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INTRODUCTION

The purpose of this paper is twofold. First, we intend to clarify the
relevance of conditions of the type considered in [A, DJS, MT] on the
measure of coronas in the study of singular integral operators. The main
result in this direction is given in Theorem (1.19), where we show that for
a space of homogeneous type satisfying condition (H,), see (1.5), a
normalization can be given to satisfy condition (L,), see (1.3). This result
allows us to interpret (H,) as a quantitative property ensuring that the
order of the normalized space is at least equal to a. Examples show that,
in_general, a cannot be improved. An approximation of the identity of
R. Coifman’s type is obtained for normalized spaces of order a without
restrictions on the measure of the whole space X or the existence of atoms
for the measure. This allows us to get rid of the condition (H,) in the
results of Chapter II.

Second, in Chapter II we study singular integral operators with condi-
tions on the associated kernel which generalize those of [A, DIS, MT],
allowing the kernel to be unbounded, see [KW].

The conditions we assume on the kernel are stated in (2.3), (2.4), (2.5),
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and (2.6). They are inspired in the L’-Dini condition of [KW]. The main
result of the paper is to show that T is weakly bounded if and only if Ty
is a function given by an explicit formula involving the kernel associated to
T and T1=g, see Theorem (2.27). By a systematic use of this formula we
obtain the following results:

If T is a weakly bounded singular integral operator and 71 belongs to
B.M.O., then

(a) The kernel associated to T is equal to zero if and only if there
exist A(x)e L™ and Tf(x)=~h(x) f(x) (see (2.31).

(b) T maps Lipschitz functions into bounded Lipschitz functions if
and only if 71 =0 (see (2.32)). For related results see [L].

(¢) If T*1 also belongs to B.M.O., then T satisfies estimates of the
type given in Lemma 2.3 of [DJS], which allow the L? theory to develop
(see (2.34)).

Finally, we give an application to operators defined by principal value
integrals, see (2.37), obtaining a priori Lipschitz estimates for some
parabolic partial differential equations.

I. GEOMETRY OF SPACES OF HOMOGENEOUS TYPE

We say that a real valued function d(x, y) defined on X x X is a quasi-
distance on X if

(i) d(x, y)=0 and d(x, y)=0 if and only if x=y,
(i) d(x, y)=4d(y, x), and (L1)
(iii) d(x, y) < K[d(x, z)+d(z, )],

hold for every x, y, and z in X and K a finite constant. The set
{y:d(x, y)<r} is denoted by B,(x,r). This quasi-distance defined a
uniform structure on X, the family {(x, y):d(x, y) <¢} being a basis of the
uniformity. Let ¢ be a positive measure on a o-algebra of subsets of X
which contains the open sets and the balls B,(x, r). We say that (X, d, u)
is a space of homogeneous type if there exists a finite constant A such that

H(By(x, 2Kr)) < Ap(B,(x, r)) (1.2)

holds for every xe X and r>0. It is known [MSI1] that it is always
possible to find a quasi-distance d’(x, y) equivalent to d(x, y) and
0 < <1, such that

(Lp) | d'(x,2) —d'(y, 2)| S Cr' Pd(x, y)P (1.3)
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holds for whenever d'(x, z) and d'(y, z) are smaller than or equal to r, with
C a finite constant. Thus we can assume that d(x, y) satisfies condition
(Ly) for some 0< <1,

We say that a triple (X, d, p) is a normalized space if there exist
constants X, K,, A,, and 4, such that

(i) if Kip({x})<r<Kop(X), then A,r< p(By(x, r))< 4.,
(i) if r <K p({x}), then By(x,r)={x}, and (14)
(iii) if r> K,u(X), then By(x,r)=X.

These there conditions imply that (X, d, u) is a space of homogeneous type.

Let (X, d, 1) be a space of homogeneous type, with its quasi-distance
satisfying condition (L;). Then we shall say that this space satisfies the
condition (H,), O<a<l, if

#(Balx, r+1' = PsP)y) — u(By(x, r —r' Ps))
< Cu(By(x, ) ~* w(By(x, 5))* (L5)

holds for 0 <s<r and xe X, with C a finite constant.

The main purpose of this chapter is to prove that in a space of
homogeneous type satisfying condition (H,), (1.5), a normalization can be
found such that its quasi-distance satisfies condition (L,), (1.4). Also, an
approximation of the identity, made of Lipschitz functions of order «, of
the type introduced by R. Coifman is given.

(1.6) LemMma. Let (X, d,pu) satisfy condition (H,). Then either
p({x})=0 for every xe X or u({x})>0 for every x € X.

This result is proved in [MT]. We give a proof here for the sake of
completeness.

Proof. Let us assume that there is a point x & X such that u({x})=0.
Let yeX, y#x. Then y belongs to Bu(x,d(x, y)+d(x, y)' ~?sF)~
B,(x, d(x, y)—d(x, y)! ~# s#), for every s<d(x, y). By condition (H,), we
have

#(({¥})) < Cu(Bylx, d(x, y)))' ~* p(Ba(x, 5))*
Since lim; _, o u(By(x, 5))=p({x})=0, we get u({y})=0.
Let (X, d, 1) be a space of homogeneous type and define
3(x,x)=0 and  ifx#y, 3(x, y)=u(Bx d(x,y).  (L7)
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{(1.8) ProprosITION. The function §(x, y) satisfies

(i) d8(x, y)=0 and é(x, y)=0 ifand only if x=y,
(i)' d(x, y)<A4d(y,x), and
(iii) 6(x, y) < A% |d(x, 2)+8(p, 2)l,

Sor every x, y, and z in X.

Proof. Part (i) is obvious. Let us consider (ii). If ve B (x, d(x, y)),
we have d(v, y) < K|d(v, x) + d(x, y)| < 2Kd(x, y); then d(x, y) =
w(By(x, d(x, y))) < A(By(y, d(x, y)))= Ad(y, x). Let us consider (iii). If
d(x,z)<d(z, y), we have that weB,(x,d(x, y)) implies d(u, y}<
K |d(u, x)+ d(x, y)| <2Kd(x, y) and since d(x, y)< K |d(x, z}+ d(z, y)| €
2Kd(z, y), it follows that d(u, y) < (2K)? d(z, y). Thus,

0(x, y) S u(By(x, d(x, p)) S Auw(By(y, d(y, 2))) = A%8(y, 2).

Analogously, if d(z, y) <d(x, z) it turns out that &(x, y) < 4%5(x, z). This
proves part (iii).

We observe that d(x, y) does not necessarily satisfy condition (ii) of
(1.1), but it does satisfy (i)’ of (1.8). We shall call this &(x, y) the

non-necessarily symmetric quasi-distance associated to (X, d, ). We denote
by Bj(x, r) the set {y:d(x, y)<r}.

(1.9) PrOPOSITION.  Let (X, d, u) be a space of homogeneous type and
0(x, y) the non-necessarily symmetric quasi-distance associated to (X, d, p).
Then the following properties hold:

(i) f0<r<u({x}), then Bs(x, r)= {x},
(ii) if p({x})<r, then w(Bs(x, r))<r,
(iii) f wW(X)<r, then Bs(x,r)=X, and
(iv) if r<u(X), then A=r < u(Bs(x, r)).

Proof. Part(i): if yeBs(x,r) and y#x, then r<p({x})<
u(B(x, d(x, y)))=0d(x, y)<r, which is a contradiction. Then By(x, r)=
({x}). Part (ii): if u({x})<r, since

Bé(x9 r) = U {Bd(x7 d(x: )’)) ye B&(xa r)},

it turns out that u(Bs(x,r))) <r. Part (iii): let ye X; since
W(B(x, d(x, y)) S (X)<r, it follows that ye Bs(x,r). Part (iv): assume
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that B,(x, r)= {x}. This implies that for every y #x, u(Bu(x, d(x, y)))>r.
Let {y,} be a sequence of points of X such that

m=lim d(x, y,)=inf{d(x, y) : ye X, y #x}.

If this limit m is equal to zero, we have pu({x})=1im u(B(x, d(x, y,)))=r
and therefore u(Bj(x,r))=u({x})=r>A4". If m is positive, then
Bs(x, 3m/4)= {x} and u(B,(x, 2k3m/4))> r. Thus,

r < Ap(B,(x, 3m/4)) = Ap({x}) = Au(B;(x, 1)),

verifying (iv). Let us assume now that By(x, r) # {x}. Let s=sup{d(x, y):
x#Y, yeBs(x,r)}. Then s>0, and moreover s is finite, since otherwise
By(x,r)=X and then r < u(X)= pu(B;(x, r)) <r, which is a contradiction.
Let t<s<2t. If A=% > u(Bs(x, r)), we shall show that for every positive
integer n, B,(x, (2K)" t)= B,(x, s) holds. For n=1, we have

w(Ba(x, 2K1)) S Au(By(x, 1)) < Au(Bs(x, 1)) < A~ 'r<r.

If there were ye B,(x, 2Kt) ~ B,(x, s), there would exist ye Bs(x, r) and
d(x, y)> s, contradicting the definition of 5. For n+ 1, we have

H(By(x, 2Ky * ' 1)) < Ap(BAX, (2K)" 1)) = Ap(B,(x, 5))
S Ap(B4(x, 2K1)) < A’u(By(x, 1))
< A%u(By(x, r))<r.

Again, since (2K)"*'t>s, it follows that B,(x, (2K)** 1 t) = By(x, s).
Therefore, we have B,(x, s)=X. From
r < u(X)=p(By(x, 5)) = u(By(x, 2K1)) S Ap(B(x, 1))
< Ap(Bs(x, 1)),
it follows that
A7r <A 'r<p(By(x, 1)),

which is a contradiction and (iv) is proved.

(1.10) LemMa. Let K’ = (C + K)*#, where C is the constant in condition
(Lp) of (1.3). Then, if (X, d, n) saatisfies conditions (Lg) and (H,) of (1.3)
and (1.5), respectively, we have

|(Ba(x, d(x', ¥))) — p(Ba(x', d(x', y)))|
< C'u(By(x, d(x', p)))' ~* u(Ba(x, d(x, x')))%

provided that K'd(x, x') < d(x', y).
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Proof. Let us assume first that u(B,(x, d(x', y))) is larger than
H(B4(x', d(x', y))). I z€ B(x, d(x', y)), we have

d(z, x') <K |d(z, x)+ d(x, x")] < 2Kd(x, y).

Then, by condition (Lg) of (1.3),
d(z, x') < d(z, x) + CRK)' "2 d(x', y)' P d(x, x')*,
or
d(z, x')<d(x', y)+d(x', y)' =P (CYEQ2K)" PV d(x, x'))P.
Since CYP(2K)'~PV8 d(x, x') < K'd(x, x') < d(x’, y), condition (H,)
implies
MBy(x, d(x', y))) — m(B,(x', d(x', ¥)))
SC'u(By(x', d(x', ¥)))' ~* w(By(X', d(x, x')))*
S C"u(By(x, d(x', y)))' P u(By(x, d(x, x')))

The case p(B(x, d(x', y))) < p(B,(x', d(x', y))) is similar and even simpler.

(1.11) ProposSITION. Let (X, d, u) be a space of homogeneous type
satisfying conditions (Lg) and (H,). Then, the non-necessarily symmetric
quasi-distance 3(x, y) associated to the space satisfies

(i) 18(x, y)—8(x, y)| < Cr'=%8(x, x')*, whenever (x,y) and
o(x’, y) are less than or equal to r, and

(ii) for every xe X, d(x, y) is a continuous function of y.

Proof. We can assume that d(x, y)>d(x', y). Let r=[d(x, y)+
d(x', y))/2 and s=[d(x, y)—d(x’, y)1"%. [d(x, y)+d(x, y)]'~V¥/2. Tt is
easy to see that

(s/r) = Ld(x, y)—d(x', y)1/[d(x, y)—d(x', y)I<1,

that is to say, s <r. Moreover,
r+r'7ff=d(x,y) and r—r'"EF=d(x, y).
By condition (L), we have

d(x, y)—d(x', y)< Cd(x, y)' =/ d(x, x')*;
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therefore, s < Cd(x, x’). It is also evident that r <d(x, y). Applying condi-
tion (H,) with the given 7,

H(Bu(x, d(x, ))) — u(Bu(x, d(x', y))
< Cy'(Bd(xs d(x’ J’)))l - y’(Bd(x’ d(x’ x!)))a.

On the other hand, by Lemma (1.10), it follows that if K'd(x, x")? <
d(x', y)?,

|u(Ba(x, d(x', y))) — w(Ba(x', d(x', y)))|
< Cu(By(x, d(x', y)))' % p(By(x, d(x, x')))"
If we assume that K'd(x, x')? > d(x’, y)?, we have
H(By(x, d(x', y)))
= p(By(x, d(x', p)))' ~* u(By(x, d(x', y)))*
< Cul(By(x, d(x, y)))' ~* n(By(x, d(x, x")))"
On the other hand,
W(By(x', d(x', y)))
= u(Bx', d(x',.9))) ~* W(By(x', d(x', y)))*
S Cu(B,(x', d(x', y)))' % w(By(x', d(x, x)))"
Let ue B,y(x', d(x', y)); we have
d(u, y) < K[d(u, x') + d(x', y)1 < 2Kd(x', y) <2Kd(x, y),
showing that B (x’, d(x’, y) = B,(y, 2Kd(x, y)). Therefore,

H(Ba(x', d(x', y))) < Au(B(y, d(x, ¥))) < C'w(Bu(x, d(x, y)))*

Thus, we have

WB,(x', d(x', y)) < C"u(By(x, d(x, y)))' ~* p(Ba(x, d(x, x")))".
Collecting results, it follows that
10(x, ¥) = 0(x', Y)| < |w(Bu(x, d(x, y))) — w(Bu(x, d(x’, y)))}
+u(B,(x, d(x', y))) — w(Ba(x', d(x', y)))
< Cp(By(x, d(x', y)))' ~* n(Ba(x, d(x, x')))*

= Co(x, y)' 7% 8(x, x')",
which implies (i).

607/93/1-3
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As for part (ii), by virtue of Lemma (1.6) we have two possible cases.
First, for every xe X, u({x})>0. In this case X is a discrete space for both
d and é and therefore, every function on X is continuous. The second case
is when u({x})=0. Then, if d(x, y)>d(x, y'), choosing r and s as

r+r' " fsf=d(x, y), and r—r'""fFf=d(x y),
we get

r=L[dx, y)+d(x, y)]/2
s={([d(x, y)—d(x, y)1/2[d(x, y)+d(x, y)1/2)' *}17,

s<r, and r<d(x, y). Thus, by condition (H,), it follows that

10(x, ) = (x, )| < Cu(By(x, d(x, y)))' ~* p(By(x, 5))".

Since )’ tending to y implies that s tends to zero and lim u(B,(x, s)) =
u({x})=0, the continuity of é(x, y) is proved.

In the rest of this chapter, (X, 6, u) will be a triple satisfying the
following conditions:
(i) 0<d(x, y)<oo and d(x, y)=0 if and only if x=y
(i) o(x, y) < Kd(y, x),
(iii) d(x, y) < K[d(x, 2) + d(z, )],
(iv) if Kiu({x})<r<K,u(X), then (1.12)
rd; < p(Bs(x, r)) <rd,,
(v) ifr<K p({x}), then B;(x, r)={x} and
(vi) if r>K,u(X), then By(x, r)= X,

where K, K, K,, A,, and A, are constants. These conditions imply the
existence of a constant satisfying (1.2), ie., u(Bs(x, 2Kr)) < Au(Bs(x, r)).
We shall call a triple (X, 6, p) satisfying conditions (1.12) a non-necessarily
symmetric normalized space. The only difference between this and a nor-
malized space is that instead of assuming é to be symmetric, we assume
that (ii) of (1.12) holds with K non-necessarily equal to one.

(1.13) THEOREM (Approximation of the Identity). Let (X, 4, u) be a
non-necessarily symmetric normalized space of order a, that is to say

16(x, ¥) — 8(x', )] < Crl=*8(x, x')* (1.14)

holds for an o, 0 <a < 1, whenever d(x, y)<r and &(x', y)<r. If 6(x, y) is



SINGULAR INTEGRAL OPERATORS 33
non-symmetric, we assume that d(x, y) is a continuous function of y. Then,
for every t, 0 <t < Cu(X), there is a function s(x, y) satisfying

(i) 0<s(x, y)<SCLu(Bs(x, 1)) ™" + u(Bs(y, 1)) '],
(i) ifd(x, y)<C't,
then 5,(x, y) = C ™' [i(Bs(x, 1)) ' + u(Bs(y, 1)) '],

(iii) St(x’ y)=sdy, x)

(iv) supps,c{(x, y):8(x, y)<Ct}
(V) sdx, y)—s(x', ¥)l

< Co(x, X'y [(Bs(x, 1)) ™" + u(Bs(x', 1)) 111+
(vi) [s(x y)du(y)=1,
where C is a finite constant. If necessary, C can be chosen as large as desired.

In order to prove this theorem, we shall need some lemmas.
Let A(z) be a C* function defined on |0, c0) that satisfies h(z)=1 if
0<1<1, h(t)=01if t > A, and O<h(r) < 1 for every t = 0.

(1.15) LemmA.  If u,(x, y)=h(d(x, y)/t), then
lux, y) —u(x', p)I < C(x, x')* [u(Bs(x, 1))~ + (Bs(x', 1)) 1}~

Proof. Let 8(x, y)<2KAt and 6(x', y) <2KAt. Then, by (1.14), we
have

lu,(x, ) —u(x, PN < W' o 16(x, y)—8(x", )I/t < C(S(x, x")/t)"
If 8(x, y)>2KAt and 6(x', y) < At, then
2KAt < 8(x, y) < K(8(x, x') + 6(x', )) < Kd(x, x') + KAt,
thus, < 41 < 8(x, x'). Therefore
lux, y) —ulx’, y)l =1 <(8(x, x)/1)"

The other possible cases are trivial. Now, if K,u(X)=t>
min(K; A~ 'u({x}), K; A7 "'u({x'})) then

lu(x, ) —ulx', y)I < C'8(x, x')* [u(Bs(x, 1)) ™" + u(Bs(x', 1)) 11"

If 1<min(K, A~'u({x}), K,A~'u({x'})), then By(x, 1) = {x}, By(x, 1)=
{x'}, and

ux, y)=1ifx=y and ulx, y)=0if x#y,
u(x', y)=1ifx'=y and u(x, y)=0if x#y.
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Assume x#x'. Then K u({x})<d(x,x’) and K, u({x})<dé(x, x)<
Kd(x, x'), yielding

1< Co(x, x') [u({x}) ™"+ pu({x'} ']

ludx, y)—ulx’, ) <
S C'8(x, x')* [(Bs(x, 1)) + u(Bs(x', 1)) ' ]%

(1.16) LEMMA. Let

m(x)= [ u(x, y) du(y)

Then m,(x) is well defined and
(i) Im,(x) —mx') < Co(x, x')* [(Bs(x, 1))~ + p(Bs(x', 1)) ' 1
“[u(Bs(x, 1))+ u(Bs(x', 1) ];
moreover,
(i) p(Bs(x, 1)) <m,(x) < p(B,(x, At)).

Proof. The function m,(x) is well defined since we assume that 3(x, y)
is a continuous function of y. On the other hand, by Lemma (1.15), we
have

() = m, () < [ 5, )= (', )] ()

< C'o(x, x')* [u(Bs(x, 1))~ + (u(Bs(x', 1)) 1"
x [u(Bs(x, 1))+ u(Bs(x', 1)) 1.
As for (ii), since u,(x, y)=1if ye Bys(x, t) and u,(x, y)=0 if y¢ B(x, t),

(ii) follows.

(1.17) LemMA. Let

v,(x, ¥) =ml(x)—1 u,(x, y).
Then,
(1) IU,(X, y)—U,(x,, J/)l
< C(x, x')* [u(Bs(x, 1)) ™' + u(Bs(x', 1)) 1117,

(i) fodx y)du(y)=1,  and
(i) CT'<[vlx y)dux)<C,

where C is a finite constant.
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Proof. We can assume that m,(x’) <m,x). Then
v, )= 0x', p)=mx) " [udx, y)—ulx’, y)]
+u,(x, y)m(x) ~m(x)] mx) ! m(x')~".
By Lemmas (1.15) and (1.16), it follows that
o, ¥) = vx', P)I < C8(x, X' [u(By(x, 1)) ™'+ m(By(x', 1)1+

As for (ii), it is apparent from the definition of v,(x, y). In order to prove
(iii), we observe that

C™im(y)<m(x) < Cm(y),
for x e By(y, At). This implies (iii).
Proof of Theorem (1.13). Let

—1
(o) = ([ o 2 o))
We define
s 9)= [ vx, 2) w(z) 0,03, 2) d(2).

Part (i) By definition of v, and from part (iii) of Lemma (1.17), we
get

0<sx, )< (m(x)™" m(p)™" [n(Bs(x, 1)) + pu(Bs(y, 1))]
< CLu(B(x, 1)) ™' + u(Bs(y, 1)) ~'1.

Part (ii)). If d8(x,z)<C~ 't and é(x, y)<C~'t, then &(y,2z)<
K(6(y, x)+8(x, z)) S2KAC~ 't <1, if C is chosen to be 2KA < C. Then

5%, ¥) = C'm(x)~" m((y)[u(Bs(x, 1)) + w(Bs(y, 1))]
2 C'[u(Bsx, 1)) ™' + u(Bs(y, 1)) ']

Part (iii). follows from the definition of s,(x, y).

Part (iv). If s,(x, y)>0, there exists z such that é(x, z) <A and
d(y, z) < At, therefore (x, y)< Ct.

Part (v). By Lemma (1.17) we have
I5.(% y)= s, P < [ 10x, 2) = 0,(x', 2)] w(z) 0.3, 2) d2)

< Co(x, x')* [(Bs(x, 1)) ™" + u(Bs(x', 1)) 717"+
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Part (vi). By Lemma (1.7) we have
[ st 2 )= [ 2@ ([ 2 dty) ) e
=f o (x, 2) du(z) = 1.

(1.18) THEOREM. If (X, O, 1) is a non-necessarily symmetric normalized
space of order o, then there exists &', symmetric and equivalent to 0, such
that (X, &', u) is a normalized space of order a, that is to say, it satisfies
conditions (1.4) and (L,).

Proof. Let C be the constant of Theorem (1.13). If x# y, let i be the
integer such that c4 ="' < d(x, y) < CA~". Let p be the integer satisfying

ClA 7P <KuX)<C 4771,
and let n be the positive integer satisfying
C’47"<1<C? 4"+
Then, if k <i, we have
CA*>CA~">68(x, )= K u({x});
thus, u(Bs(x, A~))~ u(Bs(x, CA~"))~ A~". On the other hand, we have
CA™ " <é(x, y) S Ku(X)<C1A—P7 ],
therefore,
1<C2A ' <4imrr

thus, iz p+n.
Moreover,

5()‘1 y)SCAﬁlz CzA_nC_lA_i—"<C*1A*(i—n)
and if k>i+1, then
8(x, y)>CA™""1>CA™*,

We have that

s(x, y)= 2 8 4-#(x, y)

k=p
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satisfies
s(x, )= Y s44(x, y)SC Y A CTASC"S(x, y)7!

k=p k=p

and
s(x, ¥) =5 4-i-m(x, y)= CA'= C(x, y) 1.

Next, we estimate |s(x, y)—s(x’, y)|. We can assume that 0 <d(x, y)<
8(x’, y). Let m be an integer satisfying A™>2K. Then, if A™d(x, y)<

o(x’, y), we have
A"d(x, y) < 6(x', y) < Ké(x', x) + Kd(x, y),

which implies 8(x’, y)/2 < Ké(x, x'). Then

o(x', x)
_ ’ < 7 —1 1]
Is(x, y)—s(x', pI<Cd(x, )" <C 50x 1) 000, )

If 8(x, y)<O(x', y) <A™8(x, y) < CA™ *!, and since for k>i, CA™*<
CA—"1<d(x, ) <8(x', y), we have s,-(x, y)=5,-(x’, y)=0; thus

|s(x, y)—s(x', y)l < z |SA"‘(X’ y)_SA"‘(x,9 y)l,

and by Theorem (1.13), we get that

Is(x, y) —s(x', y)| < C'o(x, x')* Z Ak +a)

k=p

S C AN DE(x, y) < C3(x, y) U 6(x, x')”

Now, let us define

o'(x, x)=0 and

8(x, y)=s(x,y)"' for x#y.

We have already shown that there exists a constant C >0 such that

C™13(x, y)<d'(x, y) < Cé(x, y).

Let us estimate |8'(x, y)—&'(x', y)|. If x=y, then
16" (x, x)— 8'(x', x)| < Cr' ~*8(x, x')*
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if d(x, x')<r. Analogously for x'=y. Thus, we can assume that x# x’,
y#x, and y#Xx’. Then

16'(x, )= 8'(x", ) S C'Is(x, y) —s(x', y)| &'(x, y) 8'(x', p),
which, by previous estimates on s(x, y), is smaller than or equal to

"

d(x, x') -
5/ x’ 5 xl’ Sclﬂr a5 x, x’ 11,
5, y) o,y 0 O ) b

if 6(x, )< d(x’, y)<r. This ends the proof of the theorem.

(1.19) THEOREM. Let (X, d, u) be a space of homogeneous type satisfying
conditions (Lg) and (H,), Then a normalization of order o can be found for
this space.

Proof. The normalization is given by the quasi-distance J'(x, y) of
Theorem (1.18), where d(x, y) is the non-necessarily symmetric quasi-
distance associated to (X, d, u) in (1.7). Propositions (1.9) and (1.11) and
Theorem (1.18) show that (X, &', u) is a normalized space of order a.

(1.20) PrOPOSITION. Let f be a Lipschitz function of order n<a, with
respect to the quasi-distance O, supported in Bs(xy,r), and (X,6,u) a
normalized space of order a. Then if 0 <n’ <n, we have that the functions

£0)= Six, 9) f1y) dn(y),

for t < K, u(X), satisfy

(i) supp f,< B(xy, r+C'r=% %), ift<r,
(i) 1f(x) = fx) < Ct= D u(B(xg, 7)) 7 8(x, X').
(i)  (fx)—f(x)) = (fu(x) = f(x))] < C(2) 8(x, x')",

where lim, _, o C(¢)=0.

Proof. The support of f,(x) is contained in the set of point x such that
there exists y satisfying d(x, y) < Ct and 6(xq, y)<r. Then |6(x,, x)—
0(xg, VIKSCU+r)%8(x, y)*<C'(t+r) 212 <C'r ~ %~

Let us consider part (ii). We have

[ /(%) = fx')] Sf Isx, y) —sAx", V1S ()] du(y).
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By Theorem (1.13), this is smaller than or equal to

Co(x, x')* Lu(Bs(x, 1)) ™" + u(Bs(x', 1)) 1] ** J LA (y) du(y)
< C'3(x, x')* 1~ IC(B(xo, 1)),

As for part (iii), given &> 0, assume that 7 <¢; then
£4x) = I < [ 5%, 9) £(3) = f0)] du(y)

<C [ sidx, y)8(x, yy duy) < Crn
If 6(x, x') = 1t, we get
| £(x) = f(x)] < Ce"~"d(x, x')".
Analogously for f,(x")— f(x'). If (x, x') < t, we have
|(fix) = f(x)) = (filx") ~ f(x))]
<) =Ll +1/(0) - [(X) =1, + L.
For I,, we have

£00) = £ = [ [ Is:x, )= )1 £0) du(y)'
<[ 1505 )=, PN 1A) = ) ()

<o, x') 1 | 8(x, y)" - du(y)

Bs(x, At) v Bs(x', At)
SC8(x, x )t~ C"(x, X' e,

The same estimate holds for | f(x)— f(x')| = I,. This ends the proof of the
proposition.

II. SINGULAR INTEGRAL OPERATORS

In this chapter (X, &, u) will be a triple satisfying the following condi-
tions:

(i) 0<d(x, y)< oo and d(x, y)=0if and only if x=y,
(i) O(x, y)=0d(y, x),
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(iii) 6(x, y) < K(d(x, 2) +d(z, ),
(iv) ifkp({x})<<r<k,u(X) then rd, < u(Bs(x, r)) <rd,,
(v) if r<kyp({x})then Bys(x,r)={x}, 2.1)
(vi) if r>k,u(X) then Bs(x, r)=X, and
(vii) there exists a, 0 <a <1, such that
[6(x, p) = 0(x', p)I S Cr'~*d(x, x')*
holds, whenever d(x, v)<r and 6(x’, y)<r,
where K, k, k,, A,, A,, and C are constants. These conditions imply the
existence of a constant A4 satisfying (1.2). For the sake of simplicity we shall
assume that 4 =K.

Given a ball B and a number y, 0 <y < a, we denote by A(B) the Banach
space of complex-valued functions supported on B, such that

[Y(x) =¥ (p)| < Colx, y). (22)

Given € A(B) we shall denote by (|||, the infimum of the constants C
appearing in (2.2).

We say that  belongs to A} if y e A7(B) for some ball B. On A} we
define the topology which is the inductive limit of the spaces A7(B), see
[MS2], and (A43) denotes the space of all continuous linear functions on
A}. By {A}}, we denote the subspace of all functions ¥ in A} such that
{ ¥(x) du(x) =0. A} stands for the space of bounded functions ¥ satisfying
(2.2). As usual, B.M.O. is the space of all the locally integrable functions
g on X such that

wB) | 18(x)—mygl du(x)<C,
where B is any ball and mzg=p(B) ™' [, g(x) du(x).
We consider a continuous linear operator T from A} into (A3) for some

y, 0 <y <a, associated to a kernel k(x, y), that is to say, for any x not in
the support of f

Tf(x)= [ k(x, ) S(7) du(y).
Let k(x, y) be the function defined by
sup{p(Bs(x, &))" u(Bs(y, &))"

'ﬂé( ) k(u, v)| du(u) ds(v) : 8(x, y)>s4A2}, (2.3)

o(v, y)<e
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We say that k satisfies an L"-Dini condition 1 <r < o, if the following
conditions hold:

for any R>0,
i ' (2.4)
( | (&G, )"+ 1K(, x)l’)du(y)> <CR,
R<d(x,y)< AR

there exists 5, 0 <5 <o, such that if A6(y, z) <R, then

(J |k(y, x) —k(z, x)|” du(x))l/r <CR™V (M)’, (2.5)
R<8(y, x) < AR R

and
1/r n
(j k(x, y)—k(x,Z)I'du(x)> <CR- (M) (26)
R<8(y,x)< AR R

(2.7) LemMa. Let k(x, y) be a kernel satisfying (2.4), and n, 0 <n<a,
then

[, 8s 7 Fix, y) dus(y) < Cmin(s", w(By(x, 5))")

Proof. 1f s<kyu({x}), then the integral is equal to zero. It is enough
to assume s < k,u(X). Then

Jo, 300 9 Fx, y) )

@

< 8(x, y)" k(x, y) du(y)

j=0 -[A—fs<a(x, y)A~itls

<« 1/r
< ) "
¥ (j() k(x, ) du(y))

Jj=0

1/r
% <.[ - o olx, )" dﬂ()’))
AJs < 8(x, y) < A~+1s

<C Y (A7)~ (A7 Is) (A77s) < Cs.

j=0

(2.8) DermviTION. We say that T is weakly bounded of order y, 0 < <a,
if T is a linear operator from A} into (4}) and

I<TS, gXl<Cu(BY > £l g, (29)
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holds for any ball B and functions f and g with their supports contained
in B.

(2.10) LemMa. Let T be a continuous linear operator from A} into (A})
Jor some y, 0 <y <a, associated to a kernel satisfying (2.4) and (2.5). Let us
assume that T is weakly bounded of order n, for some n, y <#. Then, for any
1, 8 and hin A}, 7' >y,

(Tgh, £y =<Th &>+ [[ £(0)[&(»)—g(x)]

xk(x, y) h(y) du(x) du(y) (2.11)
holds.

Proof. It is clear that (2.11) holds if T is defined by integration against
a locally bounded kernel.
In the general case let T, be defined from A} into (A3)' by

<Trf; g>=<Tf,, g

/. and g, are introduced in Proposition (1.20). Let B = B4(x,, r) be a ball
containing the support of f; then for ze B, the support of s,(-,z) is
contained in the ball Bs(x,, C,r). Thus, the application

Z-’S,(',Z), ZEBa

is a A7 (Bj(x,, C,r))-valued Bochner integrable function with respect to the
measure | f(z)| du(z). Therefore,

Tz, y)=<Ts,-2), s, ¥))

is the kernel associated to 7,.
Since by Theorem (1.13) s,(-, z) € A, then, by (2.9) (weak boundedness)
and (24), if t <k,u(X), we get

|7z, )| < C|u(Bs(z, 1)) + u(By(y, 1)) ~".

Then (2.11) holds for T,. On the other hand, by Proposition (1.20), f,
converges to f in A} for f in A} when ¢ goes to zero. Therefore, (T, f, g)>
converges to {Tf, g> for f and g in A}. Moreover, T,(x, y) converges
pointwise to k(x, y). Using again (2.4) and weak boundedness, it foillows
that for ¢ sufficiently small, |T,(x, y)| < Ck(x, y). Then, by the Lebesgue
dominated convergence theorem, the right hand side of (2.11) is equal to
the limit of

[[ £00) 120) — 800 Titx, ») h(y) dutx) ducy).
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Given a ball B= By(z, s) we define
hs(y)=h(3(z, y)/44’s), (2.12)

where 4 is the function considered in (1.15).

(2.13) LeMMA. Let k(x, y) be a kernel satisfying (2.5) and B = Bj(z, s).
Then for any x,, X,€B

o(xy, X2)\'
[ 1) = ks 1= alo )| <€ (T8 <

Proof. It is enough to prove the lemma for kyu({z})<s<k,u(X).
Then

|k(xy, y)~k(xz, y)| du(y)

'LAZS <8(z, )

< k(x1, y)— k(x2, y)| du(y)

3A4s <6(x,, y)

lk(x1, p) —k(x2, Y)] du(y).

[e o}
<
\j.go L

/345 < 6(xy, ) éA“’ 134s

Therefore, by (2.5), this is less than

T (A7 1345)" (A7345) 7 (8(xy, X)) (473 As)

j=0
5(x1,x2))" o 1 6(x1,x2)>"
< —_— —= —_—
C( As ;=0 A" C( As

8(xy, x2)\"
sc( Au(B) ) '

(2.14) LeMMA. Let k(x, y) be a kernel satisfying (2.5), B= Bj(z, s), and
pedl, 0<y<a Then

156(x) = [ (k(x, )~ k(z, ) $(x)(1 — hs(»)) du(»)

is well defined for any x € B. Moreover, Iz € A’(B)' and I satisfies (2.9) for
functions supported on B.



44 MACIAS, SEGOVIA, AND TORREA

Proof. We can assume s<k,u(X), since otherwise Iz¢=0. Let
Yy € A7(B). By Lemma (2.13) we get

) [ 16(2) W) dut)

<C Wl Igl.. |

3(x,z)<

(=)

SCIWlo 14l n(B)< Cu(B)' 7 gl o NI,

If € A7(B) then

lf I3¢(x) Y(x) du(x)| < Cu(B) 2 llgll, N,

(2.15) DeFINITION. Let T be a linear operator from A} into (A3).
Given B= By(z, r) we define T from A} into A”(B) as

Tpp=T(phs)+159.

(2.16) LemMa. Let T be a continuous linear operator from A} into (A})
associated to a kernel satisfying (2.5). Then for any pair of balls
B, =By(z,,r) = By = Bs(z2, 1),

Ty, ¢, ¥>=<Tpd¥>

holds for any e {A7(B,)},, the set of functions in A"(B,) with integral
equal to zero, and ¢ € A),.

Proof. We have

T, 4> =<T(Bhg,), ¥ >+ {Ip, 0, ¥
=<T(¢hp), ¥ > + {TPhg,— hp ), ¥

+ [ T2,8(x) w(x) du(x)
= (T(hs), ¥ > + [ $(x) [ kx, 9)ha ()~ ha ()]

x @(y) du(y) du(x)+ f 15,0(x) Y(x) dp(x).
Clearly,

T(ho,~ ha)z1) = | k(z1, ) $(0) s~ ha(y)] d,
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and

—I5,8(2)) = | [k(za) ¥) — k(z1, VI~ ha(3)1 4(9) dy.

Then, since | y =0, we get

(Tad 4> = T(Bha), ¥
+ [ 9 [ T )~ K(z1, 7)1 61— hia ()] dily) du(x)
= (T(ghs), U + b 4> = Ta .
It is clear that
(To > =<Tt, ¥,

whenever supp(¢) <= B,. Then Lemma (2.16) allows us to introduce the
following extension of T.

(2.17) DeriNiTION.  Let T be a continuous linear operator from A} into
(A3) associated to a kernel satisfying (2.5). For any g€ A} and y € {A4}},
with supp ¥ = B, we define

(T, ¥ >={Tsd, ¥>.

(2.18) LeMMA. Let T be a continuous linear operator from A} into (A})
associated to a kernel k(x, y) satisfying (2.5), and such that T is weakly
bounded of order y. Assume that T1 =g with g e BM.O. Then, given a ball
B=By(z, r), there exists a constant cy such that for any ¢ € A’(B)

(Thp, > = [ (8()—m5s(8)) $(x) dus(x) + 5 [ $(x) du(x)

— [ 1a1(x) $(x) du().

Moreover, supy |c gl < C, where C is an absolute constant depending on the
constants appearing in (2.5), (2.9), and || gl smo-
Proof. Given the ball B= By(z, r), consider the function

hp(y) = h(A23(z, y)/r),
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where £ is the function considered in (1.15). This function is supported in
By(z, r/A). Therefore the function

1
1,,(y)=( | na» du(y)> hial )

is supported in Bj(z, r/A) and its integral is equal to one.
Then, given ¢ € A*(B), we have

(Thy+13l, ¢)

=<ThB+IBI,¢~(f ¢> lB>+<ThB+IBI, (f ¢> 18>

(8.6=([ )10} + CTht 131.10) [ 4031 dutr

= [ (g(x)—mag) $(x) du(x) + mp g | $(x) du(x)
— <& 1p) [ $00) dutx) + <Thp+ 11, 1a> [ $(x) du(x)

= [ (80x)—m5.8) $(x) du(x) + ¢5 [ 9(x) diu(x),

where

cp=CThp+1Ip1—(g—my(g)) ls)-
It is easy to check that

sl <Cu(B)™  and |l < Cu(B)~ "7
then, by weak boundedness (2.9),
|<.Tha, g < Cu(B)'** |lhgll, sll, < C,
and, by Lemma (2.13),
[<Ip1, s < Cu(B)' 7 |llglll, < C.

Finally, it is clear that

[{g—mpg, I3 <Clgllamo-

These estimates show that [cgz| is bounded by a constant C not
depending on B.
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(2.19) CorOLLARY. Let T be an operator satisfying all the conditions of
Lemma (2.18). Then ge L™ if and only if |{(Thg,¢>|<C| ¢l for any
¢ € A*(B), where C is an absolute constant not depending on B.

(2.20) DeriNITION. Let T be an operator satisfying the conditions of
Lemma (18.1). Given ¢ € A*(B) and x € B, we define

T24(x) = (2(x) — m5 ) $(x) + a$(x) — [ 1(x) $(x)
+ [ [8(9)— ()1 kix, ) Bl y) dn(y).
(221) LemMA. Let B, =By(z,,r)< By=By(z,,7,) and ¢e A'(B,).
Then

T%(x)=T"¢(x), for xeB,

Proof. First observe that

Cp,—Cp = <Th82+1821_(g—m2g)3 IBZ—IBO
+(Thp,+1p1—(g—mp,g) 15>
—(Thp, +1p1—(g—mp g), 1>
={(T(hg,~hp)+1p1—Ip1,lp>+mpyg—mpg (222)

On the other hand
131 l(x) - IBz 1(x)

= [ k(x, 9)(h(3) —ha (1)) du(y)
+ [ (K(zay )= K(zy, D)1= hp(¥)) ()

— [ K(zy, P)5(3) = ha (7)) dus()

=T(hg,—hp)(x)—13,1(z,) — T(hg,— hp,)(z,); (2:23)

consequently,

<T(h82_h81)_1321 _IB, Lig)= <1821(Zl) + T(haz—hal)(21)9 Ig>
=15 1(z,)+ T(hg,— hp)(z,). (2.24)

607/93/1-4
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Moreover,

[ 18(r) = #00) kx, D) (9) = s (1)) ()

= —9(x) [ kx, »)ha)— hs(»)) du(y)

= —¢(x) T(hg,— h )(x). (2.25)

Then passing up together (2.22), (2.23), (2.24), and (2.25), we obtain the
result sought. 5
Given ¢ € A}, Lemma (2.21) allows us to define 7¢ as the function

To(x) = TE4(x), (2.26)

where B is a ball containing the support of ¢ and x € B.

Now we can prove the main result.

(2.27) THEOREM. Let T be a continuous linear operator from A} into
(ALY, for every 0 <y < a, with an associated kernel satisfying (2.4) and (2.5),
and such that Tl =g, ge BMO. Then for any n, 0<n<a, the following
conditions are equivalent:

T is weakly bounded of order . (2.28)
For any g€ A}, Tp = T¢. (2.29)

Proof. Let us show that (2.28) implies (2.29). Let , ¢ € A"(B). Then,
by Lemma (2.10),

CTh, > = Tha, 99> + [[ YEIP() — 90T K(x, ) hal y) dir(x) di(p)

and (2.29) follows by applying Lemma (2.18). Let us prove the converse.
Given B= By(z, s), we apply Lemma (2.7), getting

| [ 1601 =901 KCx, 3) holy) din()

<Clisil, |

Bs(z, A

i 3(x, y) k(x, y) du(y)

<ClBlly [, . 80 ) Fex y) dut)

<Cli¢ll, n(B);
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therefore, for ¢, yr € A?(B),

+C [ 1900 Y () dux)

KT, ¥yl < U (g(x)— m5 2) $(x) Y(x) du()

+J [751(x)] 19(x) Y (x)] du(x) + C lI#ll,, w(B)" J ¥ (x)| du(x)
<(lglsmo+ C) 9l 1910 w(BY + ligll, (BY " 1,
<(lglsmo+C) u(B)' > ligll,, 1,
(2.30) Remark. Consider the operator
T(x) = g(x) ¢(x).
If T is weakly bounded of order y then, for every ball B,
[{Thp, 1s>] < Cu(B)' ** [lhgll, llLsll, < C.

This means that for every B,

[ e ax|<c

and by differentiation (assuming that it holds) we get |g(x)| < C.

(2.31) CorOLLARY. Let T be an operator satisfying the hypotheses and
conclusions of Theorem (2.27). Then the kernel k(x, y) is zero if and only if
Té(x)=h(x) ¢(x), with he L.

Proof. Assume that the kernel is zero. Then
Té(x)=(g(x)—mpg) ¢(x) + cpp(x)=(g(x) —mp g + ;) $(x).

Therefore, by Remark (2.30), g(x)—mjzg+ cz must be bounded, but
since cp is bounded this tells us that g must be bounded. In other words,
h(x)=g(x)—mpg+cp.

(2.32) TueoReM. Let T be a continuous linear operator defined from A}
into (A}) for every y, 0<y<a, weakly bounded of order w for some n,
0<n<a, and with an associated kernel satisfying (2.4) and (2.5) for n+e¢
with ¢ > 0. Assume that T1 =g belongs to B.M.O. Then T satisfies

Iirél, < C ligll, and T¢ is a bounded function,
if and only if T1=0.
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Proof. Assume first that T1=0. Given x,,x,eX, ¢eAdf, and
B, = By(x,, 6(x,, x,)), we consider B= Bs(x,,s) such that x,, x,€B,
supp ¢ < B, and Ad(x,, x,;) <s.

We want to show that T%¢ is a Lipschitz function. Let us estimate the
difference

'TB¢(x1)— TB¢(X2)|
<cpldxy) — ¢lx)l
+ [1p1(x1) $(x,) — Iz 1(x;) $(x,)|

+ { [ 1002 = $x0) 1 ktexa, ») o) ()

—f [8(y) — d(x2)1 k(x2, y) hp(y) du(y)

= 0-1 + 0'2 + 63.
We have
a1 <sup legl [l 00, x2)"
On the other hand, since Iz1(x,) =0, by Lemma (2.13) we have

6(x19 x2)
Au(B)

6,<C 4l ( ) <CIdll, 8xr, X

As for 65, we have

1< [ 100D )T kG, 3) hal) i (3) )
] 040 = 805201 Kk, ) Ba3) () )
+|] 40001 = d0) kx »

—[¢(y)— ¢(x2)1 k(x3, )} hp(y)(1—hg (1)) du(y)'

=033+ 03 +03;.
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By Lemma (2.7) we have
031 <C Il | 8Ges, y)" B(x1, ¥) ho(y) hu(¥) ()

<Clliell, ( 3(x1, p)7R(xy, y) du(y)

8(x1, y) < A28(x1, x2)

< Cligll, o(xy, x)".
Analogously,
o5 <Cligll, 8(x2, 7)" k(x2, y) du(y)

d(x1, y) < A2(x1, x2)

<Cligll, | 8(x2, yY Elx2, ¥) ()

8(x2, y)y < A38(x1, x2)
< Cllgl, 6(xy, x2)"

It is clear that

022 < 19(x2) — 4(x.)] | | KCras 2 o)1 =i () du(»)

+ [ 18(3) - $(x,)

x |K(xy, y)— K(x3, Y)| hg(y)(1 —hg(y)) du(y)

=033 + 0332,
By the definition of the associated kernel and Corollary (2.19),
0331 < C 18l 80x1, X2)" (I Thy(x )| + | Thg,(x,)])
<Cligll, 6(xy, x2)".
On the other hand, by (2.5)

63 < I, 8(xa, ¥)" lk(x1, y) — k(x3, )l dp(y)

Ad(xy, x3) < d(x1, ¥)

=)

<ligll, ¥

j=0

1/r
k(e )N du(y))

lk(xl! y)

('[AfAé(n, x2) < 8(x1, Yy < At 148(x1, x2)

1/r
5(x2, Y)™ du(y)>

(-[ AIA5(x1, x2) < 8(x}, y) < AT H148(x1, x2)

51
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ad : —1/r 6(x1’x2) )’I"’E
< J 1/r —_2 e
S B
: (Aj5(x1 , X)) (Ajé(xh xz))”r,

0

<ClIgll, 80xy, x2)" 3, A< Cigll, 8(xy, x,)"
Jj=0
Finally, we shall prove that if supp ¢ = B,,
I T(x)) oo < C lI@ll, u(Bo)".

It is enough to show that

’ [ 0600 — 801 kCx, ) hs(3) du(y)' <C ligll, (diam(supp 4))",

for any sufficiently large B.

Let B,=B,(z,r,), B,=Bjs(z, A’ry), and B=By(z,r) be such that
supp ¢ = B, and A’ry<r.

Assume first that x ¢ Bs(z, A%r,). Then

1 E800) = 6011 k(3 ) ()| = | [ 805 k(5. 3) ) )|

=] 60t ) )|

In this integral the relevant points y satisfy d(z, y) <r,, since y€supp ¢,
and 8(x, z)> A%r,.

Then, if A/rg<d(x,z)<A’*'ry, j=2, we have A4/72(A4—1)ro<
8(x, y)<247% 7.

Therefore, for x € B(z, A7* 'ry)\B(z, A’ry), j=2, we have

[ 402k 9 i)

() k(x, 7) du(y)]

L/‘-Z(A —1)rg<é(x, y) <24/ %2y

<ol | F(x, v) du(y)

A4 — 1) ro< 8(x, ¥) <247+ g
ir ) 1
<Clgl ([ Ry du(y)) ((Bs(x, 247%m)
A< 8(x, y) <247+

SC ¢l < C i@, u(Bo)".
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If x € B(z, A%r,), using (2.4), (2.19), and (2.7), we get
[ T00)— 8001 s, ) ) )|
<] 1001 6007 5 ) ) ) )|

+ U [4(2) — $()T (%, ) Al YL~ hp (1)) du(y)[

N

(€0, 181,305 7 B ) )
3(x, y) <240

+

600) [ ks 3)ha() = () )|
<C Ul 4(BoY +C 1$]. <C lIgl, u(Bo)

In order to prove the converse, assume that T is continuous from A§ into
Aj. Then, by the computations above, this implies that the function defined
for xe B as

(8(x)—mpg)p(x)
is a Lipschitz function for any ¢ € A}; moreover
li(g(-)—mzg) ¢, < Clidll,- (233)
Now take x,, x,, and B= B4(z, r) such that x,, x, € B; then by (2.33),
18(x1) — 8(x2)[ = [(g(x,) —mp g) — (&(x2) —mp g)|
=|(8(x1) —mpg) hp(x,) — (8(x;) —myzg) hp(x,)|

<Clhgll, <Cr=.

Now letting r - o0 we obtain g(x,;)=g(x,). In other words, g(x) is
constant and 71=0.

Let us define
tj(x’ y) =SA‘f(xa y)—sA‘f“l(x’ y),

where s,(x, y) is the approximation of the identity introduced in
Theorem (1.13). We define

ki (%, ¥)=<t(x,-), Tt (y, - ).



54 MACIAS, SEGOVIA, AND TORREA

(2.34) THEOREM. Let T be a continuous linear operator defined from A}
into (A}) for every y, 0<y<a, weakly bounded of order n, for some 1,
0<n<a, and with an associated kernel satisfying (13.1) and (13.2) with
1r'+n>1. Assume that T1=0. Then the following inequality holds for
J1Z2J2:

An(/z—jl)AjzA —jlr' +n)

1K (6 7)) S&(x, Y)Yy A

Proof. Let B be a ball with radius bigger than 4 = and such that
{z:0(x,2)<CA"} U {z:8(y,z)<CA™} < B.

Theorem (2.27) tells us that

kjl-jz(x’ y)=< (X, ), T*1, (y9 )

=cs | 1,062) 1,03, 2) du(z)
= [ 145, 2) I512) 1,3, 2) du(z)

#1002 (] (00080 = 00020 K ) i) ) ),
(2.35)

Assume first that d(x, y) < A(4 + 1) A2 Then, by Theorem (1.13), we
have

[ 442 2) 1,5, 2) dutz)

U (% 22,3, 2) = 1y, %)) diu(z)

<C J 1,(x, z) A2 HED(x, 2)" dz

A —hn

—J (1+1)
< CA—imgni+n gcé(x, y)1+n+A—jz(l+n)

st +n) g
5(x, y)l+r1+A—jz(l+v1)'

= CAM2—JD
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Analogously, by Lemma (2.13), we have
[ 05212121 1,0 2 )
U (5 U1E) 13, 2) — I 1) 1,03, %)] di2)

<C j t,(x, 2) ARS8 (x, 2)7 dp(z)

A—jz(l+r1)

(j2— 1)
SC4mR 5(x’ y)1+n+A—1’2(1+rl)'

Analogously, by Theorem (2.32), we have

U i(x, 2) (f (200 0) = 1,3, 2)) Kz, u)du(u)) du(z)

= ‘J‘ tjl(x’ z) <J. (tjz(y’ u)— sz(y, z)) k(z, u) du(u)

~ [ (13, )= 103, %)) Kl ) du(u)> du(z)

< 10x 2) 420+ 95(x, 2)1 du(z)

AR +n)

(j2—Jj1)
SC4qmEA 5(x, y)l+r/+A—j2(l+n)'

Let us assume now that 8(x, y)> A(4+1) A2 If 1,(y, z) #0, then
A(A+1) A7 <8(x, y) S A(S(x, 2) + 8(z, y)) S A(S(x, z) + A7%).

In other words,
3x,z)>AA > A"z 470

This tells us that ¢;(x, z) =0 and therefore the first two integrals in (2.35)
are zero.
We estimate now

[ 1,520 ([ 0400 0= 1,00 ) . 0 o)) ).
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As we have seen before, if ¢,(y, z) #0, then ¢,(x, z) =0. Then it is enough
to estimate

I (%, 2) <f 15(y, u) k(z, u) d”(”)) du(z)
= f 4(x, 2) (f oy, u)(k(z, u) — k(x, u)) du(u)) du(z).

Observe that

3(x, ) S AS(x, u) + 8(u, y)) < A(S(x, u) + A7)
1
< Ad(x, u) +I1 3(x, y);
then 8(x, u)(4+ 1) = é(x, y), and moreover

8(x,z2) <A< A2 <

20T O (2.36)

Therefore, if we define
E={u:6(x, y)<(A+1)d(x,u); A(4 + 1) 8(x, z) < (x, y)}

and

Ah Ah+1
= : < 2 3
E, {u 35, ) <35 1) <4 905 9)

o(x, z)<

1
A4+ o(x, Y)},

we obtain by Hdolder’s inequality that the last integral is less than or equal

to
f 4l 2) {(I |2,(3, w)|” d/t(ﬂ)>l/r'
x(f lk(z, u) — k(x, u)|" d'u(u))l/r} .

<C [ t(x,2) 42420

(3 [, etz )= ktx, ) dutz.
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By (2.5), this is less than

j2 4 — 2L/ s 5()&', Z) N\
crtn s (5 ) ™ ()

<C J t,-](x, z) A2A4 —iz(l/r')a(x, y)—(l/r’+n) AN

1/r
X (Z A —h(r/r' + nr)) d[.l(Z)
h
A2 4 =) g =i AMR2—0) 4 —nr+n)
5(x, y)l/r’+n < 5(x, y)l/r’+rr+A—j2(l/r’+n)'

(2.37) CoroLLARY. Under the conditions of Theorem (2.34), if we define
Ty, S0 = [ Ky 5, 9) () b,

then T; ;, is a bounded operator from L*(X, du) into L*(X, du) with norm

less than or equal to A"2~7),

(2.38) APPLICATION. Assume that k(x, y) is a singular integral kernel
k(x, y) satisfying (2.4), (2.5) for n+ ¢ with ¢ >0 and the following cancella-
tion property:

let 0 <r <R < 0, then

(2.39)
j k(x, y)du(y)=0,  for every xe X.
r<dé{x,y)<R
Under these conditions we define for ¢ e A}
Tfx)=lim [ k(x, ) 4(y) dy. (2.40)
r—0 Jr<i(x, y)

Then the operator T is well defined and maps A} into Al.

In order to prove this result we show that T satisfies the hypotheses of
Theorem (2.32) and in addition, 71 =0.

Let x be a fixed point in X and ¢e A such that supp ¢ < B(z, 5),
s <k,pu(z). Then. by (2.39), we have



58 MACIAS, SEGOVIA, AND TORREA

T¢(x) = lim k(x, y) ¢(y) dy

r—=0 Jr<d(x,y)

= lim k(x, y) ¢(y) dy
r—0 Jr<dx, y)< AS(x. z) +5)

=lim |

r—0 Jr<d(x, y)< A(8(x, 2) + 5)

k(x, yXS(y) — ¢(x)) dy

k(x, y)¢(y) —¢(x)) dy.

J\é(x, VIS Ad(x, z)+5)

The last integral converges since, by Lemma (2.7),

) lk(x, y)((y)—¢(x))| dy

‘L(X, PISAG(x, =)+

<ligll, |

3(x, y) S A(8(x, z) +5)

<Cligli, A(3(x, z) +5)".

k(x, y) 6(x, y)' dy

Therefore, (2.40) is well defined. Using the same kind of argument, if
(supp @) U (supp ¢) = B,(z, 5), we have

<T4, 95| = l [ (um [LCEILIEY dy) Y (x) dx

r—0

<C I, [ (6x, 2)+9)" Iix)] dx
<Cs" lIgll, | ()l dx

< Cu(Bs(z, s)' > el Ml

Finally, let us compute 7T1. Assume that y e {A]}, with suppy < B=
By(z, 5). Then

Thy, ¥+ Il ¥

- (lin}) [ ok y)hg(y)dy) V(x) dx
r— r<d(x,v)
+f ( [ e ) =k, 7)) (1= () dy) y(x) dx
I J . K )

+ [ ke, 9) Gz, (U= ho)) b [ (x)
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By (2.39), this integral is equal to

| \ tm [ k=) dy‘ ¥(x) dx

gy

= J | e y)0nae) = ot ) =0,

lir Kz, y)(halz)— ha(y)) dy\ V(x) dx

0
ISZOQ r<d(x,y)<R

since the innermost integral does not depend on x and y e {A43},.

A particular case of this application is the following:

Given a homogeneous polynomial P(x) of even degree m, defined on C”
with negative real part for real x, we consider the parabolic differential
equation

L|u|=%u—(—1)’"’2P(D)u=f.

In [J] the following expression was considered in order to obtain a
priori estimates:

t—¢
Dfu(x, t)=1lim J‘ J s(x—y, t—5) f(y,s)dy ds,
0 v0 R"

where p is a multi-index, |p|=p,+ --- +p,=m, and s(x, t) is the pth
spatial derivative of a fundamental solution of the homogeneous equation
L(U)=0.

It has been observed in [RT] that a priori estimates can be obtained
from

lim s(x—y,t—15) f(y,s)dy ds.

e=+0 Jix_yl+1—s)lim>e

This limit is viewed as defining a singular integral operator associated to
the kernel k(X, j)=s(x—y, t—s), on the space of homogeneous type
(X, d, u) given by

X=R"x |0, ),
d(-f’ )7)=d((xa t)’ (y, S))= |x_y| + |t_s|1/m,

and p the Lebesgue measure on R"x | 0, c0).
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In
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[MT] it is proved that the kernel satisfies (2.4), (2.5) for

y=(m+n)"", and (2.35); therefore the a priori estimate

Wi DR, < C NILGaI,

holds for any 0 <y < (m+n)~L.

[A]
[DIS]

J]
[KW]

[L]
[MS1]
[MS2]
[MT]

[RT]
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