
Applied Mathematics Letters 23 (2010) 277–281

Contents lists available at ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

An inequality between Jordan–von Neumann constant and
James constant
Changsen Yang ∗, Haiying Li
College of Mathematics and Information Science, Henan Normal University, Henan, Xinxiang 453007, PR China

a r t i c l e i n f o

Article history:
Received 3 April 2009
Received in revised form 9 September 2009
Accepted 25 September 2009

Keywords:
Jordan–von Neumann constant
James constant

a b s t r a c t

Let X be a non-trivial Banach space. L. Maligranda conjectured CNJ (X) ≤ 1 + J(X)2/4 for
James constant J(X) and von Neumann–Jordan constant CNJ (X) for X . Recently, J. Alonso
et al. gave a proof of it and conjectured that CNJ (X) ≤ J(X) is also valid. In this paper, we
show that this conjecture is true.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

We shall assume throughout this paper that X stands for a non-trivial Banach space, and use BX and SX to denote the unit
ball and unit sphere of X , respectively. Many recent studies have focused on the von Neumann–Jordan (NJ) constant and
James constant (cf. [1–16]). The constant

J(X) = sup{min(‖x+ y‖, ‖x− y‖) : x, y ∈ SX }
is called the non-square or James constant of X . It is well known that [5,6]

(i)
√
2 ≤ J(X) ≤ 2.

(ii) J(X) = sup{min(‖x+ y‖, ‖x− y‖) : x, y ∈ BX }.
(iii) If 1 ≤ p ≤ ∞ and dim Lp(µ) ≥ 2, then J(Lp(µ)) = max{21/p, 21−1/p}.

The von Neumann–Jordan constant of a Banach space X was introduced by Clarkson [3] as the smallest constant C for
which

1
C
≤
‖x+ y‖2 + ‖x− y‖2

2(‖x‖2 + ‖y‖2)
≤ C

holds for all x, y ∈ X with (x, y) 6= (0, 0). An equivalent definition of the NJ constant is found in [8] as the following form:

CNJ(X) = sup
{
‖x+ y‖2 + ‖x− y‖2

2(‖x‖2 + ‖y‖2)
: x ∈ SX , y ∈ BX

}
.

Recently, J. Alonso et al. defined the constant

C ′NJ(X) = sup
{
‖x+ y‖2 + ‖x− y‖2

4
: x, y ∈ SX

}
.

Now let us collect some properties of these constants in [1,3,8,9]:
(1) CNJ(X) = CNJ(X∗).
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(2) 1 ≤ CNJ(X) ≤ 2; X is a Hilbert space if and only if CNJ(X) = 1.
(3) X is uniformly non-square if and only if CNJ(X) < 2.
(4) For any non-trivial Banach space X ,

J(X)2

2
≤ CNJ(X) ≤ 1+

J(X)2

4
. (1.1)

(5) For any Banach space X ,

CNJ(X) ≤ 2
[
1+ C ′NJ(X)−

√
2C ′NJ(X)

]
. (1.2)

(6) C ′NJ(X) ≤ J(X).

(7) If 1 ≤ p ≤ ∞ and dim Lp(µ) ≥ 2, then CNJ(Lp(µ)) = max{2
2
p−1, 21−

2
p }.

In [11,12], L. Maligranda conjectured CNJ(X) ≤ 1+ J(X)2/4 for any Banach space X . Recently, J. Alonso et al. gave a proof
of it in [1], and another proof can also be found in [16]. In 2009Wang and Pang [14] obtained the following inequality which
improves this conjecture:

CNJ(X) ≤ J(X)+
√
J(X)− 1

{√
1+ (1−

√
J(X)− 1)2 − 1

}
.

In this paper, we also consider the constant

A2(X) = sup
{
‖x+ y‖ + ‖x− y‖

2
: x, y ∈ SX

}
introduced by Baronti et al. in [2]. The aim of our main results is to prove A2(X) ≤

3J(X)
2 −

J(X)2

4 and CNJ(X) ≤ J(X).

2. Proof of the main results

First, we recall that the modulus of convexity of a Banach space X is defined for ε ∈ [0, 2] as

δX (ε) = inf{1− ‖x+ y‖/2 : x, y ∈ SX , ‖x− y‖ ≥ ε},

where ‘‘SX ’’ and ‘‘≥’’ can be replaced by ‘‘BX ’’ and ‘‘=’’ respectively. Obviously, the modulus of convexity is a nondecreasing
function in [0, 2]. Moreover, the function δX (ε)

ε
is also nondecreasing on (0, 2]. It is worth noting that J(X) = 2(1− δ(J(X)))

is valid for any uniformly non-square space X .

Theorem 2.1. For any Banach space X, we have

2A2(X) ≤ 3J(X)−
J(X)2

2
. (2.1)

Proof. For simplicity we shall denote J(X) by J , and we can assume that J < 2. If max{‖x + y‖, ‖x − y‖} ≤ J , then
‖x+y‖+‖x−y‖ ≤ 2J ≤ 3J− J

2

2 . So wemay also assume that ε := ‖x−y‖ ≥ J , otherwise, wemay extract ε := ‖x+y‖ ≥ J .

(1) If J ≤ ε ≤ 2J − J2

2 . Since J = 2(1− δX (J)), we have

‖x+ y‖ + ‖x− y‖ ≤ ε + 2− 2δX (ε)

≤ 2J −
J2

2
+ 2− 2δX (J)

= 3J −
J2

2
.

(2) If 2J − J2

2 ≤ ε ≤ 2. By
2−J
2J =

δX (J)
J ≤

δX (2J−
J2
2 )

2J− J
2
2

, we have

‖x+ y‖ + ‖x− y‖ ≤ ε + 2− 2δX

(
2J −

J2

2

)
≤ 4−

2− J
J

[
2J −

J2

2

]
= 3J −

J2

2
.

Hence (2.1) is valid.
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Let X∗ be the dual space of X . Recently, J. Alonso et al. deduced an estimate

|J(X∗)− J(X)| ≤
2−
√
2

2
by using the inequalities (see [8])

2J(X)− 2 ≤ J(X∗) ≤
J(X)
2
+ 1. (2.2)

Here, we can obtain a better estimate by using Theorem 2.1. �

Corollary 2.1. For any non-trivial Banach space X. Then

|J(X∗)− J(X)| ≤ max
{
2J(X)− J(X)2

4
,
2J(X∗)− J(X∗)2

4

}
≤

√
2− 1
2

.

Proof. Note that A2(X) = A2(X∗) (see [2]). Since for any Banach space X , J(X) ≤ A2(X), from Theorem 2.1 we have
J(X∗)− J(X) ≤ A2(X∗)− J(X) = A2(X)− J(X) ≤

J(X)
2 −

J(X)2

4 , and a similar one for J(X)− J(X
∗). �

Now, in order to give a simple proof of CNJ(X) ≤ J(X), first we have the following lemma.

Lemma 2.1. Let X be a Banach space. Then

‖x+ y‖2 + ‖x− y‖2 ≤ 2J(X)+ 4
√
J(X)− 1 (2.3)

for any x, y ∈ SX .
Proof. Let J = J(X).We can assume that J < 2. Ifmax{‖x+y‖, ‖x−y‖} ≤ 1+

√
J − 1, then‖x+y‖2+‖x−y‖2 ≤ 2J+4

√
J − 1.

On the other hand, we may assume that ε := ‖x− y‖ ≥ 1+
√
J − 1. Since 2−J2J =

δX (J)
J ≤

δX (ε)
ε
, then

‖x+ y‖2 + ‖x− y‖2 ≤ ε2 + [2− 2δX (ε)]2 ≤ ε2 +
[
2−

2− J
J

ε

]2
.

Let h(t) = t2 + [2− 2−J
J t]

2. Since h(t) is increasing for t ≥ J(2−J)
J2−2J+2

, and J(2−J)
J2−2J+2

≤ 1+
√
J − 1 ≤ ε ≤ 2, we have that

‖x+ y‖2 + ‖x− y‖2 ≤ h(ε) ≤ h(2).

To complete the proof of (2.3) we only need to see that h(2) ≤ 2J+4
√
J − 1. Now, h(2)−2J−4

√
J − 1 = − 2f (J)

J2
, where

f (J) = −8 + 16J + 2(
√
J − 1 − 5)J2 + J3. To see that f (J) ≥ 0, take α =

√
J − 1. Then f (J) = (α4 + 4α3 − 1)(α − 1)2,

with
√√
2− 1 ≤ α ≤ 1. Finally, since g(α) = α4 + 4α3 − 1 is increasing for

√√
2− 1 ≤ α ≤ 1, we have

g(α) ≥ g(
√√
2− 1) = 2− 2

√
2+ 4(

√
2− 1)3/2 > 0. �

Theorem 2.2. For any non-trivial Banach space X we have

CNJ(X) ≤ J(X). (2.4)

Proof. By Lemma 2.1, we have

C ′NJ(X) ≤
J(X)
2
+

√
J(X)− 1. (2.5)

From (1.2) we know that CNJ(X) ≤ 2(1 + C ′NJ(X) −
√
2C ′NJ(X)). The function g(t) := 2(1 + t −

√
2t) is increasing in [1,2],

so (2.4) follows from (2.5). �

3. An example

In this section we shall compute the value of CNJ(X), J(X) for some space X .

Lemma 3.1 ([8]). Let X = (X, ‖ · ‖) be a non-trivial Banach space, and X1 = (X1, ‖ · ‖1),where ‖ · ‖1 is an equivalent norm on
X satisfying, for α, β > 0 and x ∈ X,

α‖x‖ ≤ ‖x‖1 ≤ β‖x‖.

Then
α

β
J(X) ≤ J(X1) ≤

β

α
J(X)
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and
α2

β2
CNJ(X) ≤ CNJ(X1) ≤

β2

α2
CNJ(X).

Example. Let λ > 0, Xλ = R2 endowed with the norm

|x|λ = (‖x‖2p + λ‖x‖
2
q)
1
2 .

(i) If 2 ≤ p ≤ q ≤ ∞, then J(Xλ) = 2
√

λ+1

2
2
p +λ2

2
q
, and CNJ(Xλ) = C ′NJ(Xλ) =

2(λ+1)

2
2
p +λ2

2
q
.

(ii) If 1 ≤ p ≤ q ≤ 2, then J(Xλ) =

√
2
2
p +λ2

2
q

λ+1 , and CNJ(Xλ) = C ′NJ(Xλ) =
2
2
p +λ2

2
q

2(λ+1) .

Proof. (i) First, we show that the following inequality is valid

‖x‖2p(1+ λ2
2
q−

2
p ) ≤ |x|2λ ≤ (λ+ 1)‖x‖

2
p. (3.1)

In fact, the right is obvious, and by Hölder’s inequality we have:

‖x‖2p ≤ 2
2
p−

2
q ‖x‖2q.

Therefore, (3.1) is valid. From Lemma 3.1, J((R2, ‖ · ‖p)) = 2
1− 1p and CNJ((R2, ‖ · ‖p)) = 2

1− 2p , we have

CNJ(Xλ) ≤
2(λ+ 1)

2
2
p + λ2

2
q
,

and

J(Xλ) ≤ 2

√
λ+ 1

2
2
p + λ2

2
q
.

Now letting x = ( a

2
2
p
, a

2
2
p
), and y = ( a

2
2
p
,− a

2
2
p
), where a = 2

2
p√

2
2
p +λ2

2
q
. Then ‖x‖λ = ‖y‖λ = 1, x + y = ( 2a

2
2
p
, 0), and

x− y = (0, 2a
2
2
p
). Hence,

CNJ(Xλ) ≥ C ′NJ(Xλ) ≥
2(λ+ 1)

2
2
p + λ2

2
q

and

J(Xλ) ≥ 2

√
λ+ 1

2
2
p + λ2

2
q
.

(ii) By using Hölder’s inequality, we have

‖x‖2q(λ+ 1) ≤ |x|
2
λ ≤ (λ+ 2

2
p−

2
q )‖x‖2q.

Applying Lemma 3.1, J((R2, ‖ · ‖q)) = 2
1
q and CNJ((R2, ‖ · ‖q)) = 2

2
q−1, we have the following inequalities

CNJ(Xλ) ≤
2
2
p + λ2

2
q

2(λ+ 1)
,

and

J(Xλ) ≤

√
2
2
p + λ2

2
q

λ+ 1
.

Now letting x = ( a

2
2
p
, 0), and y = (0,− a

2
2
p
), where a = 2

2
p

√
λ+1
. Then ‖x‖λ = ‖y‖λ = 1, x + y = ( a

2
2
p
,− a

2
2
p
), and

x− y = ( a
2
2
p
, a

2
2
p
). Hence

CNJ(Xλ) ≥ C ′NJ(Xλ) ≥
2
2
p + λ2

2
q

2(λ+ 1)
,
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and

J(Xλ) ≥

√
2
2
p + λ2

2
q

λ+ 1
.

Therefore, the proof of the example is complete. �
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