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The purpose of this paper is twofold. First, we intend to clarify the 
relevance of conditions of the type considered in [A, DJS, MT] on the 
measure of coronas in the study of singular integral operators. The main 
result in this direction is given in Theorem (1.19), where we show that for 
a space of homogeneous type satisfying condition (H,), see (1.5), a 
normalization can be given to satisfy condition (L,), see (1.3). This result 
allows us to interpret (H,) as a quantitative property ensuring that the 
order of the normalized space is at least equal to a. Examples show that, 
in general, tx cannot be improved. An approximation of the identity of 
R. Coifman’s type is obtained for normalized spaces of order a without 
restrictions on the measure of the whole space X or the existence of atoms 
for the measure. This allows us to get rid of the condition (H,) in the 
results of Chapter II. 

Second, in Chapter II we study singular integral operators with condi- 
tions on the associated kernel which generalize those of [A, DJS, MT], 
allowing the kernel to be unbounded, see [KW]. 

The conditions we assume on the kernel are stated in (2.3), (2.4), (2.5), 
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and (2.6). They are inspired in the L’-Dini condition of [KW]. The main 
result of the paper is to show that T is weakly bounded if and only if T$ 
is a function given by an explicit formula involving the kernel associated to 
T and Tl = g, see Theorem (2.27). By a systematic use of this formula we 
obtain the following results: 

If T is a weakly bounded singular integral operator and Tl belongs to 
B.M.O., then 

(a) The kernel associated to T is equal to zero if and only if there 
exist h(x) EL” and Tf(x) = h(x) f(x) (see (2.31). 

(b) T maps Lipschitz functions into bounded Lipschitz functions if 
and only if Tl = 0 (see (2.32)). For related results see [L]. 

(c) If T*l also belongs to B.M.O., then T satisfies estimates of the 
type given in Lemma 2.3 of [DJS], which allow the L2 theory to develop 
(see (2.34)). 

Finally, we give an application to operators defined by principal value 
integrals, see (2.37), obtaining a priori Lipschitz estimates for some 
parabolic partial differential equations. 

I. GEOMETRY OF SPACES OF HOMOGENEOUS TYPE 

We say that a real valued function d(x, v) defined on Xx X is a quasi- 
distance on X if 

(i) d(x, y)>O and d(x, y)=O if and only if x=y, 
(ii) d(x, y) = d(y, x), and (1.1) 

(iii) 4x, y) 6 KCd(x, 2) + d(z, y)], 

hold for every x, y, and z in X and K a finite constant. The set 
(Y:4w)~r} is denoted by B,(x, r). This quasi-distance defined a 
uniform structure on X, the family {(x, y) : d(x, y) < a) being a basis of the 
uniformity. Let ,u be a positive measure on a a-algebra of subsets of X 
which contains the open sets and the balls B,(x, Y). We say that (X, d, /A) 
is a space of homogeneous type if there exists a finite constant A such that 

holds for every XEX and r > 0. It is known [MSl] that it is always 
possible to find a quasi-distance d’(x, y) equivalent to d(x, y) and 
0 <p < 1, such that 

(LB) 1 d’(x, 2) -d’(y, z)l d CrleBd(x, y)B (1.3) 
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holds for whenever 8(x, z) and d’(y, z) are smaller than or equal to r, with 
C a finite constant. Thus we can assume that d(x, y) satisfies condition 
(LB) for some O-=/3< 1. 

We say that a triple (X, d, cl) is a normalized space if there exist 
constants K,, KZ, A,, and A, such that 

0) ifJh(W <r<&p(X), then A,r<p(B,(x,r))<A,r, 
(ii) if Y < K,p((x}), then B,(x, r) = {x}, and (1.4) 

(iii) if r > K+(X), then B,(x, r) = X 

These there conditions imply that (X, d, p) is a space of homogeneous type. 
Let (X, d, p) be a space of homogeneous type, with its quasi-distance 

satisfying condition (Lc,). Then we shall say that this space satisfies the 
condition (H,), 0 <a < 1, if 

flL(B& r + r l -V)) - p(BJx, r - r1 -Ps@)) 

G CdB&, r)Yea P@&, s)Y (1.5) 

holds for 0 < s < r and x E X, with C a finite constant. 
The main purpose of this chapter is to prove that in a space of 

homogeneous type satisfying condition (II,), (l-5), a normalization can be 
found such that its quasi-distance satisfies condition (L,), (1.4). Also, an 
approximation of the identity, made of Lipschitz functions of order a, of 
the type introduced by R. Coifman is given. 

(1.6) LEMMA. Let (X, d, p) satisfy condition (II,). Then either 
p({x})=Ofor every xEXor p({x})>Ofor every xEX. 

This result is proved in [MT]. We give a proof here for the sake of 
completeness. 

Proof: Let us assume that there is a point x E X such that p( (x}) = 0. 
Let VEX, y#x. Then y belongs to B,(x, d(x, y)+d(x, Y)‘-~s@)- 
B,(x, d(x, y) - d(x, y)lPB ss), for every s < d(x, y). By condition (H,), we 
have 

,4((y))) G CABAx, 0, Y)))’ --a ,@,k s)Y. 

Since lim, _ 0 ~.@~(x~~))=A{xl)=O, we get P({YI)=O. 

Let (X, d, ,u) be a space of homogeneous type and define 

6(x, x) = 0 and if x z Y, 4x, Y) = P@&, 4x, ~1)). (1.7) 
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(1.8) PROPOSITION. Thefunction 6(x, y) satisfies 

(i) 6(x, y) 3 0 and 6(x, y) = 0 zf and only if x = y, 

(ii)’ &G Y) <.4&y, XL and 

(iii) W, y) <A* l&x, z) + 6( y, z)l, 

for every x, y, and z in X. 

Proof Part (i) is obvious. Let us consider (ii)‘. If VE B,(x, d(x, y)), 
we have d(v, y) < K Jd(v, x) + d(x, y)l < 2Kd(x, y); then 6(x, y) = 
p(BJx, d(x, y))) < A(B,( y, d(x, y))) = A@ y, x). Let us consider (iii). If 
d(x, z) G d(z, y), we have that u E B,(x, d(x, y)) implies d(u, y) G 
K Id(u, x) + d(x, y)l < 2Kd(x, y) and since d(x, y) <K (d(x, z) + d(z, y)l G 
2Kd(?, y), it follows that d(u, y) < (2K)’ d(z, y). Thus, 

6(x, Y) G P(B&, 0, Y)) G A2/@,(~, 4x ~1)) = A24y, 2). 

Analogously, if d(z, y) d d(x, z) it turns out that 6(x, y) < A26(x, z). This 
proves part (iii). 

We observe that 6(x, y) does not necessarily satisfy condition (ii) of 
(l.l), but it does satisfy (ii)’ of (1.8). We shall call this 6(x, y) the 
non-necessarily symmetric quasi-distance associated to (X, d, ,u). We denote 
by B,(x, r) the set (y : 6(x, y) <r}. 

(1.9) PROPOSITION. Let (X, d, p) be a space of homogeneous type and 
6(x, y) the non-necessarily symmetric quasi-distance associated to (X, d, p). 
Then the following properties hold: 

(i) ifO<r<p((x}), then B6(x,r)= {x}, 

(ii) if p( (xl) < r, then p(B&, r)) < r, 
(iii) if,u(X) < r, then B,(x, r) =X, and 

(iv) ifr<p(X), then A-*r,<p(B,(x, r)). 

Proof: Part (i): if y~B~(x, r) and y #x, then r <p({x}) < 
p(B(x, d(x, y))) = 6(x, y) <r, which is a contradiction. Then B,(x, r) = 
(lx}). Part (ii): if &ix}) <r, since 

B&G r) = U {Bd(x9 4x, Y)) : Y E B&G r)), 

it turns out that p(B,(x, r))) < r. Part (iii): let y E X; since 
p(BJx, d(x, y)) < p(X) < r, it follows that y E B,(x, r). Part (iv): assume 
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that B&(X, I) = (xl. This implies that for every y #x, p(B,(x, d(x, y)))> r. 
Let { yn} be a sequence of points of X such that 

m=limd(x,y,)=inf(d(x,y):y~X,y#x}. 

If this limit m is equal to zero, we have p( {x}) = lim ,u(B(x, d(x, y,))) > r 
and therefore p(BJx, r)) =p( (x}) > r > A-*r. If m is positive, then 
B,(x, 3m/4) = {x} and ~(B$(x, 2k3m/4)) > r. Thus, 

r < 44&& W4)) = 4.4 (~1) = &(B& r)), 

verifying (iv). Let us assume now that BI(x, r) # {x}. Let s = sup{ d(x, y) : 
x # y, YE B&(x, r)}. Then s> 0, and moreover s is finite, since otherwise 
B&(X, r) =X and then r < p(X) = p(B,(x, r)) < r, which is a contradiction. 
Let t <S < 2t. If A-*r > p(B,Jx, r)), we shall show that for every positive 
integer n, BJx, (2K)” t) = B,(x, S) holds. For n = 1, we have 

p(Bd(x, 2KZ)) < Ap(B,(x, t)) < Ap(B,(x, r)) G A-+-c r. 

If there were y E B,(x, 2Kt) - B,(x, s), there would exist y E B,(x, r) and 
d(x, y) > S, contradicting the definition of S. For n + 1, we have 

@d(X, WY + l 1)) 6 40,(X cw” t)) = 44&(x, s)) 

d 44&(x, 2Kt)) 6 A2CIuMX, 0) 

6 A*p(B,(x, r)) -c r. 

Again, since (2K)“+ ’ t > S, it follows that B,(x, (2K)“+ ’ t) = B,(x, s). 
Therefore, we have Bd(x, S) = X From 

r < p(-V = ABd(X, s)) = AB&, 2Kt)) < 44B&, t)) 

G 40&c r)), 

it follows that 
Ae2r < k’r < p(B,(x, r)), 

which is a contradiction and (iv) is proved. 

(1.10) LEMMA. Let K’=(C+K)2’8, where C is the constant in condition 
(LB) of (1.3). Then, if (X, d, p) saatisfies conditions (LB) and (Z-I,) of (1.3) 
and (1.5), respectioely, we have 

Wc,(x, 4x’, ~1)) -I@&‘, 4x’, Y)))I 

< C”p(B,(x, 4x’, y)))‘-” 14&(x, 4x, x7))‘, 

provided that K’d(x, x’) G d(x’, y). 
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ProoJ: Let us assume first that p(Bd(x, d(x’, y))) is larger than 
p(BJx’, d(x’, y))). If z E B(x, d(x’, y)), we have 

4 z, x’) <K Id(z, x) + d(x, x’)l < 2Kd(x’, y). 

Then, by condition (L,) of (1.3), 

d(z,x’)<d(z,x)+C(2K)1-Bd(x’,y)1~Bd(x,x’)P, 

or 

d(z, x’) < d(x’, y) + d(x’, y)’ -B (C”72K)” -/Q’~ d(x, x’))! 

Since C1’8(2K)‘1p8”p d(x, x’) < K’d(x, x’) < d(x’, y), condition (H,) 
implies 

P(B&, 4x’, Y))) - ,M&‘, 4x’, ~1)) 

G C”P(B,(X’, 4x’, ~1))’ - OL p(B, (x’, 4x, xl)))’ 

G C”AB,(x, 4x’, Y)))’ -B p(Bc,(x, d(x, x’))Y. 

The case p(B,(x, d(x’, y))) < p(BJx’, d(x’, y))) is similar and even simpler. 

(1.11) PROPOSITION. Let (X, d, p) be a space of homogeneous type 
satisfying conditions (LB) and (H,). Then, the non-necessarily symmetric 
quasi-distance 6(x, y) associated to the space satisfies 

(i) (6(x, y) - 6(x’, y)( < Cr’-‘8(x, x’)‘, whenever 6(x, y) and 
6(x’, y) are less than or equal to r, and 

(ii) for every xEX, 6(x, y) is a continuous function of y. 

Proof: We can assume that d(x, y)>d(x’, y). Let r = [d(x, y)+ 
d(x’, y)]/2 and s = [d(x, y) - d(x’, y)]“! [d(x, y) + d(x, ~)]‘-“~/2. It is 
easy to see that 

WV’= [4x, Y) - 4x’, v)l/Cdk Y)- 4x’, ~11 G 1, 

that is to say, s d r. Moreover, 

r+r’-fisB=d(x, y) and r - r1-8s8 = d(x’, y). 

By condition (LB), we have 

d(x, y) - d(x’, y) < Cd(x, y)‘-B d(x, x’)~; 
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therefore, s < Cd(x, x’). It is also evident that r < d(x, y). Applying condi- 
tion (H,) with the given r, 

A&Ax, 4x9 Y))) - Pwfk 4x’, Y)) 

G Cl4Bd(X, 4x9 Y)))’ --01 PL(Bd(X, 4% x’))Y. 

On the other hand, by Lemma (l.lO), it follows that if K’d(x, x’)fl c 
4x’, Y)? 

M&(x, 4x’, ~1)) - AB&‘, 4x’, Y)))I 

G CI~~,(X, 4x’, Y)))‘-” ABc,(x, 4x, x’)))=. 

If we assume that K’d(x, x’)~ 2 d(x’, y)B, we have 

= /4B& 4x’, Y)))‘-” ,u(Bci(x> 4x’, Y)))” 

G C~(Bcdx, 4x, Y)))‘-a AWx, 0, x7))‘. 

On the other hand, 

/@cAx’, 4x’, Y))) 

= A&(X’, d(x’,.yN)l-a M&‘, 4x’, Y)))” 

< CP(B,(X’, 4x’, Y)))‘-” /4&W, 4x, x7))=. 

Let u E B,,(x), d(x’, y)); we have 

d(u, y) s K[d(u, x’) + 4x’, y)] < 2Kd(x’, y) < 2Kd(x, y), 

showing that BJx’, d(x’, y) c B,(y, 2Kd(x, y)). Therefore, 

@&‘, 4x’, Y))) G ~L(&(Y, 4x, Y))) G C’AB,(x, 4x, Y)))“. 

Thus, we have 

M$,(x’, 4x’, Y)) f C”P@,(X, 4x, Y)))‘-” A&(x, 4x, x’)))=. 

Collecting results, it follows that 

1% Y) - W’, Y)I G MB& 4x, Y))) - PL(&~, 4x’, Y)))I 

+ MB&, 4x’, Y))) - PW&‘, 4x’, Y)))I 

< CP(B,(X, 4x’, Y)))‘-” @AX, 4x, x7))‘= 
= Cd(x, y)’ -= 6(x, Xl)=, 

which implies (i). 
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As for part (ii), by virtue of Lemma (1.6) we have two possible cases. 
First, for every x E X, ,D( (x}) > 0. In this case X is a discrete space for both 
d and 6 and therefore, every function on X is continuous. The second case 
is when p( (x}) = 0. Then, if d(x, v) > d(x, v’), choosing r and s as 

r+r’PPsB=d(x, y), and r-rl-Psfl=d(x, y’), 

we get 

r = Cdl-x, Y) + 4x, Y’IIP 
s = {(Cd(x, Y) - 4x9 y’)lP(Cd(x, Y) + 0, Y’W)’ -‘)‘? 

s 6 r, and r d d(x, y). Thus, by condition (U,), it follows that 

IW, Y) - &G ~‘11 d CP(~,(X, 0, Y)))’ -’ A&(x, s))*. 

Since y’ tending to y implies that s tends to zero and lim p(BJx, s)) = 
p( {x}) = 0, the continuity of 6(x, v) is proved. 

In the rest of this chapter, (X, 6, p) will be a triple satisfying the 
following conditions : 

(i) 0<6(x,y)<cc and 6(x,y)=O if and only if x = y 

(ii) W, Y) G WY, xl, 
(iii) W, Y) G KC&x, z) + G, Y)I, 
(iv) ifKlpL({x})<r<K2p(X), then (1.12) 

rAl Gp(B&, r)) < rA2, 
(VI if r<KIA{x)h then B,(x, r)= {x} and 
(vi) if r > K*p(X), then B,(x, r) = A’, 

where K, K1, K2, A i, and A, are constants. These conditions imply the 
existence of a constant satisfying (1.2), i.e., p(Ba(x, 2Kr)) < Ap(B,(x, r)). 
We shall call a triple (X, 6, p) satisfying conditions (1.12) a non-necessarily 
symmetric normalized space. The only difference between this and a nor- 
malized space is that instead of assuming 6 to be symmetric, we assume 
that (ii) of (1.12) holds with K non-necessarily equal to one. 

(1.13) THEOREM (Approximation of the Identity). Let (X, 6, p) be a 
non-necessarily symmetric normalized space of order a, that is to say 

16(x, y) - 6(x’, y)l < Cr’-“6(x, x’)’ (1.14) 

holds for an a, 0 < a < 1, whenever 6(x, y) < r and 6(x’, y) < r. If 8(x, V) is 



SINGULAR INTEGRAL OPERATORS 33 

non-symmetric, we assume that 6(x, y) is a continuous function of y. Then, 
for every t, 0 < t < Q(X), there is a function s,(x, y) satisfying 

0) OGs,b, Y) G CMBdx, t))-’ + P@~Y, t))-‘I, 
(ii) $6(x, y)< C-‘t, 

then SAX, Y) 2 C-‘CAB&, I))-’ + Ably, t))-‘I, 
(iii) s,(x, y) = SAY, x) 
(iv) supp s, = ((x, Y) : 6th Y) < Ct} 
(VI IskG Y) -SW, Y)I 

<c6(x,x’)* [p(B,(x, t))-‘+p(B~(x’, t))-‘I”” 

(vi) f s,(x, Y) 44~) = 1, 
where C is a finite constant. If necessary, C can be chosen as large as desired. 

In order to prove this theorem, we shall need some lemmas. 
Let h(t) be a C” function defined on 10, co) that satisfies h(t) = 1 if 

O<tfl, h(t)=Oif t>A, and O<h(t)<l for every t>O. 

(1.15) LEMMA. If u,(x, y) = h(6(x, y)/t), then 

Iu,(x, Y)-W’, Y)l <cJ(x,x’)c( Cp(Ba(x, t))-‘+(B,(x’, t))-‘}“. 

Proof. Let 6(x, y) < 2KAt and 6(x’, y) < 2KAt. Then, by (1.14), we 
have 

I&G Y) - M’, Y)I G Ilh’ll m 1% Y) - Qf, YWt G C(@x, W)“. 

If 6(x, y) > 2KAt and 6(x’, y) < At, then 

2KAt < 6(x, y) < K(6(x, x’) + 6(x’, y)) < K6(x, x’) + KAt; 

thus, t < At < 6(x, x’). Therefore 

IW, Y) - %W, Y)I = 1 < (w% Jo/t)*. 

The other possible cases are trivial. Now, if K,p(X) 2 t > 
min(K, A-‘p( {x}), K, A-‘p( {x’})) then 

IW, Y)- %(X’, Y)l G c’w, XT CPP,b, t))-’ + /M,(x’, t))-‘I”. 

If t < min(K,A-‘p( {x}), K1 A-‘& {x’})), then B,(x, t) = (x}, BJx’, t) = 
{x’}, and 

24,(x, y) = 1 if x = y and u,(x, y) = 0 if x # y, 

q(x), y) = 1 if x’ = y and ut(x’, y) = 0 if x # y. 
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Assume x Zx’. Then K1p( (x}) <6(x, x’) and K,p( {x}) < 6(x’, x) < 
K&x, x’), yielding 

I~,(~,Y)-~,(X’,y)l~1~C~(x,x’)aC~u({X})-1+~L((X’})-‘la 
< c’qx, X’y [p(B,(x, t))-’ +pu(ll,(x’, t))-‘]a. 

(1.16) LEMMA. Lef 

m,(x) = J ut(x, Y) MY). 
Then m,(x) is well defined and 

(i) b,(x) - m,(x’)l G W 4 .‘Y CP(~,(X, ~))-‘+L4~,(x’, t))-‘I” 
. CP(~a(X, f)) + P@&‘9 t)l; 

moreover, 

(ii) P(B&, t)) G m,(x) G i4Bs(x, At)). 

Proof: The function m,(x) is well defined since we assume that 6(x, .v) 
is a continuous function of y. On the other hand, by Lemma (1.15), we 
have 

< c’S(x, X’Y Cp(B,(x, t))-’ + (p(B&‘, t))-‘l” 

x MB&, t)) + Wdx’, t))l* 
As for (ii), since u,(x, y) = 1 if YE B,(x, t) and ut(x, y) =0 if y$ B(x, t), 
(ii) follows. 

(1.17) LEMMA. Let 

u,(x, Y) = m,(x)-’ 44 Y). 

Then, 

(i) lv,(x, Y) - u,W9 Y)I 
<C&x, x’y [p(Ba(x, t))-‘+p@,(x’, t))-‘I”“, 

(ii) s udx, Y) 44y) = 1, and 
(iii) C-’ < 1 v((x, y) dp(x) < C, 

where C is a finite constant. 
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Proof: We can assume that m,(x’) <m,(x). Then 

ut(x9 Y) - dx’, Y) = m,(x)-’ C%(X, Y) - %(X’, Y)l 
+ W’, y)Cmt(x’) - m,(x)] %(x)-l m,(x’)-‘. 

By Lemmas (1.15) and (1.16), it follows that 

lu,(x, Y) - 4(x’, y)l G C’Q, X’Y Cp@a(x, t))-’ + p(B,(x’, t))-ql+=. 

As for (ii), it is apparent from the definition of u~(x, y). In order to prove 
(iii), we observe that 

C-WY) G m,(x) G Cm,(y), 

for x E B,( y, At). This implies (iii). 

Proof of Theorem ( 1.13). Let 

w(z) = 1 u/Jx, z) d/A(x) --I. ( ) 
We define 

&(X9 Y) = ~4(-% z) w(z) Ut(Y, z) 44z). 

Part (i) By definition of u, and from part (iii) of Lemma (1.17), we 
get 

0 Gs,(x, Y) G h(x)-’ m,(r)-’ CP(&(X~ t)) + P(&(Y~ t))l 
6 CCp@(x, t))-’ +p(&(y, W’l. 

Part (ii). If 6(x, z) < C-‘t and 6(x, y)< C’t, then 6(y, z)g 
K(6(y, x)+6(x, z)) f 2KAC-‘t < f, if C is chosen to be 2KA < C. Then 

s,(x, Y) 2 C%(x)-’ mt((y)Ci4Ba(x9 f)) + P(&(Y, f))l 
2 c-lCP(&(x, W’+l4&(y, or’I. 

Part (iii). follows from the definition of sI(x, y). 
Part (iv). If s,(x, y) >O, there exists z such that 6(x, z) < At and 

6(y, z) < At, therefore 6(x, y) < Ct. 
Part (v). By Lemma (1.17) we have 

b,(x, Y) -&(X’, Y)I GJ Iu,k z) - PAX’, ZN w(z) U,(Y, z) 44z) 

< cqx, x’y [p(B,(x, t))-’ +p(B,(x’, t))--l]‘+=. 
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Part (vi). By Lemma (1.7) we have 

j s&G Y) 44Y) = 1 ut(x, z) w(z) (1 Ut(Y, 2) MY)) 44) 

= s 0,(x, z) d/l(z) = 1. 

(1.18) THEOREM. If (X, 6, p) is a non-necessarily symmetric normalized 
space of order a, then there exists a’, symmetric and equivalent to 6, such 
that (X, 6’, p) is a normalized space of order c(, that is to say, it satisfies 
conditions (1.4) and (L,). 

ProoJ Let C be the constant of Theorem (1.13). If x # y, let i be the 
integer such that CA -‘-I < 6(x, y) < CA-i. Let p be the integer satisfying 

c-‘A-P-*<K*~(X)~C-‘A-P-l, 

and let n be the positive integer satisfying 

C2Ap”< 1 <C*A-“+I. 

Then, if k d i, we have 

CA-kBCA-i26(x, y)>K,p({x}); 

thus, ~(B,(x, A-‘))~p(B,(x, CA-‘))% A-‘. On the other hand, we have 

CA-‘-‘<6(x, Y)<K~,LL(X)<C-~A-~-~, 

therefore, 

1 < C2A --n+ 1< Ai--p--n, 

thus, i>p+n. 
Moreover, 

andifk>i+l, then 

We have that 

6(x, y)>CA-‘-‘>CA-+ 

4-T Y)’ f: SAX, Y) 
k=p 
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satisfies 

s(x, y) = f: sA-t(x, y) < C’ $, Ak < C”A’< C”‘d(x, y)-’ 
k=p k=p 

and 

s(x, y)>s,-ri-.,(x, y)> CA’2 C6(x, y)-‘. 

Next, we estimate Js(x, y) - s(x’, y)J. We can assume that 0 < 6(x, y) < 
6(x’, y). Let m be an integer satisfying A” >/ 2K. Then, if A”d(x, y) G 
6(x’, y), we have 

A”d(x, y) <6(x’, y) < Kd(x’, x) + K&x, y), 

which implies 6(x’, y)/2 ,< K6(x, x’). Then 

I-e Y) -4x’, y)l < C’d(x, y)-’ < C” 6(x 
9 
yg$, y)“. 

If 6(x, y) <6(x’, y) < A”d(x, y) < CAmpi+ ‘, and since for k > i, CAwk < 
CA-‘- ’ < 6(x, y) < 6(x’, y), we have sA-k(x, y) = sA-P(x’, y) = 0; thus 

I44 Y)-4x’, Y)l G i ISAX, Y)-SAX’, y)l, 
k=p 

and by Theorem (1.13), we get that 

Is(x, y) -s(x’, y)l < c’6(x, x’)= 1 Ak(l+a) 
k=p 

< C”A’(* +%3(x, y)” ,< C”‘~(X’, y)-” +.I 6(x, x’)‘. 

Now, let us define 

d’(x, x) = 0 and 

&x, y)=.e, v)-’ for xfy. 

We have already shown that there exists a constant C>O such that 

C-9(x, y) < qx, y) < cqx, y). 

Let us estimate (8/(x, y) - 8(x’, y)l. If x= y, then 

18(x, x)-&(x’, x)1 < cr’-=8(x, x’)= 
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if 6(x, x’) < r. Analogously for x’ = y. Thus, we can assume that x #x’, 
y # x, and y # x’. Then 

IW, Y) - Ux’, Y)l G c’ I44 Y) -SW, Y)l 6’(x, Y) W’, Y), 

which, by previous estimates on s(x, y), is smaller than or equal to 

C” w, x’) 
m Y) m’, Y)” 6’(x, y) 6(x’, y) < Car+-“6(x, x’)‘, 

if 6(x, y) <6(x’, y) 6 r. This ends the proof of the theorem. 

(1.19) THEOREM. Let (X, d, ,u) be a space of homogeneous type satisfying 
conditions (LB) and (H,), Then a normalization of order c1 can be found for 
this space. 

Proof: The normalization is given by the quasi-distance 6’(x, y) of 
Theorem (1.18), where 6(x, y) is the non-necessarily symmetric quasi- 
distance associated to (X, d, p) in (1.7). Propositions (1.9) and (1.11) and 
Theorem (1.18) show that (X, 6’, ,u) is a normalized space of order a. 

(1.20) PROPOSITION. Let f be a Lipschitz function of order q < a, with 
respect to the quasi-distance 6, supported in B,(x,, r), and (X, 6, p) a 
normalized space of order a. Then if0 < q’ < q, we have that the functions 

f,(x) = j Sr(x, Y) fly) My), 

for t < K,p(X), satisfy 

(i) supp fi c B(x,, r + C”r’-‘, t”), if t < r, 

(ii) If,(x)- fJx’)I < C”-(‘+a)p(B(xO, r))l+q 6(x, x’). 

(iii) I(L(x)-f(x))- (fW)-f(x'))l G C(t) ~(x,x')~, 
where lim ,-to C(t)=O. 

Proof: The support of f,(x) is contained in the set of point x such that 
there exists y satisfying 6(x, y) < Ct and 6(x0, y)<r. Then Ib(x,, x)- 
6(X,, y)l < @(t + r)lpa 6(x, y)” < @(t + r)l-’ ta < Cnrl-‘ta. 

Let us consider part (ii). We have 

If,(x)-f,W)l Gj Ist(xv Y)-s~(x', Y)I If(y)1 40). 
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By Theorem ( 1.13), this is smaller than or equal to 

cm9 X’Y M&(x, W’ + ABs(x’9 N-lll+a J If( 40) 

< c’qx, x’y t - (’ +*‘Cp(B(x,, r))V + I. 

As for part (iii), given E > 0, assume that I < E; then 

If,(x) -f(x)1 G j st(x9 Y)f(Y) -f(x)1 MY) 

If 6(x, x’) 2 t, we get 

G c I s,(x, y) 6(x, y)” d/l(y) < 0”. 

If,(x) -f(x)1 < c&~-“‘G(x, x’)V’. 

Analogously for fr(x’) -f(x’). If 6(x, x’) < t, we have 

Icfr(x)-f(x))-- (f,W) -fW))l 
f If,(x) -stW)l + If(x) -fW = II+ 12. 

For Ii, we have 

If,(x)-ftw = 1 l&(X, Y)--Sr(X’9 Y)l f(Y) 44Y) 

G s ls,(x, Y)-S,W, Y)l If(Y)-fb)l MY) 

<cqx,xy--l--rX j &x9 Y)” -4(Y) 
Es(x, 4)” B&x’, AI) 

< c’d(x, XI)= t-‘-=t*+l< c”6(x, x’)@ &n--1’. 

The same estimate holds for If(x) - f(x’)l = I*, This ends the proof of the 
proposition. 

II. SINGULAR INTEGRAL OPERATORS 

In this chapter (X, 6,~) will be a triple satisfying the following condi- 
tions : 

(i) 0 <6(x, y) < cc and 6(x, y) = 0 if and only if x = y, 

(ii) @x9 Y) = a(~, xl, 
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(iii) Cc, Y) < K(W, 2) + &z, v)), 

(iv) ifkld{xl) < r 6 k,p(X) then rA I < p(B,(x, r)) < r-4,, 

(v) if r< k,p( {x}) then B,(x, r) = {x}, (2.1) 

(vi) if r>k,p(X) then B,(x, r) = X, and 

(vii) there exists ~1, 0 < c1< 1, such that 

16(x, y) - 6(x’, y)( < Cr’-‘8(x, x’)’ 

holds, whenever 6(x, v) < r and 6(x’, y) < r, 

where K, k,, k,, A,, A,, and C are constants. These conditions imply the 
existence of a constant A satisfying (1.2). For the sake of simplicity we shall 
assume that A = K. 

Given a ball B and a number y, 0 < y < CI, we denote by A(B) the Banach 
space of complex-valued functions supported on B, such that 

I@(x) - II/(Y)1 G cw, Y). (2.2) 

Given II/ E A(B) we shall denote by 111$111, the infimum of the constants C 
appearing in (2.2). 

We say that 9 belongs to & if @ E A)‘(B) for some ball B. On Al; we 
define the topology which is the inductive limit of the spaces A?(B), see 
[MS2], and (ng)’ denotes the space of all continuous linear functions on 
/ig. By (&}0 we denote the subspace of all functions $ in /ig such that 
J YG) 44x) = 0. A 3 stands for the space of bounded functions # satisfying 
(2.2). As usual, B.M.O. is the space of all the locally integrable functions 
g on X such that 

P(B)-’ 5, lg(x)-m,gl44x)~C, 

where B is any ball and mB g = ,u(B) - ’ Se g(x) C+(X). 
We consider a continuous linear operator T from ,4g into (/ig)’ for some 

y, O<y <a, associated to a kernel k(x, y), that is to say, for any x not in 
the support off 

V(x) = j k(x, Y) KY) 40). 

Let &x, v) be the function defined by 

supfN,(x, s))-l P(B,(x s))-’ 

4 Jk(u, u)l d/~(u) d(o) : 6(x, y) >&4A* (2.3) 6(U,X)<& 
H%Y)-=E 
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We say that k satisfies an L’-Dini condition 1 <r < co, if the following 
conditions hold : 

for any R > 0, 

> 

11’ (2.4) 
(I& VI’+ IE(Y, x)1’) MY) G CR-““, 

R<6(x,y)CAR 

there exists q, 0 < q < a, such that if A6(y, z) < R, then 

R<d(y x)<AR (k(y,x)-k(z,x)lrdp(x))l’r<CR-llr’ (y)“, (2.5) 
7 . 

and 

Jk(x, y) - k(x, z)l’ dp(x) ‘. (2.6) 
R<S(y,x)<AR 

(2.7) LEMMA. Let k(x, y) be a kernel satisfying (2.4), and q, 0 -c q <a, 
then 

Proof. If s < k, p( { x}), then the integral is equal to zero. It is enough 
to assume s < k,p(X). Then 

s 6(x, Y)” h, Y) 40) 40, s) 
’ ’ ~A-js<d(x,y)A-i+4 6(x, Y)” &x, Y) 40) 

j=O 

<f 
0 

11' 

,4-js<d(x,y)6A-j+l I&> y)l’My) 
j=O > 

I/r’ 
X 

0 A-h<6(x,y)dA-,+‘s 
W Y Y”’ 44 y) 

> 

6 c f (A -js)-1’r’ (A -is)” (A -js)l’r’ < cy. 

j-0 

(2.8) DEFINITION. We say that T is weakly bounded of order y, 0 < < a, 
if T is a linear operator from A; into (A;)’ and 

I<% g)l ~CP(~)‘+*” lllflll, Illglll~ (2.9) 
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holds for any ball B and functions f and g with their supports contained 
in B. 

(2.10) LEMMA. Let T be a continuous linear operator from A$ into (A:)’ 
for some y, 0 < y < c(, associated to a kernel satisfying (2.4) and (2.5). Let us 
assume that T is weakly bounded of order q, for some Y,I, y < q. Then, for any 
f; g, and h in A;, y’> y, 

holds. 
x 4x, Y 1 h(y) 44x) d/Q) (2.11) 

Proof It is clear that (2.11) holds if T is defined by integration against 
a locally bounded kernel. 

In the general case let T, be defined from Ag’ into (Ag’)’ by 

fi and g, are introduced in Proposition (1.20). Let B= B,(x,, r) be a ball 
containing the support of f; then for z E B, the support of s,( -, z) is 
contained in the ball B,(x,, C,r). Thus, the application 

z --f $I(., 21, z E B, 

is a AY’(Bs(xO, C,r))-valued Bochner integrable function with respect to the 
measure (f(z)1 dp(z). Therefore, 

TAG Y) = (Ts,(., ~1, s,(-, Y)> 

is the kernel associated to T,. 
Since by Theorem (1.13) s,(., z)E,~& then, by (2.9) (weak boundedness) 

and (2.4), if t < k2p(X), we get 

I Tt(z, Y)I d C MB&, t)) + A&(Y, t))l -‘. 

Then (2.11) holds for T,. On the other hand, by Proposition (1.20), f, 
converges to f in A; for f in A$ when t goes to zero. Therefore, ( Tlf, g) 
converges to (Tf, g) for f and g in Ag’. Moreover, T,(x, y) converges 
pointwise to k(x, y). Using again (2.4) and weak boundedness, it follows 
that for t sufficiently small, ( Tt(x, y)l < Cit(x, y). Then, by the Lebesgue 
dominated convergence theorem, the right hand side of (2.11) is equal to 
the limit of 

ss f(x) I&) - g(x)1 Tt(x, Y) h(y) 44~) My). 
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Given a ball B = B,(z, s) we define 

h,(Y) = h(@, y)/4A2G 

where h is the function considered in (1.15). 

(2.12) 

(2.13) LEMMA. Let k(x, y) be a kernel satisfying (2.5) and B= B,(z, s). 
Then for any x1, X*E B 

IJ W,, y) - k&v y))(l -h,(y)) 44~) G C / 

Proof It is enough to prove the lemma for k,p({z}) <s< k2p(X). 
Then 

J 4A% < S(s, y) 
IWl, y) - k(x,, VII 44~) 

< J 

Therefore, by (2.5), this is less than 

5 (A’+‘3As)“” (A’3As)-1”’ (6(x,, x,))l (A’3As)+7 
/=O 

(2.14) LEMMA. Let k(x, y) be a kernel satisfying (2.5), B= B6(z, s), and 
MEAL, O<y<a. Then 

I&(X) = J W, Y) -&, Y)) &(y)(l -h,(y)) 44y) 

is weil defined for any x E B. Moreover, I& E A Y(B)’ and ZB satisfies (2.9) for 
functions supported on B. 
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ProoJ We can assume s<k,,u(X), since otherwise I& = 0. Let 
$ E A?(B). By Lemma (2.13) we get 

If AREAS then 

II ZB4(X) W) 4-4x) G a4w+2y 1114111, IIIICIIII,. 

(2.15) DEFINITION. Let T be a linear operator from /ig into (Ag)‘. 
Given B = B,(z, r) we define TB from Ai into /IY(B)’ as 

Td = T(@,) + Id. 

(2.16) LEMMA. Let T be a continuous linear operator from A; into (A:)’ 
associated to a kernel satisfying (2.5). Then for any pair of balls 
4 = B&,, rl) = B2 = Bh, r2), 

holds for any $E (AY(B,)}O, the set of functions in AY(BI) with integral 
equal to zero, and 4 E Ai. 

ProoJ We have 

= <T(~~Ez,), $> +I WI j- 4x, Y)PB,(Y)-~B,(Y)I 

x d(v) 44y) 4.4x) + j- Z&(x) III(x) 44x). 

Clearly, 

T4Uw~,,)(z,)=~ k(z,, Y) d(~)Ch,,-h,,(~)ldy, 
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and 

-r,ecz,,=j Ck(z2, Y)-&lP Ym-h3*(Y)l dY)dY. 

Then, since j Ic/ = 0, we get 

+Jtwj CWY)-k( z19 Y)l Q(YW -hB,(Y)144Y) 44x) 

= <TW,,)v ti> + (Ze,h JI> = G,h JI>. 

It is clear that 

whenever supp(4) c B,. Then Lemma (2.16) allows us to introduce the 
following extension of T. 

(2.17) DEFINITION. Let T be a continuous linear operator from A& into 
(AZ)’ associated to a kernel satisfying (2.5). For any C$ E Ai and J/ E {&}, 
with supp $ c B, we define 

(2.18) LEMMA. Let T be a continuous linear operator from A; into (AL)’ 
associated to a kernel k(x, y) satisfying (2.5), and such that T is weakly 
bounded of order y. Assume that Tl = g with g E B.M.O. Then, given a ball 
B = B,(z, r), there exists a constant cg such that for any 4 E F’(B) 

- s Z,l(x) d(x) 44x). 
Moreover, sups IcJ < C, where C is an absolute constant depending on the 

constants appearing in (2.5), (2.9), and jIgllBMO. 

Proof: Given the ball B= B,(z, r), consider the function 

KAY) = h(A24z, y)lr), 
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where h is the function considered in (1.15). This function is supported in 
B,(z, r/A). Therefore the function 

I,(Y) = J WY) MY) 
( > 

-1 

h’,(y) 

is supported in B,(z, r/A) and its integral is equal to one. 
Then, given 4 E A y(B), we have 

where 

CB= (ThB+Z,l -(g-m&)), 1,). 

It is easy to check that 

lllh’8111, G CAWy and lll~L3111y G Q4w(1 +y); 

then, by weak boundedness (2.9), 

I (Th,, ls)l G C/4@ ’ +*’ lllhsllly lll~sllly G C, 

and, by Lemma (2.13), 

l<ZBL /,>I GCP(w+Y lllL2lll,<c. 

Finally, it is clear that 

l(g--m,g9 /,>I <C IIgllBMO. 

These estimates show that lc,l is bounded by a constant C not 
depending on B. 
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(2.19) COROLLARY. Let T be an operator satisfying all the conditions of 
Lemma(2.18). Then geL” if and only if I(Th,,q5)I<CII&I11 for any 
4 E AY(B), where C is an absolute constant not depending on B. 

(2.20) DEFINITION. Let T be an operator satisfying the conditions of 
Lemma ( 18.1). Given 4 E k’(B) and x E B, we define 

TB4(x) = (g(x) - m, g) 4(x) + CB~(X) - ZB l(x) 4(x) 

+ 1 Cd(y) - 4(x)1 Wx, Y) hAyI My). 

(2.21) LEMMA. Let B1 = B6(z1, rl) c B2 = B6(zZ, r2) and q5 E AY(BI). 
Then 

TB’$(x) = TB’&x), for XEB,, 

Proof. First observe that 

cBz - cB, = (Thsz+zB*l-(g-m,g),IB,--I,,) 

+(T~B~+ZB*~-(~-~B~~)‘IB,) 

-(Th~,+z~,l-(g-m,,g),I,,) 

=(~(hB,-hB,)+zBzl-zB,l~zB,)+~B,~-~B,~. (2.22) 

On the other hand 

= s k(x, Y)(hB2(Y) -b,(Y)) 44y) 

+ j W 2, y) - k(z,, y))(l - h,,(y)) dp(y) 

- I k(z,, y)(b,(y) -b,(Y)) My) 

= T(h,-h,,)(x)-zB,l(Z,)-T(hs,-hB,)(z,); (2.23) 

consequently, 

(T(hB~-hs,)-zB,l-zB,l, IB) = <zB21(z1)+ T(hB,--hB,)h), lB> 

=zB*l(Z1)+T(hBz-hB,)(zl). (2.24) 



48 MACiAS, SEGOVIA, AND TORREA 

Moreover, 

J Id(Y) - 4(x)1 WG YMBAY) -h,,(Y)) 44Y) 

= -d(x) {WY YMB,(Y) - h,,(Y)) 44Y) 

= -4(x) mB, -b,)(x). (2.25) 

Then passing up together (2.22), (2.23), (2.24), and (2.25), we obtain the 
result sought. 

Given 4 E A 6, Lemma (2.21) allows us to define Td as the function 

mx, = W(x), (2.26) 

where B is a ball containing the support of C$ and x E B. 

Now we can prove the main result, 

(2.27) THEOREM. Let T be a continuous linear operator from A$ into 
(A:)‘, for every 0 < y < a, with an associated kernel satisfying (2.4) and (2.5), 
and such that Tl = g, g E BMO. Then for any q, 0 c q < a, the following 
conditions are equivalent: 

T is weakly bounded of order v. (2,28) 

For any d~A;l, Td=p~$. (2.29) 

Proof: Let us show that (2.28) implies (2.29). Let tj, BEAM. Then, 
by Lemma (2.10), 

(T4, ti > = ( Ths, &I > + jj +(x)CHY I- d(x)1 W, Y) h,(y) 44x) 44yh 

and (2.29) follows by applying Lemma (2.18). Let us prove the converse. 
Given B = B,(z, s), we apply Lemma (2.7), getting 

Cd(v) -4(x)1 W, Y) ha(y) 40) 
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therefore, for 4, $ E AY(B), 

(2.30) Remark. Consider the operator 

@(x) = g(x) d(x). 

If T is weakly bounded of order y then, for every ball B, 

I<Th,,~,)l GCPW’+*~ lllUll, lllbllly~C. 

This means that for every B, 

II 
g(x) lB(X) dx G c 

and by differentiation (assuming that it holds) we get [g(x)1 6 C. 

(2.31) COROLLARY. Let T be an operator satisfying the hypotheses and 
conclusions of Theorem (2.27). Then the kernel k(x, y) is zero tf and only tf 
Tq$(x) = h(x) Q(x), with h E L”. 

Proof Assume that the kernel is zero. Then 

D(x) = (g(x) - mB g) 4(x) + CB#(x) = (g(x) - mB g + cB) d(x). 

Therefore, by Remark (2.30), g(x) - mBg + cB must be bounded, but 
since cB is bounded this tells us that g must be bounded. In other words, 
h(x) = g(X) - mg g + c& 

(2.32) THEOREM. Let T be a continuous linear operator defined from A$ 
into (Ab)’ for every y, 0 < y < a, weakly bounded of order q for some q, 
0 < n <a, and with an associated kernel satisfying (2.4) and (2.5) for q + E 

with E > 0. Assume that Tl = g belongs to B.M.O. Then T satisfies 

Ill VIII q G C Ill 4111 q and Tq5 is a bounded function, 

if and only tf Tl = 0. 
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Proof: Assume first that Tl = 0. Given x,, x2 E X, 4 E AX, and 
B, = B,(x,, 6(x,, x,)), we consider B = B,(x,, S) such that x1, x2 E B, 
supp 4 c B, and A~(x,, x2) < s. 

We want to show that TBd is a Lipschitz function. Let us estimate the 
difference 

I TBd(x,) - T”4h)l 
G cB idxl) - hx2)i 

+ IZB~(X~)~(X~)-ZB~(X~)~(XZ)I 

+ 
/I 

[d(r) -hxl)l k(x2, Y) hB(y) h(Y) 

- 
I 

cc%‘) - &2)1 k(x,, Y) hB(y) &(Y) 

=a,+a,+o,. 

On the other hand, since ZBl(x,) =O, by Lemma (2.13) we have 

As for (TV, we have 

‘=3 G [b(Y) - &XI)] k(x, > Y) hB(y) hB,(y) &h’) 

+ j- C~(Y) -4bA14 x27 Y) hB(y) hB,(y) h(Y) 

+ j- Wb+4(xAlkh Y) 

- [4(Y) - dx2)1 k(xz> J’)> hB(y)(l - hB,(y)) &(Y) 

=a,,+a,,+a33. 



SINGULAR INTEGRAL OPERATORS 51 

By Lemma (2.7) we have 

031 G c lllt4ll ‘I j @I, v)” &I 9 Y) h,(Y) b3,(Y) 4(Y) 

Analogously, 

G c lll~lll,~(x, 9 x2- 

It is clear that 

033 G I4M - WIN J K( x19 v) h,(YNl -b&4 40) 

+ J MY) - 4WI 

x IWI, Y) - a% Y)l h,(Y)(l -k&4) 4.0) 

= O331 + O332. 

By the definition of the associated kernel and Corollary (2.19), 

fl331 G c 1114111, 4 Xl, x2JS (ITh,(x,)l + ITh&JI) 

6 c 1114111 q 4x1, x2P. 

On the other hand, by (2.5) 

> 
I/r’ 

6(x29 JY” 44Y) 
X2)< 6(x,, y) < Aj+‘Aa(x,, x*) 
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GC 111~111, f wm,, xx”” 
j=O 

(;&;;*JfE 

. (A’cqx,, x*)y . (A’lqx,, x*)y” 

Finally, we shall prove that if supp q5 c Bo, 

It is enough to show that 

II C&Y) -4(x)1 k(x, Y) h,(y) 44~) < C 111~111, (diam(supp d))“, 

for any sufficiently large B. 
Let B, = B,(z, ro), B, = B6(z, A*r,), and B= B,(z, r) be such that 

supp q4 c B, and A3ro < r. 
Assume first that x 4 B,(z, AZro). Then 

II 
C&Y) - &)I KG Y) h,(Y) 44.Y) = 1 KY) 4-T Y) hB(Y) 44Y) I 1 

= 
I/ 

9G)4x, Y) 40) * 

In this integral the relevant points y satisfy 6(z, y) < ro, since y E supp 4, 
and 6(x, z) > A’r,. 

Then, if Ajr, -c 6(x, z) <A’+ ‘ro, j>2, we have Ajm2(A-l)rO< 
6(x, y) < 2Ai+2ro. 

Therefore, for XE B(z, Aj+‘r,)\B(z, A’r,), j> 2, we have 

(J > 
l/r’ 

G c 11~11 co 
a/-Zro<d(x,y)<2A,+Zro 

@x9 VY44Y) ,u(B,(x, 2A’+2ro) 
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If x~B(z, A’r,), using (2.4), (2.19), and (2.7), we get 

C#(Y) - Q(x)1 Wx, Y) h&I 44~) 

G II C+(Y) -4(x)1 k(x, Y) ~B(Y) h,,b) 44~) 

+ j- [4(y) --4(x)1 % Y) h&)(1 -h&4) 44~) 

<c 
Ii - 

d(x,y)<2d~ro 111t411, w9 Y)” &x, Y) 44.Y) 

+ 4(x) j 4x, Y)@B(Y) -b,(y)) 44~) 

G c 111~111, Puw + c 11411, G c 1119111, P(&Y. 

In order to prove the converse, assume that T is continuous from A;l into 
A;1. Then, by the computations above, this implies that the function defined 
for XEB as 

(g(x) - ml3 gW(x) 

is a Lipschitz function for any 4 E A;l ; moreover 

lllk(~)--m,g) 4(.)lll, G C 1114111,. (2.33) 

Now take x1, x2, and B= B,(z, r) such that x1, x2 E B; then by (2.33), 

I&I)-&2)l = I(g(x,)-m,g)-(g(x,)-m,g)l 

= IMxA-mBd hhA-- (dx2)--Bg) hAx2)I 

G c Illh,lllT < Cr-q. 

Now letting r + cc we obtain g(xl)=g(x2). In other words, g(x) is 
constant and Tl = 0. 

Let us define 

fj(& Y)=S,4-i(& Y)--,4-i-I(& Y ) ,  

where s,(x, y) is the approximation of the identity introduced in 
Theorem (1.13). We define 

kjl,jz(Xv Y) = <fj,(x, -1, Tti,(~, * *)>* 
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(2.34) THEOREM. Let T be a continuous linear operator defined from A$ 
into (A;)’ for every y, 0 < y <a, weakly bounded of order q, for some q, 
0 < u < a, and with an associated kernel satisfying (13.1) and (13.2) with 
l/r’ + q > 1. Assume that Tl =O. Then the following inequality holds for 
j12j2: 

Adi2-jjl)AizA -j2(W+v) 

IkjlrdX y)l ’ d(x 
? 

y)l/r’+q +A -jz(l/r’+q)’ 

Proof. Let B be a ball with radius bigger than A-” and such that 

(z : 6(x, z) < CA -j’} u {z : 6( y, z) < CA -“} c B. 

Theorem (2.27) tells us that 

kjl.jz(x, Y) = <tj,(X, *X TBtjz(Y, *I> 

=Cs 
I 

tj,f% Z) tjz(Y, Z) &(z) 

- s fjl(X, Z) JB~(z) tjz(Y, Z) dP(z) 

+ j tjt(X, Z) 1 (tjz(Ys u)- tjz(Y, Z)) k(z, U) 4dU) 
> 

4(z). 

(2.35) 

Assume first that 6(x, y) < A(A + 1) A-“. Then, by Theorem (1.13), we 
have 

fjl(X, Z) tj2(Y, Z) 44z) 

< C s tj,(x, z) Aj*(l+%(x, z)” dz 

= cAv(h-A) 
A -j2(1 + s)Aj2 

qx, y)l+11+A-i2(l+v). 
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Analogously, by Lemma (2.13), we have 

< c s tj,(x, z) Aj2(l +%(x, z)” d/i(z) 
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G cAv(h-iI) 
A -h(l +q) 

qx, y)l+tl+A-h(l+4)’ 

Analogously, by Theorem (2.32), we have 

- s Ctj*(Yv u)- tj2(Y, x)) k(x, u, dP(“) 

< tj,(x, z) Ant1 +%3(x, z)” d/i(z) 

< cAv(A-jl) 
A -j2(1+ v) 

qx, y)l+s+A-i2(l+rl)’ 

Let us assume now that 6(x, y) > A(A + 1) A -j2. If tj2(y, z) # 0, then 

A(A + 1) A” < 6(x, y) < A(d(x, z) + 6(z, y)) < A(d(x, z) + A-“). 

In other words, 

6(x, z) > AA -j2 > A -j2 > A -j’. 

This tells us that tj,(x, z) = 0 and therefore the first two integrals in (2.35) 
are zero. 

We estimate now 

j tjl(x, z, ( j ttj2(Y7 u, - tj2(Y, z)) MZ9 U) &AU)) 44Z). 
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As we have seen before, if ti,(y, z) # 0, then tj,(x, z) = 0. Then it is enough 
to estimate 

S rj,(xvz)(S tjz(Y, U) k(z, U) UP 
> 

h(Z) 

=I tjl(x9 z, (S tjz(Y, u)(k(z* U) -k(x, u)) UP 
> 

dP(Z). 

Observe that 

then 6(x, u)(A + 1) > 6(x, y), and moreover 

6(x, z) < A -A < A -jz < A(;+ 1) &x9 Y)* (2.36) 

Therefore, if we define 

E={u:G(x, y)<(A+1)6( 4 u); &A + 1) 6(x, z) <w, Y,) 

and 

w, z) < 1 
A(A + 1) WY Y) 3 

1 

we obtain by HGlder’s inequality that the last integral is less than or equal 
to 

J tj~~x~z~{(J Iti,(Y, u)l” dP(P) )“’ 

l/r 
X 

(I 
W, u) - k(x, u)l r 44~) 

>> 
4(z) 

E 

< C 
f 

fj,(x, z) A”A -h(W) 

x 
z, u) - 4x, u) t r Mu) 

> 

l/r 

44z). 
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By (2.5), this is less than 

c j $(x, z) #A --j2(W’) (; (A% Y))-“” (A~~~~)JyrdP(z) 

6 c 

s 

fjl(x, z) Ai2A-i2(W)qx, y) -(W’+tl) ~-jlfi 

< c A”A --h(l/r’)A -ilrl A”(h-il)A-iz(llr’+tl) 

. 
6(x, yy+” 

<c 
qx, y)l/f+” + A -iz(W+9)’ 

(2.37) COROLLARY. Under the conditions of Theorem (2.34), tf we define 

then Tj,,j2 is a bounded operator from L’(X, du) into L’(X, dp) with norm 
less than or equal to A”(j2-j’). 

(2.38) APPLICATION. Assume that k(x, y) is a singular integral kernel 
k(x, y) satisfying (2.4), (2.5) for n + E with E > 0 and the following cancella- 
tion property: 

let O<r<R<oo, then 

I 
(2.39) 

W Y) 40) = 0, for every x E X. 
r<d(x,y)<R 

Under these conditions we define for q5 E A;I 

TfG) = !‘t”, jr<,,, y) k Y) Q(Y) dy. (2.40) 

Then the operator T is well defined and maps A;l into A:. 

In order to prove this result we show that T satisfies the hypotheses of 
Theorem (2.32) and in addition, Tl = 0. 

Let x be a fixed point in X and USE AZ such that supp q5c B(z, s), 
s $ k+(z). Then. by (2.39), we have 
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= lim J wx, Y) d(Y 1 dY r+o r<a(x,y)~A(S(x.r)+s) 

= lim 5 w> Y)(dY) -0)) dY 
r-0 , < d(x, y) < a(s(x, z) + 5) 

= J 4x9 YNi(Y) - 4(x)) dY. 
6(x, y) < A(6k 2) +s) 

The last integral converges since, by Lemma (2.7), 

Therefore, (2.40) is well defined. Using the same kind of argument, if 
(supp 4) u (supp 4) = B,(z, s), we have 

G c IIMII, J (a( x, z) + SY I@)l dx 

G w IIMIII, J IVG)I dx 

G MB&, d)1+2v 111~111, lll11/lll,~ 

Finally, let us compute Tl. Assume that @E (A;>,, with supp rl/ c B= 
B,(z, s). Then 

(Th,, Ic/>+ (ZiA $> 

= 
J( J 

lim r<S(x -“) k(x> Y) h,(y) dv VW) dx 
r-0 > 

+ J(J (kk ~)-kk Y)) (1 -h,(y)) dy > W)dx 
= JL J lim 

r-0 
r<6(x y) k(xv Y) h,(y) 4 

+ 1 (4x, y) - k(z, ~))(l- h,(y)) dy] WI dx. 
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By (2.39), this integral is equal to 

I/ lim 
r-0 

R-a, 

4.G Y)(l -h,(Y)) dY 4w) dx 
~<6(x,y)<R 

lim 
r-0 s 

R-02 

r<6(x y)<R &, Y)(~,(z)-~B(Y)) 4 +(x)dx 
> . 

s 
Mz, y)(h,(z) - hs(y)) & Icl(x) dx = 0, 
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since the innermost integral does not depend on x and tj E {Aa},. 
A particular case of this application is the following: 
Given a homogeneous polynomial P(x) of even degree m, defined on C” 

with negative real part for real x, we consider the parabolic differential 
equation 

L 14 =&(-l)“~~P(D)U=f: 

In [J] the following expression was considered in order to obtain a 
priori estimates : 1--E 

D:u(x, t) = lim I s 4x - Y, t - $1 f(v, ~14 4 
E-0 0 R” 

where p is a multi-index, 1 pi = pi + . .. + pn = m, and s(x, t) is the pth 
spatial derivative of a fundamental solution of the homogeneous equation 
L(U)=O. 

It has been observed in [RT] that a priori estimates can be obtained 
from 

lim s E’O Ix-y(+t-sp>& 4x - Y, t - $1 f(v, s) dy ~3. 

This limit is viewed as defining a singular integral operator associated to 
the kernel k(%, 9) =S(X - y, t--s), on the space of homogeneous type 
W, 4 ~0 given by 

x= wx IO, co), 

4% Y)=d((x, t), (Y,s))= 1x-A + lt--ll’m, 

and p the Lebesgue measure on Wx I 0, co). 
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In [MT] it is proved that the kernel satisfies (2.4), (2.5) for 
y = (m + n)-‘, and (2.35); therefore the a priori estimate 

holds for any O-cq<(m+n)-‘. 
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