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SUMMARY

Satellite cells are adult skeletal muscle stem
cells that are quiescent and constitute a poorly
defined heterogeneous population. Using transgenic
Tg:Pax7-nGFP mice, we show that Pax7-nGFPHi

cells are less primed for commitment and have a
lower metabolic status and delayed first mitosis
compared to Pax7-nGFPLo cells. Pax7-nGFPHi can
give rise to Pax7-nGFPLo cells after serial transplan-
tations. Proliferating Pax7-nGFPHi cells exhibit
lower metabolic activity, and the majority performs
asymmetric DNA segregation during cell division,
wherein daughter cells retaining template DNA
strands express stem cell markers. Using chromo-
some orientation-fluorescence in situ hybridization,
we demonstrate that all chromatids segregate asym-
metrically, whereas Pax7-nGFPLo cells perform
random DNA segregation. Therefore, quiescent
Pax7-nGFPHi cells represent a reversible dormant
stem cell state, and during muscle regeneration,
Pax7-nGFPHi cells generate distinct daughter cell
fates by asymmetrically segregating template DNA
strands to the stem cell. These findings provide
major insights into the biology of stem cells that
segregate DNA asymmetrically.
INTRODUCTION

Subcellular constituents including misfolded proteins, centro-

somes, and transcripts can segregate asymmetrically during

cell division and also influence the fate of daughter cells (Macara

and Mili, 2008; Neumüller and Knoblich, 2009; Tajbakhsh and

Gonzalez, 2009). Arguably the most perplexing is the asym-

metric segregation of DNA. In the bacteria Escherichia coli,

leading and lagging DNA strands of a replication fork were re-
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ported to segregate to different subcellular locations (White

et al., 2008); similarly, replication origins move toward opposite

ends of the cell in Caulobacter crescentus (Bowman et al.,

2008). In metazoans, studies involving a pulse with thymidine

nucleotide analogs, followed by a chase, identified label-retain-

ing cells (LRCs) in culture or in stem cells in vivo suggesting

the occurrence of template DNA strand segregation (TDSS;

see Rando, 2007; Tajbakhsh and Gonzalez, 2009). Some of

these observations led to the ‘‘immortal DNA strands’’ hypoth-

esis that postulated that stem cells retain old DNA strands of

all chromosomes in the longer-lasting daughter stem cell,

thereby avoiding a mutation load potentially arising from DNA

replication. This model presumes that stem cells perform

consecutive asymmetric divisions invariantly, with little to no

intervening symmetric cell divisions, that sister chromatid

exchange does not occur, and that excision and repair modes

of DNA repair are minimal in stem cells (Cairns, 2006; Lansdorp,

2007; Rando, 2007; Tajbakhsh, 2008). However, most of these

issues remain largely untested. In addition, reports in support

or against biased DNA segregation for the same tissue (Escobar

et al., 2011; Falconer et al., 2010; Potten et al., 2002; Quyn et al.,

2010; Schepers et al., 2011) have generated considerable

debate (Lansdorp, 2007; Tajbakhsh, 2008). Currently, it is diffi-

cult to determine when biased DNA segregation occurs and

how this is related to the fate of stem cells, due largely to the

lack of information on the biology of these stem cells and the

inability to isolate them prospectively.

The regulation of gene expression might be one consequence

of TDSS, whereby individual alleles, or chromatids, would be

maintained either as silent or permissive for gene expression;

however, these notions also remain unproven (Klar, 1994; Lans-

dorp, 2007). Recent studies reported that not all chromatids

participate in biased DNA segregation, in differentiating ES cells

(Armakolas and Klar, 2006), and cells in the intestinal crypt

(Falconer et al., 2010), suggesting that investigation of the occur-

rence of nonrandom DNA segregation requires analysis of single

chromatids.

Satellite cells ensure muscle growth and repair during post-

natal development, and after muscle damage they effect tissue
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repair (Tajbakhsh, 2009; Zammit et al., 2006). After skeletal

muscle injury, these quiescent stem cells in the adult enter the

cell cycle and generate myoblasts that will fuse to form myofib-

ers. Eventually, satellite cells replenish the niche as regeneration

is achieved. Muscle stem cell self-renewal has been demon-

strated up to several rounds after muscle injury and by the trans-

plantation of satellite cells associated with myofibers (Collins

et al., 2005; Hall et al., 2010; Kitamoto and Hanaoka, 2010; Mon-

tarras et al., 2005; Sacco et al., 2008), but unlike the blood and

skin, serial transplantations have not been reported for purified

satellite cells; therefore, their long-term self-renewal capacity

has not been evaluated.

Compelling evidence points to heterogeneity among quies-

cent muscle stem cells, regarding their gene expression signa-

ture and their functional properties (Biressi et al., 2007; Kuang

et al., 2007; Kuang and Rudnicki, 2008; Shinin et al., 2006;

Tajbakhsh, 2009). Satellite cells express the paired/homeodo-

main gene Pax7, which plays a critical role in satellite cell main-

tenance during perinatal life, but it is dispensable in the adult

(Kuang et al., 2006; Lepper et al., 2009; Oustanina et al.,

2004; Relaix et al., 2006; Seale et al., 2000). The myogenic regu-

latory genes Myf5 and Myod play key roles in determining

muscle cell fate; Myf5 protein is expressed in most quiescent

satellite cells (Gayraud-Morel et al., 2012), whereas Myod

protein is a hallmark of the activated cell state once satellite cells

re-enter the cell cycle. A third myogenic regulatory factor Myo-

genin is expressed in cells undergoing differentiation (Taj-

bakhsh, 2009; Zammit et al., 2006). We showed previously

that a subpopulation of satellite cells performs TDSS using the

thymidine analog 5-bromo-20-deoxyuridine (BrdU), whereby

cells retaining template DNA strands expressed the upstream

marker Pax7 (Shinin et al., 2006). Another study reported

TDSS in satellite cells using the analogs CldU and IdU (Conboy

et al., 2007). It is not clear, however, if all or only a subset of

satellite cells has the potential to perform TDSS, how many

chromosomes are involved in this process, and what are the

properties of these cells.

We used a transgenic Tg:Pax7-nGFP mouse that marks all

satellite cells to identify a reversible dormant cell state in the

Pax7Hi quiescent subpopulation and show by serial transplanta-

tions that these cells self-renew and give rise to myogenic cells

that are more primed for commitment. Furthermore, the majority

of cycling Pax7Hi cells reproducibly performs biased DNA segre-

gation, and analysis by chromosome orientation-fluorescence

in situ hybridization (CO-FISH) demonstrates that this process

involves essentially all chromatids.

RESULTS

Label Retention and Relative Pax7 Expression Identify
a Subpopulation of Dormant Adult Muscle Stem Cells
Pulse-chase experiments using thymidine analogs have been

used to identify stem cells and their niche based on the assump-

tion that they divide more slowly than their committed daughter

cells (Fuchs et al., 2004; Li and Clevers, 2010). We showed previ-

ously, by pulse-chase labeling, that LRCs are present in the skel-

etal muscle niche after 10 weeks of chase and that TDSS occurs

in a subpopulation of satellite cells (Shinin et al., 2006). We used
a similar strategy under two different paradigms (growth and

injury) to investigate further this property using Tg: Pax7-nGFP

mice that identify all satellite cells in adult mice (Figures 1A–

1C; Sambasivan et al., 2009) and, thus, allow their prospective

isolation by fluorescence-activated cell sorting (FACS, Fig-

ure 1D). For postnatal day (P) growth, Tg: Pax7-nGFP mice

were injected intraperitoneally with BrdU for 5 days (P3–P7)

when the majority of myogenic cells are proliferating (Figure 1E).

After the last injection (T0; P7), the majority of the cells (>95%)

were saturated with BrdU, and by 11.5 weeks, 6.3% ± 1.4% of

the cells continued to retain robust label (Figures 1F–1J).

We reasoned that muscle stem cell heterogeneity might be

correlated with the expression level of the upstream marker

Pax7. Two subpopulations were isolated by FACS at opposite

ends of the spectrum of green fluorescent protein (GFP) expres-

sion levels. These were designated as Pax7-nGFPHi and Pax7-

nGFPLo, and they each corresponded to �10% of the total

population (Figure 1D). Interestingly, about 2-fold more LRCs

were observed in the Pax7-nGFPHi subpopulation compared

to Pax7-nGFPLo fraction at all time points examined (Figure 1F

histograms; 11.5 weeks chase 10.41% LRC in Pax7-nGFPHi,

5.1% in Pax7-nGFPLo). To examine the commitment status of

these subpopulations, quiescent muscle stem cells were isolated

byFACS, andmRNAwasextracted for comparative geneexpres-

sion. Notably, RT-qPCR showed higher levels of Pax7 transcripts

in Pax7-nGFPHi cells, indicating that GFP expression reflects

endogenous Pax7 expression quantitatively (Figure 1K). This

was confirmed by western blot wherein Pax7-nGFPHi cells ex-

pressed more Pax7 protein (Figure 1L). CXCR4 andCD34, which

were reported to be markers of stemness (Beauchamp et al.,

2000; Sherwood et al., 2004), were also upregulated in Pax7-

nGFPHi cells (Figures 1K and 1M), whereas the expression of

Sca1 and Desmin, which are associated with myogenic commit-

ment (Kuang and Rudnicki, 2008), were reduced (Figure 1K).

Consistentwith their commitmentstatus, significantly lower levels

of transcriptswereobserved for thedifferentiationgeneMyogenin

in Pax7-nGFPHi compared to Pax7-nGFPLo cells (Figure 1K).

The behavior of satellite cells was then investigated by live

video microscopy immediately after their isolation and culture.

Pax7-nGFPHi entered the cell cycle and took a longer time to

divide compared to Pax7-nGFPLo cells for the first division

(mean time: 33 versus 25.5 hr, respectively, n = 200 cells for

each; Figure 2A; seeMovies S1 andS2 available online). Notably,

however, no differences in cell-cycle time were observed for

subsequent divisions (every 10 hr, n = 200 cells; Movie S3). The

delay in cell-cycle entry was confirmed in vivo using pulsed injec-

tions of the nucleotide analog EdUaftermuscle injury (Figure 2B).

Because Pax7-nGFPHi quiescent stem cells have a higher

percentage of LRCs, and they take longer to perform the first

cell division after activation, we reasoned that this subpopulation

was in a more dormant state (i.e., lower metabolism). Interest-

ingly, higher levels of active mitochondria, as measured by

MitoTracker fluorescence intensity (Figure 2C), and higher levels

of ATP (Figure 2D) were observed in the Pax7-nGFPLo cells.

Metabolic demands correlate with oxidative capacity and mito-

chondrial DNA (Moyes and Battersby, 1998). Accordingly, RT-

qPCR of mitochondrial transcription factor A (Tfam; Garstka

et al., 2003) and mitochondrial-specific polymerase g (catalytic
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Figure 1. Level of Pax7-nGFP Expression Reflects Muscle Stem Cell Heterogeneity

(A–C) Transverse section of Tibialis anterior (TA) muscle of Tg:Pax7-nGFP mouse; arrows indicate satellite cell with coexpression of nGFP and Pax7 (n = 795

nuclei; TA of n = 4 animals).

(D) FACS profile of wild-type (left panel) and Pax7-nGFPmouse (right panel). Gating for Pax7-nGFPHi and Pax7-nGFPLo is indicated within total nGFP population.

GFP, GFP (488 channel); PE, Phycoerythrin (594 channel). Color on profile indicates cell density: blue, low cell density; red, high cell density.

(E) Scheme of BrdU injections during perinatal growth.
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PolG, and accessory PolG2) was upregulated in Pax7-nGFPLo

cells (Figure 2E), indicating a higher energetic demand.

Although both quiescent subpopulations were negative for

Myod protein, which marks activated satellite cells, shortly after

their isolation, Myod protein was detected in virtually all of the

Pax7-nGFPLo cells after an overnight in culture, whereas only

39% of Pax7-nGFPHi cells were Myod positive (Figures 2F–2L).

In agreement with these observations, 35.2% of Pax7-nGFPHi

and 98.18% of Pax7-nGFPLo activated satellite cells were posi-

tive for Myod protein 18 hr postinjury of muscle in vivo (prior to

the first mitosis, Figure 2L). At 48 hr postinjury, or after 2 days

in culture, virtually all of the cells were positive for Myod (Fig-

ure 2L). Analysis by live video microscopy did not show cell

death in these subpopulations. In keeping with these findings,

clonal analysis of the two subpopulations (�90 clones each,

n = 3 mice; data not shown) showed that Myogenin (5.02% ±

0.90% Pax7-nGFPHi, 72.26% ± 3.06% Pax7-nGFPLo, day 3 in

culture; n = 3 mice) and myotube formation was delayed in

Pax7-nGFPHi cells. After 2 weeks in culture, both populations

generated similar numbers of progeny cells (�1,209 ± 162

cells/clone, n = 3 mice; data not shown). Taken together, these

findings indicate that Pax7-nGFPHi cells represent a distinguish-

able phenotypic cell state, one that is more dormant and less

primed for myogenic commitment than Pax7-nGFPLo cells.

Self-Renewal and Differentiation Potential of Serially
Transplanted Subpopulations of Satellite Cells
To assess the functional properties of satellite cells, we per-

formed serial passages and FACS analysis of each subpopula-

tion in vitro and in vivo. Interestingly, in all cases in culture,

only Pax7-nGFPHi cells replenished the total GFP+ pool (total

three passages), whereas Pax7-nGFPLo failed to replenish the

GFP+ myogenic population (Figures 3A and 3Ba–3Bi; n = 3

mice). We then examined the differentiation and self-renewal

potential of these subpopulations in transplantation and regener-

ation assays. Two transgenic mice were used for quantifications:

Tg:CAG-hPLAP carrying the human placental alkaline phospha-

tase gene that is expressed ubiquitously (DePrimo et al., 1996),

and Tg:MLC3F-nlacZ-2E that marks differentiated myonuclei

(Kelly et al., 1995). Pax7-nGFPHi/T (‘‘T’’ is the abbreviation for

triple transgenic) and Pax7-nGFPLo/T were isolated by FACS,

and 10,000 GFP+ cells were transplanted in cryodamaged TA

muscle of immunocompromised Rag2�/�:gC�/� mice. Four

weeks later, analysis by immunofluorescence showed a large

area of newly generated PLAP+ myofibers and self-renewed

satellite cells surrounded by a Laminin+ basement membrane,

with both subpopulations (Figures 3Ca–3Cd, 3E, and 3F). The

renewed satellite cells were quiescent as assessed by lack of

expression of the cell-cycle marker Ki67 (Figures 3Da–3Dd).

To assess the long-term regenerative capacity of the muscle

stem cell subpopulations in vivo, an initial transplantation was
(F) Quantification by immunofluorescence of LRCs. n = 300-400 cells; n = 3–8 m

(G–J) Representative images of LRCs from total population at different time points

(K) RT-qPCR analysis of relative gene expression in Pax7-nGFPHi and Pax7-nGF

(L) Western blot showing the level of Pax7 protein in Pax7-nGFPHi and Pax7-nG

(M) Flow cytometry showing that CD34 is upregulated in the Pax7-nGFPHi subpo

Error bars represent ± SD. Scale bars, 10 mm (A–C) and 20 mm (G–J).
performed with 10000 Pax7-nGFPHi and Pax7-nGFPLo quies-

cent satellite cells isolated by FACS (Figure 3G). Three weeks

later, several thousand GFP+ satellite cells were collected,

pooled for each subpopulation, and used to transplant into

the preinjured Tibialis anterior muscle of secondary recipient

mice. Subsequent serial transplantations were performed in

a similar manner (seven rounds maximum; Figure 3G). To deter-

mine if all transplanted cells were participating actively and

entered the cell cycle, 24 hr posttransplantation, BrdU was

injected for 4 days, and the mice were sacrificed for analysis.

All GFP+ satellite cells were BrdU+ (data not shown). A drop in

cell numbers was often observed between transplanted and

harvested cells, likely due to cell death immediately after trans-

plantation (Beauchamp et al., 1999; Gayraud-Morel et al.,

2009). Notably, however, in some cases, up to 35 times more

GFP+ cells were collected than were injected initially (e.g., fifth

transplantation; Figure 3G). In some experiments, transplanted

muscles were stained for X-gal or PLAP to demonstrate the

regenerative capacity of the donor cells (Figure 3H). In accor-

dance with in vitro results (Figure 3B), in two of five rounds of

independent serial transplantation experiments, only the Pax7-

nGFPHi/T subpopulation yielded Pax7-nGFPHi cells, whereas

the Pax7-nGFPHi compartment was not replenished appreciably

by Pax7-nGFPLo cells (Figures 3Ia–3Id). These observations

suggest that Pax7-nGFPHi cells are more upstream and that

they give rise to Pax7-nGFPLo satellite cells.

Cells Performing TDSS Are Enriched in the Pax7Hi

Satellite Cell Subpopulation
To determine which subpopulation of satellite cells can perform

TDSS in vivo, we employed a strategy similar to that indicated

above but with regenerating muscle. The Tibialis anterior muscle

of 6-week-old Tg:Pax7-nGFPmice was injured by intramuscular

injection of the snake venom notexin (Gayraud-Morel et al.,

2007; Figure 4A). Rapid degeneration and necrosis of myofibers

occur, and satellite cells are concomitantly activated to generate

myoblasts that will participate in muscle regeneration, usually

taking about 3–4 weeks before homeostasis is achieved. BrdU

was administered intraperitoneally from the second (D2) to the

fifth (D5) day postinjury, and animals were sacrificed at different

times after the last injection (Figure 4A). Consistent with the

growth paradigm, LRCs were enriched in the Pax7-nGFPHi

subpopulation at all times examined (e.g., after 11 weeks 12%

in Pax7-nGFPHi versus 3.9% in Pax7-nGFPLo satellite cells;

Figure 4B).

The higher frequency of LRCs observed in the Pax7-nGFPHi

subpopulation might be a consequence of this subpopulation

entering quiescence more rapidly than Pax7-nGFPLo cells. To

investigate this possibility, satellite cells were isolated at time

intervals after injury, and the mice were injected with BrdU prior

to sacrifice. No difference was detected in the frequency of
ice per time point.

: T0, 3.5, 7.5, and 11.5 weeks after the last BrdU (red) injection. Hoechst (blue).

PLo subpopulations. n = 5–13 mice.

FPLo. Tubulin as a normalizer.

pulation.

Cell 148, 112–125, January 20, 2012 ª2012 Elsevier Inc. 115



Figure 2. Pax7-nGFPHi Cells Display More Stem-like Markers, Lower Metabolic State, and Greater Lag before First Cell Division

(A) Video microscopy of Pax7-nGFPHi and Pax7-nGFPLo subpopulations. The first division was scored, and a cell was considered to have divided when

cytokinesis was completed. Arrows indicate dividing cells. In low oxygen, mean times were 27 and 18 hr, respectively, and then every 7–8 hr for both.

(B) Percentage of EdU+ satellite cells in each fraction after injury. EdU was administered 4 hr before sacrifice.

(C) Active mitochondria were scored by adding MitoTracker, and intensity was measured in arbitrary units by flow cytometry (633 nm).

(D) Quantification of ATP in arbitrary units measured by bioluminescence (luminometer).

(E) RT-qPCR of mitochondrial replication genes to monitor mitochondrial activity.

(F–K) Immunostaining for Myod postinjury at T0, 18 hr, and 48 hr calculated from the time of isolation of satellite cells for in vitro and from the time of injury for

in vivo. n = 300 cells; n = 4 mice.

(L) Histogram representing percentage of Myod+ cells in vitro (postplating) and in vivo (postinjury).

Error bars represent ± SD (SEM for E). Scale bars, 50 mm (A) and 20 mm (F–K).
BrdU+ cells in the two subpopulations, indicating that Pax7-

nGFPHi cells do not exit the cell cycle preferentially in this case

(Figure S1A).
116 Cell 148, 112–125, January 20, 2012 ª2012 Elsevier Inc.
We then investigated whether selective label retention in the

Pax7-nGFPHi subpopulation might be a result of cosegregation

of template DNA strands to one daughter cell during cell division.



To do so, EdU labeling was used to monitor TDSS (72 hr postin-

jury for 2 days), and BrdU was added to ensure that cells

continued to divide during this period (during 18 hr chase of

EdU; see Figures 4C and 4F). Notably, during this latter period

(5–6 days postinjury), we determined that the cell-cycle period

in vivo was comparable in both subpopulations (�8 hr; Figures

S1B and S1C; Extended Experimental Procedures), thereby

confirming results obtained by live videomicroscopy (Figure 2A).

To detect TDSS empirically (Figure 4F), cells with EdU-labeled

template DNA strands are considered as the starting population

(T0). After one cell division (T1) and in the presence of BrdU,

daughter cells are positive for both nucleotide analogs. TDSS

can be observed empirically after two cell divisions (T2) wherein

BrdU-positive daughter cells are either EdU positive or negative

(biased segregation). Both daughters are positive for both labels

during nonbiased DNA segregation.

Pax7-nGFPHi and Pax7-nGFPLo subpopulations were isolated

byFACSandeither fixed immediately after isolation (T1), or plated

for 12 hr on a culture dish to allow cell-cycle progression and

the second cell division (T2). The T1 analysis serves as a critical

control because it showed that over 95% of the cells were

strongly positive for both analogs in both subpopulations (Figures

S1D and S1E); therefore, virtually all myogenic cells were actively

dividing. As a separate control, to examine the minor fraction of

BrdU-negative cells (<5%; Figure 4G), animals were pulsed with

BrdU, and satellite cells were fractionated into different subpop-

ulations based onGFP intensity. All subpopulations incorporated

BrdUwith no apparent bias, indicating that theminor BrdU-nega-

tive fraction is due to a general inefficiency in BrdU uptake among

all GFP-expressing satellite cells (data not shown).

After two cell divisions (T2) in the absence of EdU, similar

numbers of cells were positive for both analogs in the Pax7-

nGFPLo subpopulation, with the majority being positive for

BrdU and EdU (Figures 4E and 4G). Significantly, however,

40% of Pax7-nGFPHi cells were EdU negative, whereas all

were BrdU positive, indicating that they continued to proliferate

during the chase period (Figures 4D and 4G). To confirm these

observations, these experiments were repeated, and both

subpopulations were analyzed by flow cytometry at T1 and T2.

After one cell division during the chase at T1, �96% of the cells

were positive for both BrdU and EdU in both subpopulations

(Figures 4H and 4J). After a second cell division at T2, �56%

were EdU+/BrdU+, and �44% were EdU�/BrdU+ in the Pax7-

nGFPHi fraction, whereas �92% were EdU+/BrdU+ in the

Pax7-nGFPLo fraction (Figures 4I and 4K). From these results,

we propose that 87% of the Pax7-nGFPHi fraction performs

TDSS (i.e., 43.5% negative and 43.5% positive daughter cells).

In addition, extending the gating conditions to include more

intermediate Pax7-nGFP+ cells resulted in a drop in the

frequency of TDSS, suggesting that TDSS is restricted to the

Pax7-nGFPHi cells (data not shown). After biased DNA segrega-

tion, it is expected that the EdU intensity would remain the same

in the Pax7-nGFPHi subpopulation due to inheritance of all EdU-

labeled DNA strands in only one daughter cell, whereas random

distribution of EdU-labeled strands in the Pax7-nGFPLo subpop-

ulation would result in approximately half the signal intensity in

daughter cells at the population level. Expectedly, both subpop-

ulations displayed the same intensity for EdU staining at T1
(geometric mean: 660 and 669, respectively). Notably, at T2

the Pax7-nGFPHi subpopulation contained cells with an EdU

intensity similar to that at T1 (mean: 590), and cells with no signal

(mean: 10), as expected if this subpopulation performed TDSS.

By contrast, the populationmean intensity for Pax7-nGFPLo cells

dropped to half the intensity of that observed at T1 (mean: 350),

as expected for random segregation of EdU-labeled chromatids.

Identical results were obtained when these experiments were

repeated and when the second division took place in vivo (data

not shown). Therefore, the Pax7-nGFPHi subpopulation is en-

riched in cells that perform template DNA strand cosegregation,

whereas Pax7-nGFPLo cells segregate their chromatids

randomly.

Fate ofMuscle StemCells Cosegregating Template DNA
Strands
During lineage commitment, Pax7 expression is downregulated

as differentiation proceeds (Zammit et al., 2004). Given that

TDSS is restricted to the Pax7-nGFPHi subpopulation, we inves-

tigated the fate of the resulting daughter cells. To do this, acti-

vated satellite cells were isolated 5 days postinjury according

to GFP signal intensity (Figure 5A). In keeping with our observa-

tions with quiescent satellite cells, transcript analysis and FACS

profiling showed higher Pax7 and CD34 expression in Pax7-

nGFPHi cycling cells, and lower levels of commitment genes

such as Sca1 (Figures 5B and S2A–S2E). Accordingly, myogenic

commitment markers Sca1, Desmin, and TroponinT were ex-

pressed at higher levels in the Pax7-nGFPLo cells (Figure 5B).

Additionally, 33.1% of Pax7-nGFPLo cells were positive for the

differentiation protein Myogenin compared to 4.5% in the

Pax7-nGFPHi fraction (Figures S2A–S2C). Taken together, these

observations indicate that the Pax7-nGFPHi subpopulation of

cycling myogenic cells that cosegregate template DNA strands

expresses higher levels of stem-like markers, and lower levels

of markers associated with myogenic commitment.

If differential gene regulation in daughter cells was a conse-

quence of TDSS, cells retaining old template DNA strands in

the Pax7-nGFPHi subpopulation should be more stem like,

whereas their sister cell inheriting nascent DNA strands should

be more committed. To test for this premise, we developed

a protocol to isolate EdU-positive and EdU-negative cells from

the Pax7-nGFPHi subpopulation two cell divisions after EdU

administration (T2), immediately after biased DNA segregation

and mitosis (see Figure 4F). EdU injections were performed

4 days postinjury of the Tibialis anterior muscle, and this was fol-

lowed by a chase for one cell division in vivo (T1) in the absence

of the thymidine analog. Satellite cells were fractionated into

Pax7-nGFPHi and Pax7-nGFPLo by FACS, then plated for 12 hr

to complete the second division (T2). In this paradigm, template

DNA retaining and excluding cells would be EdU positive or

negative, respectively. The cells from each initial fraction

(Pax7-nGFPHi and Pax7-nGFPLo) were then fixed, stained for

EdU, and subjected to a second round of FACS (Figure 5C).

Strikingly, RT-qPCR analysis showed that Pax7-nGFPHi cells

that were EdU-positive cells expressed significantly higher

levels of endogenous Pax7 and nGFP transcripts, and lower

levels of the differentiation markers Myogenin and Troponin T

compared to EdU-negative cells (Figure 5D).
Cell 148, 112–125, January 20, 2012 ª2012 Elsevier Inc. 117
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To determine whether these cells were truly committed, and

not simply transcriptionally primed, from the same experiment

an aliquot of cells from both subpopulations was either fixed

immediately after one cell division (T1), or plated and fixed after

the second cell division (T2). A critical control was the demon-

stration that all of the cells were EdU+ at T1 in the Pax7-nGFPHi

fraction (Figures S2F and S2G). Notably, 41% of Pax7-nGFPHi

cells were EdU negative after the second cell division (T2,

Figures 5F and 5G; 82% of Pax7-nGFPHi performs TDSS; i.e.,

41%-negative and 41%-positive daughter cells), consistent

with experiments reported above. At T2 only the EdU-negative

cells (inheriting nascent DNA strands) expressed Myogenin

protein (42%; Figures 5E and 5F). Conversely, none of the

EdU+ cells (retaining template DNA strands) expressed this

differentiation marker. In contrast, in the Pax7-nGFPLo subpop-

ulation all of the cells were positive for EdU at T1 as well as T2,

as observed above (Figures 5E and 5G). Notably, 32% of the

cells were positive for Myogenin at T1 and 94% at T2 (Figures

5E and 5G), in support of the findings above that this subpopu-

lation is more committed to differentiation. Similar results were

obtained with the differentiation marker TroponinT (Figures

S2H–S2J). Taken together, these results show that within the

Pax7-nGFPHi subpopulation, cells that retain template DNA

strands adopt a more stem-like phenotype, whereas those that

inherit nascent DNA strands differentiate. In contrast, the

Pax7-nGFPLo cells perform random DNA segregation and are

myogenically committed.

Template DNA Strand Cosegregation during Cell
Division Engages All Chromatids
Previous studies reported that some but not all chromatids are

involved in nonrandom segregation of DNA strands (Armakolas

and Klar, 2006; Falconer et al., 2010). In our previous studies

and those reported here, immunofluorescence staining for

nucleotide analogs suggested that TDSS in satellite cells
Figure 3. Engraftment Potential of Subpopulations of Satellite Cells

(A) Scheme of serial plating of both subpopulations.

(Ba–Bi) FACS profiles of serial passages of both subpopulations. Red circles ind

subpopulation was replated independently, and cultures were subjected again t

(Ca–Cd) Cryodamaged Rag2�/�:gC�/� mice were transplanted with 104 freshly

4 weeks later. Representative images of donor-derived PLAP+ myofibers are ind

(Da–Dd) Representative image of a TA muscle 4 weeks postinjury. White arrowhe

cell, and white illustrates Laminin.

(E) Average of maximum number of PLAP+ myofibers generated from Tg:Pax7-n

condition; p = 0.02).

(F) Engrafted satellite cells scored as GFP+/PLAP+ 4 weeks after transplantation re

n = 7 mice, n = 90 sections; Tg:Pax7-nGFPLo/T, n = 7 mice, n = 90 sections; p =

(G) Serial transplantations of Tg:Pax7-nGFPHi/T and Tg:Pax7-nGFPLo/T satellite ce

isolated by FACS 3 weeks posttransplantation. For subsequent transplantations

were pooled independently and divided equally among animals. Illustration repre

The last round did not yield GFP+ satellite cells.

(H) X-gal staining of a section of injured and engrafted Tibialis anterior muscle

regeneration. Arrows indicate X-gal positive myofibers.

(Ia–Id) FACS profile of engraftedGFP+ satellite cells (Pax7-nGFPHi/T and Pax7-nG

data not shown), only Pax7-nGFPHi cells gave GFPHi cells (vertical rectangle gate

FACS profiles represent first passage from the two independent experiments. G

number of cells in the GFP+ population. The high fraction was often distinct from th

cells (Ia), 10 GFPHi/512 GFP+ cells (Ib), 110 GFPHi/1,597 GFP+ cells (Ic), and 18 G

For each sorting (B and I), gates were adjusted similarly to isolate numerical 10

(C and H) and 20 mm (D).
involves all chromatids because the analog-negative cells

showed little to no label retention, although single-chromo-

some resolution was lacking. To determine the number of

chromosomes that participate in TDSS, CO-FISH (Bailey

et al., 1996; Falconer et al., 2010) was performed. Here,

BrdU-containing strands are eliminated selectively by treat-

ment of cells with Hoechst, UV light, and exonuclease III.

Direct visualization of chromatids on metaphase spreads,

combined with hybridization with specific leading and lagging

strand telomeric probes, permits the enumeration of BrdU-

containing chromosomes. Mice were injected repeatedly with

BrdU to saturate newly formed DNA strands 3 days postinjury

of the Tibialis anterior muscle (Figure 6A). Pax7-nGFPHi and

Pax7-nGFPLo cells were then isolated either after one cell divi-

sion in vivo and a second in vitro, or both divisions in vivo,

without analog, and telomere-specific probes were used to

detect individual DNA strands on metaphase cells (Figure 6B

and data not shown, respectively). Chromosomes having one

BrdU+ DNA strand exhibit six discrete signals in a head to

tail arrangement: three belonging to telomeres located on the

leading strands, and three to the lagging strands. BrdU-nega-

tive chromosomes exhibit eight signals: four belonging to telo-

meres located on the leading strands, and four to the lagging

strands (Figure 6B). Each chromosome of each metaphase

was analyzed.

As a control, and immediately after the last BrdU injections

(T0), all chromosomes from virtually all metaphases in the sub-

populations contained BrdU-saturated neosynthesized DNA

strands (Figures S3A–S3D). This critical control shows that all

of the cells in both subpopulations were in the cell cycle, and

that they incorporated BrdU. During random DNA segregation

a three dot/four dot pattern should be observed in every cell.

This was indeed the case for the Pax7-nGFPLo subpopulation

(Figures 6C, 6F, and S4). Strikingly, however, individual cells

with distinct patterns of either three dots, or four dots, were
icate Pax7-nGFPHi; blue circles show Pax7-nGFPLo. After each passage, each

o FACS analysis.

sorted Tg:Pax7-nGFPHi/T and Tg:Pax7-nGFPLo/T satellite cells and analyzed

icated.

ads show GFP+ satellite cells, yellow arrows indicate a Ki67-positive interstitial

GFPHi/T and Tg:Pax7-nGFPLo/T cells 4 weeks after engraftment (n = 7 mice/

presented as average number of GFP+ cells for all sections (Tg:Pax7-nGFPHi/T,

0.02).

ll subpopulations in each preinjured TA ofRag2�/�gC�/�mice. GFP+ cells were

all GFP+ cells isolated from Tg:Pax7-nGFPHi/T or Tg:Pax7-nGFPLo/T fractions

sents seven rounds of comparative transplantations with each subpopulation.

4 weeks postinjury. Blue nuclei show that grafted cells contribute to muscle

FPLo/T) after isolation. In two independent experiments (Ia and Ib, Ic and Id, and

on right); Pax7-nGFPLo/T cells did not yield significant numbers of GFPHi cells;

ating was done on GFP intensity during isolation of top or bottom 10% of the

emain population on the FACS profile. There was a total of 81 GFPHi/476 GFP+

FPHi/2,288 GFP+ cells (Id).

% high or low GFP+ fractions. Error bars represent ±SEM. Scale bars, 50 mm
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Figure 4. Pax7-nGFPHi, but Not Pax7-

nGFPLo, Muscle Satellite Cells Perform

TDSS

(A) Scheme of muscle injury and timing of BrdU

injections in Tg:Pax7-nGFP mice to generate

LRCs.

(B) Quantification by immunofluorescence of

LRCs. Histogram represents percentage of cells

retaining BrdU in each subpopulation; n = 4 mice,

R300 cells each.

(C) Scheme of timing of EdU and BrdU injections

(7–8 hr apart) to monitor TDSS.

(D) Representative image of T2 Pax7-nGFPHi cells.

Arrow indicates BrdU+ (red) cell that has excluded

EdU (green).

(E) Representative image of T2 Pax7-nGFPLo cells.

(F) Scheme of biased (left) and nonbiased (right)

segregation patterns.

(G) Histogram representing the number of cells

retaining EdU and BrdU in each subpopulation at

time of isolation (T1, one cell division during chase;

and T2, after second cell division); n = 4 mice,

R300 cells at T1, R500 at T2.

(H–K) Flow cytometry analysis of both subpopu-

lations for EdU and BrdU intensity: (H) T1 Pax7-

nGFPHi ; (I) T2 Pax7-nGFPHi; (J) T1 Pax7-nGFPLo;

and (K) T2 Pax7-nGFPLo. Numbers in corners

represent percentage (%) of cells; geometric

mean intensities of EdU labeling are indicated. On

profile, red color indicates high cell density, and

blue color shows low cell density; n = 4 mice,

R3,000 cells each condition.

Error bars represent ±SD. Scale bar, 10 mm (D and

E). See also Figure S1.
observed only in the Pax7-nGFPHi subpopulation, as predicted

for cells containing either hemi-labeled BrdU DNA strands, or

cells with no BrdU-labeled strands, respectively (85% n = 150

cells, three independent experiments; Figures 6C–6E and

S5–S7). Some cells with mixed patterns were observed in this

subpopulation, consistent with our findings using EdU and

BrdU. Therefore, these results show with single-chromosome

resolution that the majority of the cells in the Pax7-nGFPHi

subpopulation performs TDSS in vivo, whereas random DNA

segregation occurs in the Pax7-nGFPLo subpopulation.
120 Cell 148, 112–125, January 20, 2012 ª2012 Elsevier Inc.
DISCUSSION

Recent investigations have suggested

that skeletal muscle satellite cells are

heterogeneous, harboring stem-like and

more committed cells; however, the lack

of readouts has hampered more detailed

analyses. Here, we identify prospectively

a subpopulation of proliferating satellite

cells, corresponding to high Pax7 expres-

sion with a low metabolic state, the

majority of which reproducibly performs

TDSS. Importantly, we show that all

template DNA strands segregate to the

daughter cell acquiring a stem cell fate,
whereas daughter cells that inherit nascent DNA strands

differentiate. The rapid upregulation of multiple stem and differ-

entiation markers in the respective daughter cells provides

compelling evidence that template DNA strand cosegregation

is associated with, and perhaps a critical element in, regulating

this cell fate decision.

Interestingly, we show also that in the quiescent state

a subpopulation of cells expressing higher levels of Pax7 has a

lowmetabolic state, is transcriptionally less primed for myogenic

commitment, and takes longer to execute the first mitosis after



being stimulated to enter the cell cycle, yet subsequently it

adopts a cell-cycle time equivalent to the remaining population.

We refer to this reversible cell state as dormant. Dormant hema-

topoietic stem cells (HSCs) have been reported to be BrdU label

retaining, and divide about five times per lifetime in the mouse

(Wilson et al., 2008). Further characterization of those cells

should determine if the characteristics reported here regarding

cell-cycle entry time after activation and metabolic status are

shared features of dormant muscle and HSCs.

Serial transplantation studies to assess the long-term regen-

erative potential of stem cells have been reported routinely for

HSCs and skin stem cells, but not extensively for other tissue-

specific stem cells. In our study, serial transplantation experi-

ments were performed for up to 7 rounds with as little as 16

cells, thereby providing evidence that satellite cells are indeed

long-lasting stem cells, and that extensive symmetric divisions

occur for at least a subpopulation of transplanted cells. These

findings complement our satellite cell ablation studies, which

resulted in failed regeneration, and rescue with transplanted

satellite cells (Sambasivan et al., 2011).Furthermore, only

Pax7Hi-expressing cells replenished the Pax7Hi GFP+ fraction,

providing compelling evidence that cells performing TDSS are

at the top of the stem cell hierarchy characterized by high levels

of Pax7 expression. How asymmetric DNA segregation relates

to asymmetric versus symmetric cell divisions over extended

periods is not clear. A central premise of the ‘‘immortal’’ DNA

strand hypothesis (Cairns, 1975) presumes the occurrence of

obligate, consecutive asymmetric DNA segregation, with no

intervening symmetric cell divisions to reduce the mutation

load due to accumulated DNA replication errors. Whether this

occurs, or if epigenetic regulation is the primary mechanism

driving TDSS to regulate daughter cell fates through chromatin

modifications, for example, are notions that remain to be tested.

Whichever the case, symmetric cell divisions might be tolerated

occasionally. Moreover, we cannot exclude the possibility that

all muscle stem cells might, under certain conditions, perform

biased DNA segregation.

In the present report, we employed several strategies to

demonstrate that TDSS occurs in a subpopulation of satellite cells

with more stem-like properties. In addition, using CO-FISH and

single-chromatid resolution, we provide the first evidence for

asymmetricDNAsegregation involvingall chromosomes.Notably,

the ability to prospectively isolate these cells provides a powerful

tool for more detailed characterization of this population. Strik-

ingly, the asymmetric segregation of DNA in the Pax7Hi fraction

is associatedwith an immediate cell fate change. Several markers

were used, including Sca1, which is associated with committed

cells (Mitchell et al., 2005). This is in contrast to a previous study

reporting that templateDNAstrandssegregatewithSca1 (Conboy

et al., 2007). Thedifferent results obtainedwith thismarkerwarrant

further investigation. Another issue that has not been addressed is

the role of halogenated nucleotides,which havebeen usedalmost

exclusively to monitor DNA segregation patterns (Cortés et al.,

2003; Tajbakhsh and Gonzalez, 2009).

In conclusion, our findings provide the first evidence for

template DNA strand cosegregation with single-chromatid reso-

lution, and they identify a subpopulation of muscle stem cells

with a low metabolic state that reproducibly retains template
DNA strands. The ability to isolate these cells prospectively will

allow more detailed studies of this phenomenon in relation to

cellular asymmetry, the physiological status of the cells, and

the epigenetic regulation of stem cell fate.

EXPERIMENTAL PROCEDURES

Mice and Injections of Thymidine Analogs

Tg:Pax7-nGFP mice were described previously (Sambasivan et al., 2009).

Thymidine analogs (Sigma-Aldrich, St. Louis) were dissolved in 0.9% saline

(GIBCO, Paisley, UK) and stored at 10 mg/ml. For pulse-chase experiments

during postnatal growth, P3mice received single doses of BrdU at 3 mg/g intra-

peritoneally, twice a day, for 6 consecutive days followed by 4–11 weeks of

chase. For the pulse-chase labeling after notexin injury, transgenic mice

(6–10 weeks old) received 50 mg/g BrdU five times 8 hr apart followed by

4–11 weeks of chase. To detect biased segregation of chromosomes, mice

were injected intraperitoneally 3 days postinjury with EdU (Invitrogen, Carls-

bad, CA, USA; #C10339) five times, 200 mg/injection 8 hr apart followed by

the injection of BrdU (twice 8 hr apart) 8 hr after EdU. Animals were handled

as per European Community guidelines.

Satellite Cell Culture and FACS

Satellite cells have been cultured in 1:1 DMEM:MCDB containing 20% serum

FBS and ITS (13, Insulin Transferrin Selenium; GIBCO). Medium was filtered

through 22 mm. Cells were plated on Matrigel (BD Biosciences; catalog

#354234) and kept in an incubator (37�C, 6.5% CO2, 3% O2). Cells were

prepared for FACS analysis using a MoFlo (Beckman). All analyses and

quantitations were performed using Summit v4.3 software from DakoCytoma-

tion and FloJo software. Cells were labeled with Propidium Iodide 10 mg/ml

(Sigma-Aldrich) to exclude dead cells and displayed using the PE (Phycoery-

thrin, Red) channel on the FACS profile. Dissection was done essentially as

described (Gayraud-Morel et al., 2007) with a scalpel by removing the tissue

from the bone in cold DMEM. Muscles were then chopped with small scissors

and put in a 50 ml Falcon tube with collagenase 0.1% and trypsin 0.25%

at 37�C with gentle agitation. The supernatant was collected in serum on ice

after 20 min, and the collagenase/trypsin solution was added to continue the

digestion until the muscle was completely digested; it was filtered through

40 mm filter.

Muscle Injury and Serial Satellite Cell Transplantations

Immunocompromised Rag2�/�:gC�/� mice were injured by freeze injury

2 days prior to cell engraftment. Briefly, mice were anesthetized with 0.5%

Imalgene/2% Rompun. The TA muscle was frozen with three consecutive

cycles of freezing-thawing by applying a liquid nitrogen-cooled metallic rod.

The skin was sutured, and mice were kept on a warm plate until recovery.

Satellite cells collected by FACS were centrifuged 15 min in an Eppendorf

centrifuge at 5503 g. The supernatant was carefully eliminated, and the pellet

was resuspended in a minimal volume to inject 5–10 ml of cell suspension per

TA. Cell suspensions were enumerated using aMalassez counting chamber to

adjust the concentration of cells injected in preinjured TA with a 10 ml Hamilton

syringe. Three weeks after transplantation, mice were sacrificed by cervical

dislocation, and the tissue was analyzed. For quantifications, the entire TA

muscle was sectioned, and at least four different, evenly spaced levels were

stained and used for PLAP+ myofiber and GFP+ satellite cell enumerations

after immunostainings. Figures display average values of all animals

tested ±SEM.

Gene Expression Analysis

Extraction and preparation of RNA for RT-qPCR were done as described

(Jory et al., 2009). Cells were sorted directly in RLT lysis buffer (Invitrogen)

containing b-mercaptoethanol, and RNAwas purified using QIAGEN RNAeasy

Micro purification kit. cDNA was generated by random-primed reverse

transcription using the SuperScript II reverse transcriptase (Invitrogen). The

cDNAs were then analyzed by real-time PCR (see Table S1 for primers)

using Power SYBR Green Universal Mix or TaqMan Universal Master Mix

and an ABI Prism 7700 (PerkinElmer Applied Biosystems) and a StepOnePlus
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Figure 5. Muscle Stem Cells Inheriting Template DNA Strands Retain Stem Cell Properties

(A) FACS profile of GFP+ satellite cells from injured Tg:Pax7-nGFP TA muscle D5 postinjury. Gating for Pax7-nGFPHi and Pax7-nGFPLo is indicated.

(B) RT-qPCR of stem and differentiation markers in Pax7-nGFPHi and Pax7-nGFPLo cells isolated as indicated in (A); n = 5 mice, 20,000 cells/condition.

(C) Scheme for isolation of template DNA strand retaining (EdU+) and excluding (EdU�) daughter cells from Pax7-nGFPHi subpopulation examined at T1 and T2.

As a control, T1 cells in Pax7-nGFPHi and Pax7-nGFPLo subpopulations were isolated by FACS and analyzed.
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Figure 6. Identification of Sister Chromatids and

Evidence for Template DNA Strand Cosegregation

in Pax7-nGFPHi Muscle Stem Cells

(A) Scheme of BrdU injections and isolation of satellite

cells.

(B) Scheme of TDSS and nonbiased DNA segregation with

leading and lagging strands represented, and segregation

patterns of sister chromatids that are BrdU+ (three dots) or

BrdU� (four dots).

(C) Percentage of metaphases displaying the different

observed patterns of chromatid segregation with PNA

probes. Quantifications were done for both subpopula-

tions at the time of isolation without chase (T0) and at T2

(after two cell divisions); n = 150 cells each; three inde-

pendent experiments. All DNA strands show an exclusive

staining with PNA probes specific for either leading or

lagging strands.

(D) Metaphase analysis after the second cell division (T2)

of Pax7-nGFPHi cell-containing BrdU-positive chromo-

somes only. Insets represent high magnification of chro-

mosome (boxed). Arrows indicate BrdU+ chromosomes.

(E) Metaphase of T2 Pax7-nGFPHi cell-containing

BrdU-negative chromosomes only. Insets represent high

magnification of chromosome (boxed).

(F) Metaphase of T2 Pax7-nGFPLo cell-containing BrdU-

positive and negative chromosomes. Insets represent

high magnification of chromosome (boxed).

Error bars represent ± SD. Scale bars, 5 mm (D–F). See

also Figures S3–S7.
(Applied Biosystems). TBP reference transcript levels were used for the

normalization of each target within each sample (= DCT).

Immunohistochemistry

Immunostaining was performed on fixed cells (4% PFA in cold PBS), permea-

bilized with 0.5% Triton X-100 5 min, washed, and blocked with 10% BSA. For

the BrdU immunostaining, cells were unmasked with 2 N HCl 20 min at room

temperature and neutralized with 0.1 M sodium tetraborate. For EdU staining,

click-it reaction was used according to the manufacturer’s instructions

(Invitrogen). Cells were incubated with primary antibodies overnight at 4�C
(see Table S2). Cells were washedwith PBS and 0.1%BSA and then incubated

2 hr with Alexa-conjugated secondary antibodies 1/250 and Hoechst. Cells

were then analyzed using a confocal Leica or Zeiss Apotome. For the assess-

ment of cell fate after TDSS, instead of lysis buffer, the cells were collected in
(D) RT-qPCR after EdU staining and reisolation of cells by FACS; n = 45 independent experiments, 2

(E) Quantification of cells by immunostaining for EdU and Myogenin in both subpopulations at T1 an

(F and G) Representative images of EdU (green) andMyogenin (red) immunostainings at T2 in Pax7-nG

show EdU-negative/Myogenin-positive cell (arrows) and EdU-positive/Myogenin-negative cell. Inset

Error bars represent ± SEM (SD for E). Scale bars, 20 mm (F and G). See also Figure S2.

Cell 148, 11
2% serum, and both subpopulations were either spun on

polyD-lysine and fixed immediately (T1) or plated over-

night for them to complete their second division (T2).

Live Imaging

Cells isolated by FACS were plated overnight on a 24-well

glass bottom plate (P24G-0-10-F; MatTek) precoated with

Matrigel in the incubator in a drop of pre-equilibrated

medium (1:1 DMEM GlutaMAX: MCDB [Sigma-Aldrich],

20% FCS [GIBCO; 22477K]). The plate was then incu-

bated at 37�C, 5%CO2, and 3%O2 (Zeiss, Pecon). A Zeiss

Observer.Z1 connected with a LCI PlnN 103/0.8 W DICII

objective and AxioCam camera piloted with AxioVision

was used. Cells were filmed for up to 1 week, and images
were taken every 20 min with Brightfield and DICII filters and MozaiX 3X3

(Zeiss). The raw data were transformed and presented as a video.

CO-FISH

CO-FISH metaphase chromosomes (Bailey et al., 2004) were prepared from

female Tg:Pax7-nGFP mice injected with BrdU at 150 mg/g every hour for

8 hr. Subpopulations were sorted by FACS either immediately after the last

BrdU injection (T0 control) or after an overnight chase, then plated with colce-

mid at 0.2 mg/ml 90 min before collection. After hypotonic treatment in 0.03 M

sodium citrate for 25 min at 37�C, cells were fixed in cold 3:1 methanol acetic

acid, and metaphases were spread on prewashed 45% acetic acid slide. For

CO-FISH, chromosomes were treated with RNase A and pepsin, and slides

were incubated in Hoechst 33258 and irradiated with UV light at 5.4 J/cm�2.

Nicked DNA was removed after digestion with exonuclease III, and remaining
mice pooled each, R30,000 cells each.

d T2; n = 4 mice, R300 cells each condition.

FPHi (F) and Pax7-nGFPLo (G) subpopulations. Insets in (F)

s in (G) show cells double positive for these markers.
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DNA strands were hybridized to directly labeled fluorescent PNA probes

specific for C- and G-rich telomere repeats (TelC-FAM FITC-OO-(CCCTAA)3;

TelG-Cy3 Cy3-OO-(TTAGGG)3; Panagene). Pictures were acquired at 1003,

and signals were treated with Volocity.

Statistics

Statistical analysis was performed with GraphPad Prism software using appro-

priate tests and a minimum of 95% confidence interval for significance; p values

indicated on figures are < 0.05 (*), < 0.01(**), and < 0.001 (***). Figures display

average values of all animals tested±SDor± SEM for RT-qPCR, or as indicated.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, seven

figures, two tables, and three movies and can be found with this article online

at doi:10.1016/j.cell.2011.11.049.

ACKNOWLEDGMENTS

For cytometry we thank M. Nguyen, P.-H. Commere, N. Aulner (PFC, Institut

Pasteur, Paris), A. Henry (IMRB, UFR de Medecine, Créteil), and funding by
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