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Abstract

Let A be a semisimple and regular commutative Banach algebra with structure space �(A). Generalizing
the notion of spectral sets in �(A), the considerably larger class of weak spectral sets was introduced and
studied in [C.R. Warner, Weak spectral synthesis, Proc. Amer. Math. Soc. 99 (1987) 244–248]. We prove
injection theorems for weak spectral sets and weak Ditkin sets and a Ditkin–Shilov type theorem, which
applies to projective tensor products. In addition, we show that weak spectral synthesis holds for the Fourier
algebra A(G) of a locally compact group G if and only if G is discrete.
© 2007 Elsevier Inc. All rights reserved.
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Introduction

Let A be a regular and semisimple commutative Banach algebra with structure space �(A)

and Gelfand transform a → â. For any subset M of A, the hull h(M) of M is defined by h(M) =
{ϕ ∈ �(A): ϕ(M) = {0}}. Associated to each closed subset E of �(A) are two distinguished
ideals with hull equal to E, namely

k(E) = {
a ∈ A: â(ϕ) = 0 for all ϕ ∈ E

}
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and

j (E) = {a ∈ A: â has compact support disjoint from E}.

Then k(E) is the largest ideal with hull E and j (E) is the smallest such ideal. Recall that E is a
spectral set (or set of synthesis) if k(E) = j (E) (equivalently, k(E) is the only closed ideal with
hull equal to E). One says that spectral synthesis holds for A if every closed subset of �(A) is a
spectral set. Moreover, E is a Ditkin set if a ∈ aj (E) for every a ∈ k(E).

In connection with the union problem, that is, the question of when the union of two sets of
synthesis is a set of synthesis, Warner [19] introduced and studied the class of weak spectral
sets. Motivation certainly also arose from the fact that such sets appeared earlier in the work of
Varopoulos [17,18] and others. The definition, although this is not the original one, can be given
as follows. A closed subset E of �(A) is called a weak spectral set if there exists n ∈ N such that
an ∈ j (E) for every a ∈ k(E). Adopting the notation of [19], we let ξ(E) denote the smallest
such number n. When this happens for each E, we say that weak spectral synthesis holds for A.
Generalizing the notion of a Ditkin set, we call E a weak Ditkin set if there exists n ∈ N such
that an ∈ anj (E) for all a ∈ k(E), and η(E) will then stand for the minimal such n. So E is a
spectral set (Ditkin set) if and only if ξ(E) = 1 (η(E) = 1). Subsequent to [19], the study of weak
spectral sets and of the weak synthesis problem gained considerable attention [7,11,12,20], the
more so because there are many commutative Banach algebras for which weak spectral synthesis
holds, whereas spectral synthesis fails (compare Section 1).

The purpose of this paper is to investigate weak spectral sets and weak Ditkin sets under var-
ious aspects. We start in Section 1 by mentioning some examples of algebras for which spectral
synthesis fails, but weak synthesis holds. These examples are followed by some preliminary re-
sults concerning countable unions, localness and a sufficient condition for a weak spectral set to
be weak Ditkin. In Section 2 the setting is that of a closed ideal I of A together with the embed-
ding i of �(A/I) into �(A). So-called injection theorems for spectral sets and Ditkin sets relate
either of these properties of closed subsets E of �(A/I) to the corresponding property of their
images i(E) in �(A). We prove injection theorems for weak spectral sets (Theorem 2.2) and
weak Ditkin sets (Theorem 2.5), at the same time providing estimates for the values of ξ and η.

The classical Ditkin–Shilov (or Helson–Reiter) theorem states that if singletons in �(A) are
Ditkin sets, then every closed subset of �(A) with scattered boundary is a spectral set. A remark-
able extension was obtained in [1, Theorem 1.2]. Here we establish, under somewhat weaker
hypotheses, an analogous result for weak spectral sets (Theorem 3.1). Like [1, Theorem 1.2],
Theorem 3.1 admits an application to projective tensor products (Theorem 3.5). Again, there are
upper bounds for ξ(E). Modifying Varopoulos’ proof [18] of Malliavin’s celebrated theorem [9],
it was shown in [12, Theorem 3.1] that weak spectral synthesis fails for the Fourier algebra A(G)

of every non-discrete abelian locally compact group G. We conclude the paper by extending this
result to arbitrary locally compact groups (Theorem 4.3).

1. Preliminaries, examples and some basic properties

Let A be a semisimple and regular commutative Banach algebra. In [19] a closed subset E of
�(A) was defined to be a weak spectral set if every element of the quotient algebra k(E)/j (E)

is nilpotent. Then, as shown in [19, Theorem 1.2] and [3, footnote 7, p. 885], there exists n ∈ N

such that xn ∈ j (E) for all x ∈ k(E). So this latter property can equally well be taken as the
definition. One of the important features of the class of weak spectral sets is that it is closed under
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the formation of finite unions. Actually, for any two weak spectral sets E1 and E2, ξ(E1 ∪E2) �
ξ(E1) + ξ(E2) [19, Theorem 2.2] (see [11, Corollary 3.11] for a different approach). Although
the class of weak spectral sets shares this finite union property with the class of Ditkin sets, in
contrast to the latter a closed countable union of weak spectral sets need not be a spectral set [19,
Theorem 2.6].

We point out that, throughout this paper, the most important fundamental tool is the local
membership principle which we briefly recall for the readers convenience. Let I be a closed
ideal in A. An element x ∈ A is said to belong locally to I at ϕ ∈ �(A) (at infinity) if there exist
a neighbourhood V of ϕ in �(A) (a compact subset K of �(A)) and an element y of I such that
x̂(ψ) = ŷ(ψ) for all ψ ∈ V (ψ ∈ �(A) \ K). If x belongs locally to I at every point of �(A)

and at infinity, then x ∈ I . As general references to spectral synthesis we mention [4,13,14].
In this section, we first present three illustrative examples and then give some basic results on

weak spectral sets and weak Ditkin sets. Concerning notation, we make the following convention.
If E ⊆ �(A) is a singleton, say {ϕ}, we write k(ϕ) and j (ϕ) in place of k({ϕ}) and j ({ϕ}),
respectively.

Example 1.1. (1) For n ∈ N, the unit sphere Sn−1 in Rn = �(L1(Rn)) is a weak spectral set with
ξ(Sn−1) = �n+1

2 � [18, Theorem 3].
(2) For each n ∈ N, T∞ = �(L1(T̂∞)) contains a weak spectral set E with ξ(E) = n [20,

Corollary 2.5(d)].
(3) Let Cn[0,1] be the algebra of all n-times continuously differentiable functions on [0,1]

and identify �(Cn[0,1]) with [0,1]. Then ξ(E) = n + 1 for every non-empty proper closed
subset E of [0,1] [7, Example 2.4(i)].

Example 1.2. Let X be a compact metric space with metric d and let 0 < α � 1. Then Lipα X is
the space of all complex-valued functions f on X such that

pα(f ) = sup

{ |f (x) − f (y)|
d(x, y)α

: x, y ∈ X, x 	= y

}
is finite. With pointwise multiplication and the norm ‖f ‖ = ‖f ‖∞ +pα(f ), Lipα X is a commu-
tative Banach algebra. These Lipschitz algebras were first extensively studied by Sherbert [15].
All the facts relevant to us, can now also be found in Section 4.4 of the monograph [5]. The map
x → ϕx , where ϕx(f ) = f (x) for f ∈ Lipα X, is a homeomorphism from X onto �(Lipα X).
With this identification of X and �(Lipα X), we have k(E)2 = j (E) for every closed subset
E of X, whereas E is a spectral set if and only if E is open in X. Consequently, if X is not
discrete, then spectral synthesis fails for Lipα X, but weak spectral synthesis holds. Actually,

inspection of the proof of Theorem 4.4.31 of [5] shows that f 2 ∈ f 2j (E) for every f ∈ k(E),
so that η(E) � 2. Moreover, if E is open and closed in X, then 1E ∈ Lipα X, and hence E is a
Ditkin set. Thus Lipα X provides an example of a semisimple and regular commutative Banach
algebra A for which ξ(E) = η(E) � 2 for each closed subset E of �(A).

Example 1.3. Let M be the Mirkil algebra which was introduced in [10] as a counterexample
to discrete spectral synthesis. Identifying [−π,π) with the torus T, M is defined to be the space
of all functions f ∈ L2(T) such that f is continuous on [−π/2,π/2]. With convolution and the
norm ‖f ‖ = ‖f ‖2 +‖f |[−π/2,π/2]‖∞, M is a regular and semisimple commutative Banach alge-
bra, and �(M) can be identified with Z. Every subset E of Z is a weak Ditkin set with η(E) � 2
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[20, Theorem 1.4]. On the other hand, no finite subset of Z is a Ditkin set [10, Section 5], [20,
Corollary 2.2]. The Mirkil algebra also serves as a counterexample to the union question. In fact,
the sets 4Z and 4Z + 2 are spectral sets, whereas their union, 2Z, is not [2, Theorem] (see also
the exposition in Section 4.5 of [5]). Since translates of Ditkin sets in Z are Ditkin sets [20,
Theorem 2.1], it follows that

ξ(4Z) = ξ(4Z + 2) = 1, ξ(2Z) = 2 and η(4Z) = η(4Z + 2) = η(2Z) = 2.

This in particular shows that the inequality ξ(E1 ∪E2) � ξ(E1)+ξ(E2) mentioned above cannot
be improved.

As is shown by the sets 4Z and 4Z + 2 in Example 1.3, in general spectral sets need not
be Ditkin sets. However, if E ⊆ �(A) is a spectral set satisfying some additional hypothesis,
which might be termed bounded regularity, then E is a Ditkin set. The analogous conclusion
(Lemma 1.4), which will be used in Section 3, holds for weak spectral sets. We include the
simple proof.

Lemma 1.4. Let E ⊆ �(A) be a weak spectral set. Suppose that there exists a constant C > 0
such that for every compact subset K of �(A) which is disjoint from E, there exists a ∈ j (E)

such that ‖a‖ � C and â = 1 on K . Then E is a weak Ditkin set and η(E) = ξ(E).

Proof. Let n = ξ(E) and let x ∈ k(E) and ε > 0. There exists y ∈ j (E) with ‖xn − y‖ � ε. By
hypothesis, there exists a ∈ j (E) such that ‖a‖ � C and â = 1 on supp ŷ. Then y = ya since A

is semisimple and ŷa = ŷ. It follows that∥∥xn − xna
∥∥ �

∥∥xn − y
∥∥ + ∥∥ya − xna

∥∥ � (1 + C)ε.

This shows that xn ∈ xnj (E), and hence η(E) � ξ(E). �
A closed countable union of Ditkin sets is a Ditkin set. Refined arguments allow to show the

following version for weak Ditkin sets.

Proposition 1.5. Suppose that ∅ is a weak Ditkin set. Let E be a closed subset of �(A) which is
a union of closed subsets Ei , i ∈ N. If η(Ei) � N for some N ∈ N and all i, then η(E) � Nη(∅).

Proof. Let m = η(∅). Then there exists a sequence (un)n in A such that xmun → xm and each
ûn has compact support. It suffices to show that (xmun)

N ∈ (xmun)Nj (E) for all n. It therefore
suffices to show that if y ∈ k(E) is such that ŷ has compact support then yN ∈ yNj (E). Since
A is semisimple and regular, this will follow once we have verified that yN belongs locally to
yNj (E) at every point of �(A).

To that end, fix ϕ ∈ �(A) and a compact neighbourhood U of ϕ in �(A). There exists u ∈ A

such that û = 1 in a neighbourhood of ϕ and supp û ⊆ U . We claim that yNu ∈ yNj (E). Let
ε > 0 be given. Since all Ei are weak Ditkin sets with η(Ei) � N , we can construct by induction
a sequence (zi)i such that zi ∈ j (Ei), ‖yN − yNz1‖ � ε

2‖u‖ and

∥∥yN − yNzi

∥∥ � ε

2i‖u‖ · ∏i−1 ‖y ‖
l=1 l
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for i � 2. For each i, let Vi be an open set containing Ei such that ẑi vanishes on Vi . Now, since
E ∩U is compact, E ∩U ⊆ ⋃n

i=1 Vi for some n ∈ N. Let z = z1 · . . . · zn, then z ∈ j (E ∩U) and
hence uz ∈ j (E) since û vanishes on �(A) \ U . Finally,

∥∥yNu − yNuz
∥∥ �

∥∥yNu − yNuz1
∥∥ +

n∑
i=2

∥∥yNuz1 · . . . · zi−1 − yNuz1 · . . . · zi

∥∥
� ‖u‖

(∥∥yN − yNz1
∥∥ +

n∑
i=2

∥∥yN − yNzi

∥∥ i−1∏
l=1

‖zl‖
)

� ε

n∑
i=1

1

2i
< ε.

Since yNuz ∈ yNj (E) and ε > 0 was arbitrary, it follows that yNu ∈ yNj (E). This shows that
yN belongs locally to yNj (E) at ϕ because û = 1 near ϕ. �

It is well known that the property of being a spectral set is local in the sense that if A satisfies
Ditkin’s condition at infinity and E is a closed subset of �(A) such that every point of E has a
closed relative neighbourhood in E which is a spectral set for A, then E is a spectral set. The
corresponding result for weak spectral sets does not hold (see Example 1.7 below). We have,
however, the following

Proposition 1.6. Let A be a regular and semisimple commutative Banach algebra satisfying
Ditkin’s condition at infinity and let E be a compact subset of �(A). Suppose that each point
of E has a closed relative neighbourhood in E which is a weak spectral set for A. Then E is a
weak spectral set for A.

Proof. Let x ∈ k(E). Since A is semisimple and x belongs locally to j (E) at every point of
�(A)\E, it suffices to show that there exists n ∈ N such that xn belongs locally to j (E) at every
point ϕ of E.

By hypothesis, there exist a closed subset Eϕ of E and an open neighbourhood Uϕ of ϕ in
�(A) such that Uϕ ∩ E ⊆ Eϕ and xnϕ ∈ j (Eϕ). A being regular, there exists uϕ ∈ A such that
supp ûϕ ⊆ Uϕ and ûϕ = 1 in a neighbourhood of ϕ in �(A). Since Eϕ is a weak spectral set,
there exist yϕ ∈ j (Eϕ) and nϕ ∈ N such that ‖xnϕ − yϕ‖ < ε/‖uϕ‖. Then ‖uϕxnϕ − uϕyϕ‖ < ε

and ûϕyϕ vanishes in a neighbourhood of E since ŷϕ = 0 in a neighbourhood of Eϕ and ûϕ = 0
in a neighbourhood of �(A) \Uϕ and E ⊆ Eϕ ∪ (�(A) \Uϕ). So yϕuϕ ∈ j (E). Since ε > 0 was

arbitrary, it follows that xnϕuϕ ∈ j (E). Finally, x̂nϕuϕ = x̂nϕ in a neighbourhood of ϕ and hence
xnϕ belongs locally to j (E) at ϕ.

Thus for each ϕ ∈ E, there exist an open neighbourhood Vϕ of ϕ ∈ �(A) and zϕ ∈ j (E) such
that x̂nϕ = ẑϕ on Vϕ . Since E is compact, there exist ϕ1, . . . , ϕm ∈ E such that E ⊆ ⋃m

i=1 Vϕi
.

Let n = max{nϕi
: 1 � i � m}. Then xn belongs locally to j (E) at every point of E. �

If the appropriate minor modifications are made, the proof of Proposition 1.6 applies to closed
subsets E provided that the values ξ(Eϕ), ϕ ∈ E, are bounded.
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Example 1.7. Let (An)n be a sequence of unital and semisimple commutative Banach algebras
and A their c0-direct sum. Then �(A) is the topological sum of the sets �(An) and A satisfies
Ditkin’s condition at infinity. Now suppose that for every n ∈ N there exists ϕn ∈ �(An) such
that {ϕn} is a weak spectral set with ξ(ϕn) � n, and let E = {ϕn: n ∈ N}. Then each singleton
{ϕn} is open in E and there exists xn ∈ k(ϕn) such that xk

n /∈ j (ϕn) for all k < n. Viewing xn as
an element of A, we have xn ∈ k(E) and xk

n /∈ j (E) for all k < n. It follows that ξ(E) � n for all
n ∈ N.

As an example of such sequences (An)n and (ϕn)n, simply take An = Cn[0,1] and, after
identifying �(An) with the interval [0,1], ϕn = 0. In fact, ξ(t) = n + 1 for each t ∈ [0,1]
(Example 1.1(3)).

2. Injection theorems for weak spectral sets and weak Ditkin sets

Let G be a locally compact abelian group and H a closed subgroup of G. Then L1(G/H) is
a quotient of L1(G) and Ĝ/H = �(L1(G/H)) embeds canonically into Ĝ = �(L1(G)). Then
a closed subset of Ĝ/H is a spectral set (Ditkin set) for L1(G/H) if and only if it is a spectral
set (Ditkin set) for L1(G) (see [13, Theorems 7.3.15 and 7.4.13]). For the obvious reason, these
results are referred to as injection theorems. The same problem naturally arises in the general
context of a regular and semisimple commutative Banach algebra A and a closed ideal I of A,
and it is worthwhile to consider weak spectral sets and weak Ditkin sets rather than just spectral
sets and Ditkin sets. In this section, we establish such injection theorems. However, as the reader
might expect, some additional hypotheses, which are automatically satisfied in the group algebra
situation, have to be placed on A and I .

We start with a lemma which is needed to prove the injection theorem for weak spectral sets.
In what follows, if I is a closed ideal of A, then i : �(A/I) → �(A) will denote the embedding
defined by i(ϕ)(x) = ϕ(x + I ) for ϕ ∈ �(A/I) and x ∈ A.

Lemma 2.1. Let A be a regular commutative Banach algebra and I a closed ideal of A such
that h(I) = �(A). Let E be a closed subset of �(A/I) and suppose that k(E)n ⊆ j (E) and
Im ⊆ j (i(E)) for some n,m ∈ N. Then

k
(
i(E)

)nm ⊆ j
(
i(E)

)
.

Proof. It suffices to show that given x ∈ k(i(E)) such that ‖x‖ < 1 and 0 < ε < 1 − ‖x‖, there
exists y ∈ j (i(E)) with ‖xnm − y‖ < ε m. By hypothesis, there exists y ∈ A such that ŷ + I

has compact support disjoint from E and ‖(xn + I ) − (y + I )‖ < ε. Since ŷ + I (ϕ) = ŷ(i(ϕ))

for all ϕ ∈ �(A/I) and since i is a homeomorphism from �(A/I) onto h(I) = �(A), we have
y ∈ j (i(E)). Choose z ∈ I so that ‖xn − (y + z)‖ < ε. Then ‖y + z‖ � 1 and

∥∥xnm − (y + z)m
∥∥ =

∥∥∥∥∥(
xn − (y + z)

)m−1∑
j=0

xnj (y + z)m−1−j

∥∥∥∥∥
< ε

m−1∑
j=0

‖x‖nj‖y + z‖m−1−j

� εm.
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Since both zm and y are contained in j (i(E)), it follows that

(y + z)m = zm +
m∑

j=1

(
m

j

)
yj−1zm−j ∈ j

(
i(E)

)
.

So u = (y + z)m has the desired properties. �
Theorem 2.2. Let A be a regular and semisimple commutative Banach algebra, I a closed ideal
of A and E a closed subset of �(A/I).

(i) If i(E) is a weak spectral set for A, then E is a weak spectral set for A/I and ξ(E) �
ξ(i(E)).

(ii) If E is a weak spectral set for A/I and h(I) is a weak spectral set for A, then i(E) is a weak
spectral set for A and ξ(i(E)) � ξ(E)ξ(h(I )).

Proof. (i) Let n = ξ(i(E)) and let x ∈ A be such that x + I ∈ k(E). Then x ∈ k(i(E))

and hence given ε > 0, there exists y ∈ j (i(E)) such that ‖xn − y‖ < ε. It follows that
‖(y + I ) − (xn + I )‖ < ε and ŷ + I has compact support disjoint from E. Since ε > 0 was
arbitrary, (x + I )n ∈ j (E).

(ii) Note first that j (h(I )) ⊆ I since A is semisimple and regular. Let A1 = A/j (h(I)) and
I1 = I/j (h(I )). Then h(I1) = �(A1), so that Lemma 2.1 applies to A1 and its ideal I1. Hence,
with i1 denoting the embedding �(A1/I1) → �(A1), k(i1(E))nm ⊆ j (i1(E)). Let q : A → A1
denote the quotient homomorphism and i2 : ϕ → ϕ ◦q the embedding of �(A1) into �(A). Since
i(E) ⊆ h(I), we have j (h(I )) ⊆ j (i(E)), and since i = i2 ◦ i1, it follows that

j
(
i(E)

) = q−1(q(
j
(
i(E)

))) ⊇ q−1(j(
i1(E)

))
⊇ q−1(k(

i1(E)
)nm) ⊇ (

q−1(k(
i1(E)

)))nm

= k
(
i(E)

)nm
,

as was to be shown. �
We continue with two consequences of Theorem 2.2.

Corollary 2.3. Let A be a semisimple and regular commutative Banach algebra and suppose
that ∅ is a Ditkin set. Let E ⊆ �(A) be a weak spectral set for A and F an open and closed
subset of E. Then F is a weak spectral set and ξ(F ) � ξ(E).

Proof. Let I = k(E) and let F ′ and E′ denote the sets in �(A/I) corresponding to F and E′,
respectively. Then �(A/I) = E′ and F ′ is open and closed in �(A/I). Since A/I is semisimple
and regular and satisfies Ditkin’s condition at infinity, it follows that F ′ is a spectral set for A/I .
Theorem 2.2(ii) now implies that F = i(F ′) is a weak spectral set and

ξ(F ) = ξ
(
i(F ′)

)
� ξ(F ′)ξ

(
h(I)

) = ξ(E),

since ξ(F ′) = 1 and E = h(I). �
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For a locally compact group G, let A(G) denote the Fourier algebra of G as introduced and
studied extensively by Eymard [6]. A(G) is a regular and semisimple commutative Banach al-
gebra whose spectrum can be identified with G. In fact, the map t → ϕt , where ϕt (u) = u(t) for
u ∈ A(G), is a homeomorphism from G onto �(A(G)) [6, Théorème 3.34]. Recall that when G

is abelian, A(G) is isometrically isomorphic (by means of the Fourier transform) to L1(Ĝ), the
L1-algebra of the dual group of G. An injection theorem for spectral sets of Fourier algebras was
shown in [8, Theorem 3.4]. The following corollary generalizes [19, Corollary 2.5(c)].

Corollary 2.4. Let G be a locally compact group, H a closed subgroup of G and i : H =
�(A(H)) → G = �(A(G)). Then ξ(E) � ξ(i(E)) for any closed subset E of H .

Proof. Let I = {u ∈ A(G): u|H = 0}. Then the map u + I → u|H is an isometric isomorphism
between A(G)/I and A(H). The statement now follows from Theorem 2.2 and the fact that H

is a set of synthesis for A(G) [16, Theorem 3]. �
We now proceed with the injection theorem for weak Ditkin sets. Note that the hypothesis

in part (ii) of the following theorem implies that h(I) is a weak Ditkin set with η(h(I)) � m.
When A = L1(G) and I is the kernel of the quotient homomorphism L1(G) → L1(G/H), this
condition, with m = 1, is always satisfied [13, Lemma 7.4.14].

Theorem 2.5. Let A be a regular and semisimple commutative Banach algebra, I a closed ideal
of A and E a closed subset of �(A/I).

(i) If i(E) is a weak Ditkin set for A, then E is a weak Ditkin set for A/I and η(E) � η(i(E)).
(ii) Suppose that there exist m ∈ N and a constant C > 0 with the following property: For every

a ∈ A and ε > 0, there exists b ∈ A such that ‖am − amb‖ � C‖am + I‖ + ε and b̂ vanishes
in a neighbourhood of h(I). If E is a weak Ditkin set for A/I , then i(E) is a weak Ditkin
set for A and η(i(E)) � m2η(E)2.

Proof. In the following, q denotes the quotient homomorphism from A onto A/I .
(i) Let n = η(i(E)) and let x ∈ A be such that q(x) ∈ k(E). Then, given ε > 0, there exists

y ∈ j (i(E)) such that ‖xn − xny‖ � ε. It follows that ‖q(x)n − q(x)nq(y)‖ � ε and q̂(y) has
compact support and vanishes in a neighbourhood of E in �(A/I). Since ε > 0 was arbitrary,
q(x)n ∈ q(x)nj (E).

(ii) Let n = η(E) and let x ∈ k(i(E)), x 	= 0, and ε > 0 be given. Choose δ > 0 such that

δ ·
nm−1∑
j=0

‖x‖n(nm−j)
(‖x‖n + δ

)j � ε.

Then q(x) ∈ k(E) and hence there exists u ∈ A such that

∥∥q
(
xn − xnu

)∥∥ = ∥∥q(x)n − q(x)nq(u)
∥∥ � δ
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and q̂(u) vanishes in a neighbourhood of E in �(A/I). For arbitrary Banach algebra elements s

and t and k ∈ N, we have

∥∥sk − tk
∥∥ =

∥∥∥∥∥(s − t)

k−1∑
j=0

sk−j tj

∥∥∥∥∥ � ‖s − t‖ ·
k−1∑
j=0

‖s‖k−j
(‖s‖ + ‖t − s‖)j

.

Setting s = q(xn), t = q(xnu), and k = nm and using that ‖q(xn − xnu)‖ � δ, it follows from
the choice of δ that

∥∥q
(
xn2m − xn2munm

)∥∥ � δ ·
nm−1∑
j=0

‖x‖n(nm−j)
(‖x‖n + δ

)j � ε.

By Theorem 2.2(ii), i(E) is a weak spectral set for A and

ξ
(
i(E)

)
� ξ(E)ξ

(
h(I)

)
� η(E)η

(
h(I)

) = nm.

Since u ∈ k(i(E)), there exists v ∈ A such that ‖unm−v‖ � ε/‖x‖n2m and v̂ has compact support
and vanishes in a neighbourhood of i(E) in �(A). Then

∥∥q
(
xn2m − xn2mv

)∥∥ �
∥∥q

(
xn2m − xn2munm

)∥∥ + ∥∥q
(
xn2m

)
q
(
unm − v

)∥∥
�

∥∥q
(
xn2m − xn2munm

)∥∥ + ‖x‖n2m
∥∥unm − v

∥∥
� 2ε.

Now let a = xn2m−xn2mv ∈ A. By hypothesis, there exists w ∈ j (h(I )) such that ‖am−amw‖ �
C‖q(am)‖ + ε. Write

am − amw =
m∑

j=0

(
m

j

)
(−1)j xn2m2(

vj − vjw
)

= xn2m2 − xn2m2

(
w −

m∑
j=1

(
m

j

)
(−1)j−1(vj − vjw

))
.

Finally, let

y = w −
m∑

j=1

(
m

j

)
(−1)j−1(vj − vjw

) ∈ A.

Then ŷ has compact support since both v̂ and ŵ have compact support. Moreover, ŷ vanishes in
a neighbourhood of i(E) in �(A) since v̂ does so and ŵ vanishes in a neighbourhood of h(I).
So y ∈ j (i(E)) and ∥∥xn2m2 − xn2m2

y
∥∥ � C

∥∥q
(
am

)∥∥ + ε � C(2ε)m + ε.
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Since ε > 0 was arbitrary, we conclude that xn2m2 ∈ xn2m2
j (i(E)). This finishes the proof of the

theorem. �
3. A Ditkin–Shilov type theorem and an application to projective tensor products

The classical Ditkin–Shilov (or Wiener–Ditkin) theorem asserts that if A is a semisimple and
regular commutative Banach algebra such that singletons in �(A) are Ditkin sets, then every
closed subset of �(A) with scattered boundary is a set of synthesis.

We remind the reader that a topological space X is called scattered if every non-empty closed
subset of X has an isolated point in the relative topology. Clearly, a countable locally compact
Hausdorff space is scattered. Conversely, if X is a second countable locally compact Hausdorff
space and X is scattered, then X is countable.

In [1, Theorem 1.2] Atzmon established, for unital A, a generalization which admits applica-
tions to projective tensor products. The first purpose of this section is to extend Theorem 1.2 of
[1] to weak spectral sets and not necessarily unital A. In the sequel, for a closed subset E of a
topological space, ∂(E) will denote the boundary of E.

Theorem 3.1. Let A be a regular and semisimple commutative Banach algebra, T a locally
compact Hausdorff space and f : �(A) → T a continuous, surjective and proper mapping.
Suppose that for each t ∈ T , every closed subset of f −1(t) is a weak Ditkin set and that

N = sup
{
η(F ): F ⊆ f −1(t), F closed, t ∈ T

}
is finite. Let E be a closed subset of �(A) such that f (∂(E)) is scattered. Then E is a weak
spectral set and ξ(E) � N .

Proof. Let a ∈ k(E) and let S denote the set of all t ∈ T with the property that aN does not at
all points of f −1(t) belong locally to j (E). Since a belongs locally to j (E) at every point of
�(A) \ ∂(E), we have f −1(t) ∩ ∂(E) 	= ∅ for every t ∈ S and hence S ⊆ f (∂(E)).

We first observe that S is closed in T . To see this, let (sα)α be a net in S converging to some
t ∈ T and, towards a contradiction, suppose that t /∈ S. For each α, choose ϕα ∈ f −1(sα) such
that aN does not belong locally to j (E) at ϕα . Fix a compact neighbourhood U of t . Since
f −1(U) is compact, after passing to a subnet if necessary, we can assume that ϕα ∈ f −1(U) for
all α and ϕα → ϕ for some ϕ ∈ �(A). Then ϕ ∈ f −1(t) since f (ϕα) → t . Hence aN belongs
locally to j (E) at ϕ and since ϕα → ϕ, the same is true at ϕα for large α. This contradiction
shows that S is closed in T .

Suppose that S 	= ∅. Then S has an isolated point s since f (∂(E)) is scattered and S is closed.
Choose an open subset V of T such that V ∩ S = {s}. Since C = ∂(E) ∩ f −1(s) is compact, we
find an open neighbourhood W of C such that W ⊆ f −1(V ). Moreover, A being regular, there
exists u ∈ A such that û = 1 in a neighbourhood of C and û = 0 on �(A) \ W .

By hypothesis, C is a weak Ditkin set and η(C) � N . Therefore, there exists a sequence (un)n
in j (C) such that ‖aN − aNun‖ → 0 and hence ‖aNu− aNuun‖ → 0. Now, aN belongs locally
to j (E) at every point of �(A) \ f −1(S) and of �(A) \ ∂(E) and ûun has compact support and
vanishes on open sets containing C and �(A) \ f −1(V ), respectively. Since

∂(E) ∩ f −1(S) ∩ f −1(V ) = C,
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this means that aNuun belongs locally to j (E) at every point of �(A) and at infinity. Semisim-
plicity of A implies that aNuun ∈ j (E) and therefore aNu ∈ j (E). Since û = 1 in a neighbour-
hood of C, it follows that aN belongs locally to j (E) at every point of f −1(s). This contradiction
shows that S = ∅ and finishes the proof of the theorem. �

One situation in which Theorem 3.1 applies is as follows. Let A be a unital, regular and
semisimple commutative Banach algebra. Let I be a closed ideal of A and let X = �(I)∪{ω}, the
one-point compactification of �(I). Define f : �(A) → X by f (ϕ) = ϕ|I for ϕ ∈ �(A) \ h(I)

and f (ϕ) = ω for ϕ ∈ h(I). Then f is continuous. In fact, every compact subset C of �(I) is
closed in �(A) since A is regular, and hence f −1(X \C) = �(A) \C is open in �(A). We leave
the reformulation of Theorem 3.1 in this situation to the reader. A more important application
concerns projective tensor products. In preparation for this, we need the following two lemmas.

In passing we remind the reader that the structure space of the projective tensor product
A ⊗̂ B of two commutative Banach algebras A and B identifies naturally with the product space
�(A)×�(B). More precisely, given ϕ ∈ �(A) and ψ ∈ �(B), there is a unique homomorphism
ϕ ⊗̂ ψ : A ⊗̂ B → C such that (ϕ ⊗̂ ψ)(a ⊗ b) = ϕ(a)ψ(b) for all a ∈ A and b ∈ B , and the map
(ϕ,ψ) → ϕ ⊗̂ ψ is a homeomorphism from �(A) × �(B) onto �(A ⊗̂ B).

Lemma 3.2. Let F be a closed subset of �(B) and ϕ ∈ �(A). Then

k
({ϕ} × F

) = k(ϕ) ⊗̂ B + A ⊗̂ k(F ).

Proof. Since obviously k(ϕ) ⊗̂ B + A ⊗̂ k(F ) ⊆ k({ϕ} × F), we only have to show the reverse
inclusion. Let u = ∑∞

i=1 ai ⊗ bi ∈ k({ϕ} × F), ai ∈ A, bi ∈ B ,
∑∞

i=1 ‖ai‖ · ‖bi‖ < ∞. Choose
e ∈ A such that ϕ(e) = 1 and write ai = xi + λie, where xi ∈ k(ϕ) and λi ∈ C. Then, since
|λi | = |ϕ(ai)| � ‖ai‖ and ‖xi‖ = ‖ai − λie‖ � ‖ai‖(1 + ‖e‖),

u =
∞∑
i=1

xi ⊗ bi + e ⊗
∞∑
i=1

λibi .

Now, for each ψ ∈ F ,

ψ

( ∞∑
i=1

λibi

)
= ψ

( ∞∑
i=1

ϕ(ai)bi

)
= (ϕ ⊗ ψ)(u) = 0.

Thus
∑∞

i=1 λibi ∈ k(F ) and hence, since xi ∈ k(ϕ), u ∈ k(ϕ) ⊗̂ B + A ⊗̂ k(F ). �
Lemma 3.3. Let F and ϕ be as in Lemma 3.2. Then

ξ
({ϕ} × F

)
� ξ(ϕ) + ξ(F ) − 1.

Proof. It suffices to show that if n = ξ(ϕ) < ∞ and m = ξ(F ) < ∞, then un+m−1 ∈ j ({ϕ} × F)

for every u ∈ k({ϕ} × F). First, let u be of the form u = ∑∞
i=1 xi ⊗ yi , xi ∈ k(ϕ), yi ∈ B . Since
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xn ∈ j (ϕ) for every x ∈ k(ϕ) and every n-fold product of elements of k(ϕ) is a linear combination
of nth powers of elements in k(ϕ), it follows that

un =
∞∑

i1,...,in=1

(xi1 · . . . · xin) ⊗ (yi1 · . . . · yin) ∈ j (ϕ) ⊗̂ B.

Secondly, let z ∈ k(F ) and v = e ⊗ z, where e ∈ A is such that ϕ(e) = 1. Then vm = em ⊗ zm ∈
A ⊗̂ j (F ). By the proof of Lemma 3.2, each element of k({ϕ} × F) is of the form u + v, where
u and v are as above. Then

(u + v)n+m−1 =
n+m−1∑

i=0

(
n + m − 1

i

)
uivn+m−1

= un
n+m−1∑

i=n

(
n + m − 1

i

)
ui−nvn+m−1 + vm

n−1∑
i=0

(
n + m − 1

i

)
uivn−1−i

⊆ j (F ) ⊗̂ B + A ⊗̂ j (F ).

Now, by Lemma 1.5 of [7], j (ϕ) ⊗̂B +A ⊗̂ j (F ) ⊆ j ({ϕ} × F), and this finishes the proof. �
By simply taking spectral sets for {ϕ} and F , it is clear that the estimate in Lemma 3.3 cannot

be improved.
We say that a closed subset E of �(A) satisfies condition (D) (D referring to Ditkin) if there

exists a constant C > 0 such that for every neighbourhood U of E, there exists b ∈ A such that
‖b‖ � C, supp b̂ ⊆ U and b̂ = 1 in a neighbourhood of E. The relevance of this notion is due to
the fact that for unital A, (D) is equivalent to the condition appearing in Lemma 1.4, as we point
out next.

Remark 3.4. Suppose that A has an identity e. For a closed subset E of �(A), the following are
equivalent.

(i) E satisfies condition (D).
(ii) There exists a constant c > 0 such that for every compact subset K of �(A) which is disjoint

from E, there exists a ∈ j (E) such that ‖a‖ � c and â = 1 on K .

To see this, suppose first that (ii) holds and let U be an open set containing E. Choose an
open set V such that E ⊆ V and V ⊆ U and let K = �(A) \ V . By (i), there exists b ∈ j (E) so
that b̂ = 1 on K and ‖b‖ � c (with c only depending on E). Let a = e − b, then ‖a‖ � 1 + c,
supp â ⊆ V ⊆ U and â = 1 in a neighbourhood of E.

(i) ⇒ (ii) is even easier.

Theorem 3.5. Let A and B be regular commutative Banach algebras such that both are unital
and A ⊗̂ B is semisimple. Suppose that the following conditions (1) and (2) are satisfied.

(1) Every closed subset of �(B) is a weak spectral set and satisfies condition (D) and

N = sup
{
ξ(F ): F ⊆ �(B) closed

}
< ∞.
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(2) Each singleton {ϕ}, ϕ ∈ �(A), is a weak spectral set and satisfies condition (D) and

M = sup
{
ξ(ϕ): ϕ ∈ �(A)

}
< ∞.

Let E be a closed subset of �(A) × �(B) such that the set{
ϕ ∈ �(A): ∂(E) ∩ ({ϕ} × �(B)

) 	= ∅}
is scattered. Then E is a weak spectral set and ξ(E) � N + M − 1.

Proof. We apply Theorem 3.1 to A ⊗̂ B , T = �(A) and the map

f : �(A ⊗̂ B) = �(A) × �(B) → �(A), (ϕ,ψ) → ϕ.

By hypothesis, f (∂(E)) is scattered. It follows from conditions (1) and (2) and Lemma 3.3 that
for every closed subset F of �(B) and ϕ ∈ �(A), {ϕ} × F is a weak spectral set and

ξ
({ϕ} × F

)
� ξ(ϕ) + ξ(F ) − 1 � N + M − 1.

Now, let c and d denote the constants occuring in condition (D) for {ϕ} and F , respectively, and
let U be an open neighbourhood of ϕ in �(A) and V an open neighbourhood of F in �(B). There
exist a ∈ A and b ∈ B with the following properties: ‖a‖ � c, ‖b‖ � d , supp â ⊆ U , supp b̂ ⊆ V ,
â = 1 near ϕ and b̂ = 1 in a neighbourhood of F . Then the element x = a ⊗ b of A ⊗̂ B satisfies
‖x‖ � cd , supp x̂ ⊆ U ×V and x̂ = 1 in a neighbourhood of {ϕ}×F . It follows from Remark 3.4
and Lemma 1.4 that {ϕ} × F is a weak Ditkin set and η({ϕ} × F) = ξ({ϕ} × F) � N + M − 1.
Thus Theorem 3.1 applies and yields that E is a weak spectral set and ξ(E) � N + M − 1. �

Theorem 3.5 applies, for instance, to the projective tensor product of any two of the Banach
algebras C(X), X a compact Hausdorff space, A(G) for a compact group G, Cn[0,1] and Lipα X

(see Section 1).

4. Weak spectral synthesis for Fourier algebras

It was shown in [12, Theorem 3.1] that weak spectral synthesis fails in A(G) = L1(Ĝ) for
every non-discrete locally compact abelian group G. Employing this result as well as a deep
theorem due to Zelmanov [21], we settle in this final section the weak synthesis problem for the
Fourier algebras of arbitrary locally compact groups.

It is easy to see that weak spectral synthesis holds for A(G) when G is discrete. In fact, A(G)

is Tauberian [6, Corollaire 3.38] and hence by [19, Corollary 2.4] (see also [11, Corollary 3.10]),

ξ(E) � 1 + ξ
(
∂(E)

) = 1 + ξ(∅) = 2

for every subset E of G. Alternatively, one can appeal to the following simple observation.

Lemma 4.1. Let A be a semisimple and regular commutative Banach algebra. Suppose that A is
Tauberian, and let E be an open and closed subset of �(A). Then E is a weak spectral set and
ξ(E) � 2.
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Proof. Let x ∈ k(E). Since A is Tauberian, x2 ∈ xA ⊆ xj (∅). It therefore suffices to show that
xy ∈ j (E) for every y ∈ j (∅). Now, xy belongs locally to j (E) at infinity, at every point of E

since E is open, and at every point of �(A) \ E anyway. Thus xy ∈ j (E) since A is semisimple
and regular. �

The next lemma will be needed to carry out a projective limit argument in the proof of Theo-
rem 4.3 below.

Lemma 4.2. Let K be a compact normal subgroup of G and identify G and G/K with �(A(G))

and �(A(G/K)), respectively. Let q : G → G/K denote the quotient homomorphism. Then
ξ(E) � ξ(q−1(E)) for every closed subset E of G/K .

Proof. We can assume that n = ξ(q−1(E)) < ∞. Let u ∈ A(G/K) such that u|E = 0 and
ε > 0. Then u ◦ q ∈ A(G) and u ◦ q|q−1(E) = 0. By hypothesis, there exists v ∈ A(G) such
that ‖(u ◦ q)n − v‖A(G) < ε and v vanishes on some open set U which contains q−1(E) and is
such that G \ U is compact. Since q−1(E) = q−1(E)K and K is compact, a simple topological
argument shows that we can assume that U = UK . For v ∈ A(G) and k ∈ K , let Rkv ∈ A(G) be
defined by Rkv(x) = v(xk), x ∈ G. Then the element

∫
K

Rkv dk of A(G) vanishes on U . Define
w ∈ A(G/K) by

w(xK) =
∫
K

Rkv(x) dk, x ∈ G.

Then w vanishes on the neighbourhood q(U) of E, G/K \ q(U) is compact and∥∥un − w
∥∥

A(G/K)
= ∥∥un ◦ q − w ◦ q

∥∥
A(G)

= ∥∥(u ◦ q)n − w ◦ q
∥∥

A(G)

=
∥∥∥∥∫
K

Rk(u ◦ q)n dk −
∫
K

Rkv dk

∥∥∥∥
A(G)

�
∫
K

∥∥Rk

(
(u ◦ q)n − v

)∥∥
A(G)

dk

= ∥∥(u ◦ q)n − v
∥∥

A(G)
.

So w ∈ j (E) and ‖un − w‖A(G/K) < ε. �
Theorem 4.3. Let G be an arbitrary locally compact group. Then weak spectral synthesis holds
for A(G) if and only if G is discrete.

Proof. Since A(G) is Tauberian, by Lemma 4.1 we only have to show that G is discrete when-
ever weak synthesis holds for A(G). As mentioned above, this conclusion is true if G is abelian
[12, Theorem 3.1], and our proof is a reduction to this case.

In the first instance, assume that G is a connected Lie group and that the radical R of G,
the maximal connected solvable closed normal subgroup of G, is non-trivial. Then R contains a
non-trivial connected abelian closed normal subgroup H , namely the last non-trivial member of
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the commutator series of R. By Corollary 2.4, weak synthesis holds for A(H) and hence H has
to be discrete. This contradiction shows that R = {e}. So G is semisimple. If G is non-trivial, it
contains an infinite compact subgroup K , and by a theorem of Zelmanov [21, Theorem 2], K in
turn contains an infinite (closed) abelian subgroup H . As above, this leads to a contradiction.
Consequently, G is trivial.

Now, drop the hypothesis that G be a Lie group. The connected group G is a projective limit
of Lie groups G/Kα . Since Kα is compact, by Lemma 4.2 weak spectral synthesis holds for
G/Kα . By the preceding paragraph, Kα = G for all α and hence G = {e}.

Turning to the general case, let G0 denote the connected component of the identity of G.
Then weak synthesis holds for G0 and then G0 = {e} by what we have already shown. So G is
totally disconnected. Finally, fix a compact open subgroup K of G and suppose that K is infinite.
Applying Zelmanov’s theorem again leads to a contradiction. Thus G is discrete. �

The reader should compare the preceding theorem with Proposition 2.2 of [8], where it was
shown that:

(i) local spectral synthesis holds for A(G) if and only if G is discrete;
(ii) spectral synthesis holds for A(G) if and only if G is discrete and u ∈ uA(G) for every

u ∈ A(G).

So weak spectral synthesis and local spectral synthesis are equivalent for Fourier algebras.
It is not unlikely that these properties already force spectral synthesis to hold for A(G) since
no example seems to be known of a discrete group G for which the condition u ∈ uA(G) (the
existence of an approximate identity in A(G) in the weakest possible sense) is not satisfied.
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