS) on every graph family. The BFS
running time is a natural lower bound for SSSPP implementations. It is also reasonable to directly compare the execution
times of DIMACS reference solver code and our implementation: both use a similar adjacency array representation for the
graph, are written in C/C++, and compiled and run in identical experimental settings. Note that our implementation can
process graphs with real as well as integer weights, but is only efficient for networks with a few distinct edges. We use
only integer weights in this study for comparison with the DIMACS solver.

Our test platform for performance results is a 2.8 GHz 32-bit Intel Xeon machine with 4 GB memory, 512 KB cache
and running RedHat Enterprise Linux 4 (linux kernel 2.6.9). We compare the sequential performance of our implementation
with the DIMACS reference solver [5]. Both the codes are compiled with the Intel C compiler (icc) version 9.0, and the
optimization flag -03. We report the average execution time of five independent runs for each experiment.

7.2. Results and analysis

We conduct an extensive study to empirically evaluate the performance dependence on the graph topology, the problem
size, the value of K, and the edge weight distribution. We report the execution time of Breadth-First Search on all the
graph instances we studied in Tables 1 and 2. The figures plot the execution times of the shortest path implementations
normalized to the BFS time. Thus a ratio of 1.0 is the best we can achieve, and smaller values are desirable.

194 J.B. Orlin et al. / Journal of Discrete Algorithms 8 (2010) 189-198

Table 1

Breadth-First Search execution time (in milliseconds) for various graph families on the test sequential platform.

Problem instance BFS time (milliseconds)

ID Graph size Long mesh Square mesh Random

1 100K vertices, 400K edges 50 55 95

2 500K vertices, 2M edges 290 350 540

3 1M vertices, 4M edges 660 870 1180

4 5M vertices, 20M edges 4160 6400 8390

5 10M vertices, 40M edges 8590 13500 17980
Table 2

Breadth-First Search execution time (in milliseconds) for various graph families (the value of
K is varied in experiments) on the test sequential platform.

Problem instance BFS time (milliseconds)
1 Sparse random, 2M vertices, 8M edges, C = 10000 6430
2 Dense random, 100K vertices, 100M edges, C = 100 150
3 Long mesh, 2M vertices, 8M edges, C = 100 3260
4 Square mesh, 2M vertices, 8M edges, C = 100 4900
5 Small-world graph, 2M vertices, 8M edges, C = 10000 5440

Hl Reference SSSP algorithm
2.0 7 1 New K-color Dijkstra algorithm
0} o

o £ 1.8
E =
2]
5 &
‘g 5 1.6
Q s
2 ©
o N
Lo 14 -
w : =
3 E " i
w = -

1.2

1.0 - - -

1 2 3 4 5 1 2 3 4 5 1 2 3 4 b5
Long meshes Square meshes Sparse Random graphs
Graph family

Fig. 1. Performance of our shortest implementation and the reference solver for three graph families, as the problem size is varied. Graph 1 corresponds to
the smallest network in our study, and 5 is the largest.

We first study the dependence of execution time on the problem size. We vary the size up to two orders of magnitude for
three different graph families and compute the average SSSP execution time for the reference code and our implementation.
Fig. 1 plots these normalized values for the different graph families. The problem sizes are listed in Table 1. The value of K is
set to 2 in this case, and the ratio of the largest to the smallest edge weight in the graph (denoted by C) is set to 100. Also,

J.B. Orlin et al. / Journal of Discrete Algorithms 8 (2010) 189-198 195

Hl Reference SSSP algorithm
2.0 1 [New K-color Dijkstra algorithm

1.8 -

1.6 -

1.4 -

1.2 I

1.0 .|_I J_‘ ; . .
1 2 4 6 8

Value of K, the number of distinct edge lengths

SSSP execution time
normalized to BFS time

Fig. 2. Normalized SSSPP performance for a sparse random graph (4 million vertices, 16 million edges) as the value of K is varied.

Il Reference SSSP algorithm
2.0 1 [New K-color Dijkstra algorithm

1.8

1.6

1.4

SSSP execution time
normalized to BFS time

1-2 I
1.0 Irl_l |H
1 2

Value of K, the number of distinct edge lengths

4 6 8

Fig. 3. Normalized SSSPP performance for a small-world graph (4 million vertices, 16 million edges) as the value of K is varied.

note that the ratio m/n is 4 in all the cases. In Fig. 1, we observe that our new implementation outperforms the reference
solver for all graph families. Furthermore, the performance ratio is less than 2 in most cases, which is quite significant.
On closer inspection, we observe that the performance improvements for long and square mesh graphs are comparatively
higher than the random graphs. We attribute this to the fact that we do not maintain a priority queue data structure. Thus
we avoid the priority queue overhead involved in evaluating long paths in mesh networks, such as frequent updates to the

196 J.B. Orlin et al. / Journal of Discrete Algorithms 8 (2010) 189-198

Il Reference SSSP algorithm
2.0 1 [New K-color Dijkstra algorithm

1.8

1.6 -

1.4 -

1.2 I

1.0 .l_l Y .H .ﬂ .
1 2 4 6 8

Value of K, the number of distinct edge lengths

SSSP execution time
normalized to BFS time

Fig. 4. Normalized SSSPP performance for a long mesh (4 million vertices, 16 million edges) as the value of K is varied.

I Reference SSSP algorithm
2.0 A [New K-color Dijkstra algorithm
(0] =
o £ 1.8
Eis
= w
g (TR
2 m
= 1.6
o -—
$ o —
° X _
Oc 14 —
) :
0 e
1.2 H

T T T
4 6 8

L mm W
1 2

Value of K, the number of distinct edge lengths

Fig. 5. Normalized SSSPP performance for a square mesh (4 million vertices, 16 million edges) as the value of K is varied.

distance values. We also observe that the performance is better for larger graph instances compared to smaller ones. Also,

the performance ratios for sparse random networks (1.02-1.22) are very impressive for the problem instances we studied.
We next study the performance of the algorithm on each graph family as the value of K, the number of distinct edge

weights is varied. We vary the value of K from 1 to 8 in each case, and plot the execution time. Fig. 2 plots the normalized

J.B. Orlin et al. / Journal of Discrete Algorithms 8 (2010) 189-198 197

Bl Reference SSSP algorithm
4 [New K-color Dijkstra algorithm
GJ —
o E -
E = i —
= 0 25
c W —
Sm
5 0
O ko
%3
o N 207
0 @
w
2 £
n e
1.5 4
1.0 T T T T

1 2 4 6 8
Value of K, the number of distinct edge lengths

Fig. 6. Normalized SSSPP performance for a dense random graph (100K vertices, 10 million edges) as the value of K is varied.

execution time for a sparse random graph of 4 million vertices and 16 million edges. We observe that our implementation
is significantly faster than the reference solver (up to 70% faster for K = 8), and also scales slower than the reference solver
with increase in K. The SSSP running time for random graphs is comparatively lower than the execution time for other
graph families.

Fig. 3 plots the normalized execution time for synthetic small-world graphs. These are low diameter graphs similar to
sparse random networks, but also have topological properties that are observed in large-scale social and biological networks.
In this case, we observe that the reference solver and our algorithm perform very similarly.

For long meshes (Fig. 4), we observe significant performance gains over the reference solver. Also, the execution time of
our algorithm scales much slower than the reference solver as K is increased. For square meshes (Fig. 5) also, we find that
our implementation dominates for all values of K.

Fig. 6 plots the normalized execution time for a dense random graph of 100K vertices and 100 million edges as the value
of K is varied. We observe that the reference solver is faster than our algorithm in this case, but the speedup falls as the
value of K increases. We attribute this to the fast execution time of BFS (as this is a comparatively small graph instance).
The overhead in executing our algorithm is high in this case, and it does not perform as well as the reference solver for a
dense graph of this size.

The execution times of BFS for all these graph instances are listed in Table 2. The ratio of the highest to the least edge
weight in the graph (C) is also listed, as the worst case running time of the reference solver depends on this value. The
performance of our algorithm, however, is independent of C.

8. Conclusions

The SSSPP is a fundamental problem within computer science and operations research communities. In this paper, we
studied the SSSPP when the number K of distinct edge lengths is small. Our algorithm runs in linear time when the number
of distinct edge lengths is smaller than the density of the graph.

Acknowledgements

The third author was introduced to the gossip problem in social networks, also known as the Red-Blue Shortest Paths
Problem, at the Sandia National Laboratories by Bruce Hendrickson.

198 J.B. Orlin et al. / Journal of Discrete Algorithms 8 (2010) 189-198

References

[1] RK. Ahuja, T.L. Magnanti,].B. Orlin, Network Flows: Theory, Algorithms and Applications, Prentice-Hall, 1993.
[2] RK. Ahuja, K. Mehlhorn,]J.B. Orlin, R.E. Tarjan, Faster algorithms for the shortest path problem, J. ACM 37 (2) (April 1990) 213-223.
[3] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, MIT Press, 2001.
[4] D. Chakrabarti, Y. Zhan, C. Faloutsos, R-MAT: A recursive model for graph mining, in: Proc. 4th SIAM Intl. Conf. on Data Mining, Florida, USA, April
2004.
[5] C. Demetrescu, A.V. Goldberg, D. Johnson, 9th DIMACS implementation challenge - Shortest Paths, http://www.dis.uniromal.it/challenge9/, 2005.
[6] J.R. Driscoll, H.N. Gabow, R. Shrairman, R.E. Tarjan, Relaxed heaps: An alternative to Fibonacci heaps with applications to parallel computation, Commun.
ACM 31 (11) (1988) 1343-1354.
[7] E.W. Dijkstra, A note on two problems in connexion with graphs, Numer. Math. 1 (1959) 269-271.
[8] M.L. Fredman, R.E. Tarjan, Fibonacci heaps and their uses in improved network optimization algorithms, J. ACM 34 (3) (1987) 596-615.
[9] M.L. Fredman, D.E. Willard, Trans-dichotomous algorithms for minimum spanning trees and shortest paths, J. Comput. Syst. Sci. 48 (3) (1994) 533-551.
[10] A.V. Goldberg, Network optimization library, http://www.avglab.com/andrew/soft.html.
[11] A.V. Goldberg, A simple shortest path algorithm with linear average time, in: ESA, 2001, pp. 230-241.
[12] A.V. Goldberg, A simple shortest path algorithm with linear average time, in: 9th Ann. European Symp. on Algorithms (ESA 2001), Aachen, Germany,
in: Lecture Notes in Computer Science, vol. 2161, Springer, 2001, pp. 230-241.
[13] U. Meyer, Single-source shortest-paths on arbitrary directed graphs in linear average-case time, in: Proceedings of the Twelfth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA-01), New York, January 7-9, 2001, ACM Press, 2001, pp. 797-806.
[14] M. Thorup, Undirected single source shortest path in linear time, in: Proceedings of the 38th Annual Symposium on Foundations of Computer Science
(FOCS-97), Los Alamitos, October 20-22, 1997, IEEE Computer Society Press, 1997, pp. 12-21.

http://www.dis.uniroma1.it/challenge9/
http://www.avglab.com/andrew/soft.html

	A faster algorithm for the single source shortest path problem with few distinct positive lengths
	Introduction
	Statement of problem
	Motivation
	Related work
	An O(m + nK) implementation of Dijkstra's algorithm
	A faster algorithm if K is permitted to grow with problem size
	Empirical results
	Experimental setup
	Results and analysis

	Conclusions
	Acknowledgements
	References

