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Abstract 

Quinton, P., and Y. Robert, Systolic convolution of arithmetic functions, Theoretical Computer 

Science 95 (1992) 207-229. 

Given two arithmetic functions J and g. their convolution h=f* q is defined as h(n)= 

Lr=.. 1 Bk,, 4n f(k) g(l) for all n> 1. Given two arithmetic functions g and h, the inverse 
convolution problem is IO determine J such that f* g = h. 

In this paper, we propose two linear arrays for the real-time computation of the convolution and 

the inverse convolution problem. These arrays extend the design of Verhoeff for the computation of 

the Miibius function p, defined as the solution of the inverse convolution problem p *g = d, where 

g(n)= 1 for all n> I and d(n)= 1 if n= 1, d(n)=0 if n> 1. 

1. Introduction 

Given two arithmetic functions f and g, their convolution h=f * g is defined as 

h(n)=k=,, lSk,.lbn 
f(k) g( 1) for all n 2 1. Given two arithmetic functions g and h, the 

inverse convolution problem is to determine f such that f * g = h. The inverse convolu- 

tion problem is not always solvable; see [S] for a review. 

For instance, let Eo(n)= 1 for all n>, 1 and d(n)= 1 if n= 1, d(n)=0 if y1> 1. The 

Miibius function lu is defined as 

An)= 1 if n= 1, 
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P(n)=(- I)* if H is the product of r distinct primes, 

An)=0 if n is divisible by a prime square. 

din denotes that d is a divisor of n. The Mobius function can be more easily computed 

using the Mobius inversion formula [S] 

c Ad)=d(n), 

which states that ,u is the solution to the inverse convolution problem ,u * E,, = d. 

Verhoeff [16] proposes a systolic linear array for the real-time computation of the 

Mobius function p. In this paper, we propose two systolic architectures for the 

real-time computation of the convolution and the inverse convolution of general 

arithmetic functions. Kung [6] introduces a systolic linear array for the computation 

of the sequence 

h(n)= c .f(k)g(l), n3 1, 
k+l=n+l,lSk.l<n 

where (f(k); k 3 1) and (g( 1); 13 1) are two given sequences. Such a computation 

corresponds to the product of two polynomials, or series, with coefficientsf(k) and 

g(l). 
Informally, if we want to compute h(n) = I,, Jf( d), we can use a design similar to 

that of [6]. The problem is to inhibit the operation of the cells when they receive a pair 

of inputs (f(d), h(n)), where d is not a divisor of n, and this is the key to Verhoeff’s 

design [ 163. 

The general convolution problem h =f* g is more difficult for two reasons: 

l First we have to ensure that every component off can meet every component of g. 

l When a cell receives a pair of inputs (f(d), h(n)), where d is not a divisor of n, its 

operation has still to be inhibited. But when d is a divisor of n, we have to organize 

the flow of y such that g(n/d) is also an input to the cell. 

In this paper, we first propose a linear systolic architecture of O(N) cells which 

solves the problem of computing (h(n); 1 <n < N) in time O(N). This first solution is 

obtained using the dependence mapping method. The space-time complexity of the 

proposed architecture is 0( N2 log N). Then we propose another systolic architecture 

of only O(N ‘I’) processing cells which also solves the problem in time O(N). This 

second architecture requires 0( N log N) delay cells, leading to the same space-time 

complexity as for the first solution. Both architectures can be extended to the solution 

of the inverse convolution problem, with the same performances. 

Throughout the paper, we assume the reader to be familiar with the systolic model. 

Systolic arrays have been introduced by Kung and Leiserson [S] and consist of a large 

number of elementary processors (or cells), which are mesh-interconnected in a regu- 

lar and modular way, and achieve high performance through extensive concurrent 

and pipeline use of the cells. We refer the reader to [7] for a general presentation of the 

systolic model. 
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2. A first linear systolic array 

The arithmetic convolution consists in the computation of the following equation: 

wheref( k), k> 1 and g(l), / > 1 are given integer functions. 

Let K be a fixed parameter. Systolic arrays that compute the convolution 

v’n>l, h(n)= 1 .f(k)g(n--k+l) 
1 Qk<X 

are well known (see, for example, [7]). From the bidirectional design of Kung, one can 

easily derive a systolic array for the unbounded convolution, i.e. the convolution whose 

equation is 

v’n 3 1, h(n)= c ,f(k)g(n--k+ 1). (3) 
1SkQn 

The only difficulty is the loading of the coefficients g, as one cannot assume that 

they are preloaded in the array, as in the case of the bounded convolution. 

The arithmetic convolution (1) is much harder, as the summation has only to be 

done for product terms f(k) g(l) such that kl =n. 

In what follows, we derive and prove the correctness of a systolic array which has 

the following characteristics: 

l The array is linear and bidirectional. The number of cells needed for the computa- 

tion of h(n), 1 d n 6 N, is N. 

l The period of the array is 3, i.e. each cell works every three cycles. 

We shall derive the design using a space-time transformation of a dependence 

graph of the algorithm, following the approach of Moldovan [lo] and Quinton [ 111. 

In Section 2.1, we recall the principles of the dependence mapping method on the 

example of the unbounded convolution. In particular, we explain how the coefficients 

g(I) can be loaded in the cells. In Section 2.2, we develop the arithmetic convolution. 

2.1. Unbounded convolution 

Figure 1 depicts a dependence graph for the unbounded convolution. For the 

moment, we ignore the loading of the g coefficients. On this diagram, a coefficient h(n) 

is computed along a diagonal line, by summing up the product terms f‘(k) g( n - k + 1) 

in increasing order of k. The result h(n) is obtained at point (n, 1). Deriving a systolic 

array from this dependence graph can be done easily using a space-time linear 

transformation (see [ 10, 1 l] among others). First we seek an affine (integral) schedule 

of the computations, i.e. a function t(n, m) such that if calculation at point (n,, ml) 

depends on calculation at point (n2,m2), then t(n,,m,)>t(nz,m2). Denote 

t( n, m) = A1 n + jL2 m + a, where Ai, I., , and M belong to Z, the set of integers. Let us call 

dependence vector the quantity (nl -n2, ml -m2) for two dependent points. As the 
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n 

Fig. I. Dependence graph and timing function for the convolution. 

number of dependence vectors in this graph is finite (and independent of n), this 

condition amounts to a finite number of linear inequalities involving these vectors. 

The set of possible dependence vectors is 

A={(02 l),(l, -l),(l,O)} 

We must, therefore, have 

ix> 1; j_r-i,> 1; /1131. 

These conditions are met optimally with ;1r = 2 and I., = 1. The coefficient x can be 

chosen in such a way that the computation starts at time 0 by taking c( = 3. Thus, an 

optimal timing-function is t (n, m) = 2n + m - 3. 

A well-known systolic array can be obtained by projecting the array along the 

n axis. Figure 2 shows this systolic array which uses N bidirectionally connected cells, 

for the computation of h(n), 1 <n d N. The detail of the cells is shown in Fig. 3, where 

s is a boolean control signal. 

Coefficients h(k) are computed when they flow from the right to the left, and output 

by the leftmost cell. Note that the period of the array is 2, and this can be clearly seen 

on the dependence graph. 

In this first design, coefficient y(I) is pre-loaded in cell 1. The best way to solve this 

problem is to fold the dependence graph along the bisectrix of the first orthant, in 

order to let f’ and g play a symmetric role with regard to the projection direction. 

However, to do so, it is first necessary to change slightly the way the h coefficient is 
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Fig. 2. Systolic array for the usual convolution. 

: rjijEh h*~-E 

time t time t+l 

f’ :=“f; S’ :=s; 

case 
S + h’:=f.g; (first computation) 

nots + h’:=h+f,g; {update} 

esac 

Fig. 3. Operation of the cells for the unbounded convolution. 

summed up, so that the direction of its movement remains the same once the domain 

is folded. The trick is to compute the summation starting by the middle, as shown in 

Fig. 4. 

In the new dependence graph, g(l) and f( 1) flow together, starting from point n = I, 

m = 1, and are reflected along the line n = m. Therefore, h(p), moving along the straight 

line n+m=p+ 1, meets successively the pairs (g(l),f(l)) and (g(p--I+ l),f(p-I+ l)), 

when 1 ranges from Lp/2] down to 1. 

By projecting the dependence graph along the n axis, one obtains the systolic array 

depicted by Fig. 5, whose cells are shown in Fig. 6. 

h 

Ill 

t 

f(1) f(2) f(3) f(4) f(5) f(6) f(7) f(8) 

cl(l) g(2) 90) g(4) g(5) cl(G) g(7) g(8) 

n 

Fig. 4. Dependence graph and timing after folding 
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h 

fl 4 
0 n-0 III 

g1’l=._(I_cl 

controC--+ 

Cell 0 Cell 1 Cell 2 Cell 3 

Fig. 5. Systolic array for the unbounded convolution. 

1’21 h 
fl 

gl TE El 

contra 

time t time t 
case 

c~mtrol= initodd+ (this case for the points on line n=m I 
begin 

.j2 :=./‘I; 92 :=gf; (load,fI and yl in registers) 
h’:=,f7 *y2: (compute middle term of the sum} 

end 
control = inilerw + (this case for the points on line n = 111 + 11 
begin 

.f’1:=.1’/; q’I:=gf; (transmitf7 and 81) 
h’:=ff*yZ+f_7*yl; (compute middle term of the sum} 

end 

otherwise+ (normal case j 
begin 

,f’I:=.fl;~‘I:=ql; (transmit ,j’f and yl) 

h ’ := h +.1‘1 * (, I +,l2 * </2; ( update with next term of the sum) 
end 

esac 
confrol’:= control; (transmit control ) 

Fig. 6. Detail of the cells of the systolic array for the unbounded convolution, 

A few words of explanation about the control of the cells are in order. As shown 

in Fig. 4, depending on the parity of p, h(p) starts its computation at the point 

((p+ 1)/2, (p+ 1)/2) when p is odd, or at (p/2+ 1, p/2) when p is even. Moreover, the 

pair of coefficients g,.f is reflected on point ((p + 1)/2, (p + 1)/2). These peculiarities of 

the operation of the cell are taken care of by introducing a signal named control which 

can take the value initodd, initecen or normal. When control = initodd, the coefficients 

,f and g are loaded in the registers, and h is initialized with the value .f* g. When 
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control = i&even, h is initialized withf 1 * g2 +f2 * gl. Finally, in the normal case, h is 

incremented withf 1 * g2 +f2 * gl. The signal control flows along the direction given 

by vector (1, 1) on Fig. 4. Therefore, it visits a new cell every three cycles. Along the 

diagonal n = m, control = initodd. Along the line n = m + 1, control = initeven. Other- 

wise, control = normal. 

2.2. Arithmetic convolution 

The problem is to compute the convolution h =f * g. For all n 3 1, we need to 

evaluate the sum h(n)=C,,=n,1Qk,16n f(k) g(1). The constraints are the following: 

l Communications with the host: there is only one cell in the array communicating 

with the host. This cell receives the input sequences (f(n); n 3 1) and (g(n); II 3 1) 

and delivers the output sequence (h(n); n3 1). 

l Real-time computation: for all n3 1, h(n) should be output by the array k units of 

time after the input of f(n) and g(n), where k is a fixed constant independent of n, 
l Modularity: the operation of the cells should not depend upon their location in the 

array, nor should it depend on the indices of their inputs/outputs. Provided that 

this condition is met, the array can be used for the computation of an arithmetic 

convolution of any size. 

Figure 7 shows a dependence graph for the arithmetic convolution. As in the usual 

convolution, coefficient h(p) is computed along the diagonal line, whose equation is 

n + m = p + 1. The problem is to “route” the coefficients g and f used for computing the 

product terms, in such a way that the graph be uniform and that these coefficients 

meet on the right line. The choice that is made here consists in routing the coefficients 

g and f in a symmetric way, so that g(n) and f(n) meet on the first bisectrix. For 

example, g(2) and f(2) meet at point (S/2,5/2), just on the line where h(4) is summed 

up, and coefficients g(3) and j”(3) at point (5, 5), which is just on the line m= 10-n 

where h(9) is computed. The diagram shows intuitively that when the g’s and thef’s 

flow on straight lines, they meet on and only on the lines where they are used. This is 

confirmed by the following obvious lemma. 

Lemma 2.1. Consider the family of points 

.)(1+1)/2+1,(1-l)(k+1)/2+1), X(k, l)=(G(k), F,(O)=((k- 1 

where k>l and 131. 

Then the curves {X(k,l)jkSI and {X(k, 
on the line m=kl+ 1 -n. 

l)}Ia 1 are straight lines. Moreover, they meet 

Lemma 2.1 clearly states that the routing scheme shown in Fig. 7 is correct. 

However, as it is, this dependence graph cannot be used for deriving a systolic array, 

for three reasons: 

(1) the underlying lattice of the graph is not integral; 

(2) there exists an unbounded number of dependence vectors; 
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Fig. 7. Dependence graph for the arithmetic convolution. 

(3) we must provide a mechanism to avoid pre-loading of the g coefficients. 

Problem 1 can be solved by a dilation of the graph by 2 along both directions. We 

shall also solve problem 3 by applying the same trick as for the unbounded convolu- 

tion, i.e. by folding the dependence graph. 

Problem 2 is more involved. The solution consists in replacing the straight lines 

where the coefficients g and f flow by a piecewise linear curve that meets the following 

conditions: 

(a) the curve follows a finite number of directions; 

(b) all the intersection points are on the curve; 

(c) the number of curves passing through a given point of the plane is bounded. 

Condition (a) is necessary if one wants to obtain a finite number of dependence 

vectors. Condition (b) is obviously necessary to keep the properties of the previous 

dependence graph. Finally, condition (c) is needed for the resulting systolic array to 

have only a finite amount of data to be transmitted from one cell to another. This last 

condition is the reason why we have chosen the symmetric routing scheme (other 

simpler routing schemes are possible; for example, to havef( k) flow on line n = k and 

route g(l) to the point (k, kl+ l), but in this case, condition (c) could not be met). 

Let us first ignore the problem of loading the g coefficients. Figure 8 shows the 

dependence graph after dilation by 2 along both axes (in order for the intersection 
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Fig. 8. Piecewise approximation of 9 and f movement 

points to be on an integral lattice), once the straight lines are replaced by a piecewise 

approximation. This approximation can be explained as follows. 

Let {G/(k, i)}k3i,0<i<l+i be the curve, parameterized by k and i, defined by 

((k-1)(/+ l)+i+2, (1- l)(k+ 1)+2) if Odi<2, 
G;(k, i)= 

((k-l)(l+ 1)+4, (1- l)(k+ l)+i) if 2<i<l+ 1. 

Informally, the points of this curve are obtained by starting at point (2,21), and 

moving once along vector (2,O) and then l- 1 times along vector (1, 1). 

Similarly, let {F;(I, i)}[ai,l)$i<k+i be the curve, parameterized by I and i, defined 

by 

1 

((k- 1)(1+ l)+i+2, (l-l)(k+ 1)+2) if Obi<2, 
Fi(1, i)= 

((k-1)(1+1)+4,(1_l)(k+l)+i) if 2<i<k+ 1. 

The following lemma proves that the piecewise approximation meets the previously 

stated conditions. 

Lemma 2.2. For all 1, k30, 

(1) (G;(k, i)}kzl,0<i<l+l, (F;(I, i)}lal,0<i<k+l, and the straight line n+m= 

2( kl+ 1) are concurrent, 

(2) The family of curves { G;(k, i)} ({ F;(l, i)}) has no intersection point. 

Proof. (1) is easily seen, as G;(k,O)=F;(/,O)=((k-1)(1+1)+2,(1-l)(k+1)+2), 

which is just twice the coordinates of the point X that we have already seen in Lemma 

2.1. The proof of (2) is also very simple. 0 
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The loading of the y coefficients is solved in a similar way as already seen in the 

unbounded convolution, i.e. by folding the dependence graph along the line n = m. The 

resulting dependence graph is shown in Fig. 9. The pairs (f(n), g(n)) are input along 

the n axis, and are reflected when they meet the line n = m. The dependence vectors are 

also shown in Fig. 9. They are 

Therefore, the parameters i1 and 3., of the timing function must satisfy 

2j”23 1, 11+A221, 

2i,31, i.1 -3.12 1. 

The optimal (rational) solution is i1 = 3/2 and AZ= l/2, which gives the timing 

function t( n, m) = L 3n/2 + m/2 - 4 J, as shown in Fig. 9 (the interested reader is referred 

to [I 11 for the use of rational timing functions). 

The final architecture (Fig. 10) is obtained by projecting the dependence graph 

along n axis. We can immediately see that the number of cells needed for computing 

Dependence vectors 

Fig. 9. Final dependence graph for the arithmetic convolution. 
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init 

h 

cell 1 cell 2 cell 3 cell 4 

Fig. 10. Systolic array for the arithmetic convolution 

the sequence h(k), 1 d kdn is n. Each cell of the array works only every three cycles. 

Each cell except for the first one has four left-to-right, and one right-to-left links: 
_ init carries a initialization signal which follows the line n=m on the dependence 

graph of Fig. 9. This signal reaches a new cell every other time; 

- fast carries the f and g coefficients moving along direction (0,2) on Fig. 9, as well as 

other informations that will be detailed later on. After being processed by a cell, 

these values skip the next cell and reach the second next one; 

~ slow1 and slow2 carry two pairs off and g coefficients (as well as other informa- 

tions) moving along direction (1, 1); 

~ h carries the value of the h coefficient under computation. 

Finally, each cell is provided with a register R which keeps the pair f and g flowing 

along the direction (2,0) in Fig. 9: this direction being projected in the same cell, it 

corresponds to the storage of a value in one cell. The first cell is special. It has only 

a slowl, an h and an init link. 

The details of the operation of the cells are shown in Fig. 11. Actually, each one of 

the fast, slow1 and slow2 link carries a 5tuple (f, g, valid, rank, count), where f and 

g are coefficients, valid is a boolean indicating that the link effectively carries signifi- 

cant values, rank is the number of the coefficients, and count is an integer which will be 

used to determine the movement of the pair J g. To understand the operation of the 

cell, it is best to refer again to the dependence graph of Fig. 9. As already seen, a pair 

(f(k), g(k)) moves once along the direction (0,2) and then k times along the direction 

(1, 1). After the pair is reflected along the line n = m, it moves once along the direction 

(2,O) and k times along the direction (l,l). The rank parameter is used to remember 

the k value, and count is decreased when doing the k movements along the direction 

(1, 1). When count reaches 0, then two pairs of coefficients are available on slow1 and 

slow2 and the h coefficient is modified. 

2.3. Perfbrmances 

In fact, although each cell is activated every three cycles, the actual efficiency of the 

network is less than l/3, as the number of calculations to be done (in sequential) for 
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init init 

fast 

time t time t+l 

case 

init and slowl.count#O~ (initialization and no calculation) 

begin h’:=O; init’:=init end; 

init and slowI.counr =O+ (initialization and calculation) 
begin 

/I ‘:= /I + slow1 .,f* slowl .y; R := slow1 {store slowI in R); inir’:=init 

end; 

not init andfust.calid+ (send,fhst on slowl, reset count) 

begin 

slowl’:=,firs~; slowI’.~ount:=runk- 1; init’:=inir; h’:=h 

end; 

not init and slowl. calid and slowl .count #O and R. valid+ 

begin {send R on ~10~2, decrease count of slowl ) 
.~lowl’:=sl0wf,~ sloal’.counr :=slowl’.count- 1; 

s10).\2’:= R; R.aulid:=jiilse; init’:= inir; h’:= h 

end; 

not init and slw I. rulid and slo\vI. count # 0 and not R. valid+ 

begin [keep values moving on slow lines, decrease count of slowl) 

.slowI’:=slo~~~I; siu~~I’.cuunt:=~lo~~~I’.c~~nr-1; 

slow2’:=slo~v2; init’:=inir: h’:=h 

end: 

not init and slowf. oulid and slowf .cmnt =O+ 

[note that slow2 is necessarily valid ] 

begin {compute. send .slowl on fusr and keep slow2 in R} 

h’:=h+slowf.J*slow2.y+.slow2.,f*slowl.~; 

R:=slo~~2;,fust’:=slo~l; init’:=inir 

end 

esac 

Fig. 11. Operation of cell i, i > 2 

computing h(n) is not of the order of n: computing (h(n); 1 < n 6 N) requires 

1 div( n) = 0( N log N) multiplications, 
1 Qfl<N 

where div(n) is the number of divisors of n. 

In summary, this first solution uses O(N) cells for processing in time O(N) the 

computation of the sequence h(n), 1~ n < N. However, as each cell n has to make use 

of a counter initialized to n, the area complexity of this design is 0( N log N). 
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init 

slow 

-4 

1 z h h’ 

init’ 

fast’ 

time t time t+l 

case 
init+ {initialization: compute and store in R} 
begin 

h’:=slowl.f*slowl.g; R:=slowl; {store in R} 
init’ := init 

end; 
not init+ (first cell, normal case} 

begin 
h’:=h+slowl.f*R.g+R.f* slow1.g; 
R:=R {store in R}; init’:=init 

end; 
esac 

Fig. 11 (continued). Operation of the first cell. 

3. Another systolic design 

In this section, we design another systolic array of processors for the parallel 

computation of the convolution of two arithmetic functions. We address the inverse 

convolution problem in Section 3.4. The second array will look like the one shown in 

Fig. 12. 

3.1. Half computation 

First, we show how to compute the sum h,(n) = 1 kl = n, k > J( k) g(I). The other half 

of the arithmetic convolution will be computed similarly. We use a linear array of 

cells, as in Fig. 12, and number the cells from left to right. 

l Input and output (Z/O) format. For all n3 1, f(n) and g(n) enter the array at time 

n; Al(n) is output at time n (see Fig. 13). 

(h(n); nrl) t- 
(g(n); n21) +b 

e- e- e- + 

+ + + . . . 

(f(n); =-I) --p + + + __) 

Mast ; cell 1 cell 2 cell 3 cell4 

Fig. 12. The second linear array. 
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h,(l) h,(2) h,(3) 

,,, ;;; g; w; w; “,‘:; gyjyL=zJ.. 
cell 1 cell 2 cell 3 

Fig. 13. Input/output format. 

Flow, of’g(1). For all /> 1, g(I) flows rightwards until it reaches cell 1. It is then 

stored in the internal register y_rey of cell 1. The systolic mechanism to realize such 

a flow is well known: cells are marked when their register g_reg is filled, and each 

g(l) flows rightwards until it finds a nonmarked cell. 

Flow of,f( k). For all k 3 1, ,f( k) flows rightwards until cell k, where it initializes the 

operation of the cell; then f(k) is marked nonactive. Therefore, f(k) is the first 

active f-input of cell k for all k. When it reaches cell k, f(k) meets g(k) and the first 

product J(k)*g(k) is computed for hl(k2). According to the I/O format, hl(k2) is 

an input of cell 1 at time k2, so the product f(k) * g(k) must be computed at time 

k * - (k - 1) in cell k. The flow of thef”s is organized to meet this requirement: f(k) 

reaches cell k at time k * -k + 1. We detail hereafter the organization of the flow 

of f’. 

Flotv qfhl (n). Since k,(n) is in cell 1 at time IZ, we can conceptually say it is in cell 

n at time 1 and moves leftwards from cell to cell at speed 1. In fact, the first product 

of h 1 (n) is computed in cell I, where 1 is the largest divisor of n such that 1’ d n, at 

time II - I+ 1. As it moves leftwards, h, ( II) accumulates partial products f(k) * g( 1) 

in decreasing order with respect to 1, in all cells 1 such that 1 divides n. 
Now we need to organize the flow of the .f”s. We examine the first meetings that are 

required. In Table 1, we report the times when, and the cells where, products are 

computed. From Table 1 we see that cell k is activated every kth step after receiving its 

first ,f-input f(k) at time k* - k + 1. In other words, .f(j) is input to cell k at time 

kj-k+1forallj~k.Forj~k+l,f(j)isinputtocellk+lattime(k+l)j-(k+1)+1 

so that f(j) should be delayed by j-2 units of time in cell k before being output 

towards cell k + 1. 

There is a special processing for f(l) by cell 1, which acts slightly differently from 

the other cells: rather than marking ,1‘(l) nonactive, it deletes it (equivalently, it can 

mark it with some special code). As a consequence, the ith ,f-input to all cells except 

the first one should be delayed by i- 1 units of time. The first input, namely f(2), is 

transmitted without delay. The second input, namely J(3), is delayed by one unit of 

time, and so on. After having deleted j’(l), cell 1 operates exactly as the other cells. 

Right now, we only need to design a special systolic mechanism to generate these 

delays: then we add one of them to each cell, and the flow of thef’s will be correct. 

Such a mechanism cannot be implemented using counters because of the modularity 

constraint. We use a design similar to that described in [9, 131. 

The delay mechanism is depicted in Fig. 14. It is a two-column array of delay cells. 
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Table 1 

Space-time diagram for the computation of partial products 

Times Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

f (4 m 

f (3) m 

.f(4). da 

f(5). g(2) 

f (6). g(2) 

f(7). s(2) 

f (8). .d2) 

f (9) g(2) 

f(lO).d2) 

fUl).d2) 

f (3). s(3) 

f(4) g(3) 

f (5). Y(3) f (4 Y(4) 

.f(6). g(3) 
f (5) g(4) 

f (7) Y(3) 

f (6) ~(4) f (5) Y(5) 

The first column is composed of cells with one input and three outputs. The operation 

of the cells in the first column is very simple (Fig. 15): 

l the first input is output rightwards on the fast channel; 

l the second input is output rightwards on the slow channel; 

l all following inputs are output downwards to the next cell in the column. 

The cells of the second column simply transmit their valid input, if any (to 

implement this, they perform an OR-operation on their two inputs, where non- 

specified variables have the default value nil). Some consecutive time-steps of the 

mechanism are illustrated in Fig. 16. 

Fig. 14. Delay mechanism. 
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fw 

E 
___ 

Time t= 0 

a3 b3 

skat s&Q t+1 

case status of 

.first: begin b, :=a,; status:=second; end 

second: begin b, := a, ; stutus := marked; end 

marked: begin h, := a, ; end 

b, :=a2 OR a,; 

Fig. 15. Operation of the delay mechanism 

_-. 

Time t= 1 

r-(4) 

Y4) 
ft3) 

88 
___ 

Timet= 2 

f(3) 

ft5) 

Y4) 

88 
___ 

Time t= 3 

ft5) 

.-. . . . . . . . . . 

Timet=4 Time t= 5 Time t= 6 Time t= 7 

Fig. 16. Some consecutive time-steps for the delay mechanism 

The full operation of the cells for the computation k, (n)=Ckl=n,k~If(k)~(I) is 

described in Fig. 17, where nonspecified variables have the default value nil. As stated 

above, the operation of cell 1 is slightly different since its first input is deleted. 

Proof of correctness 

We know that f(k), k > 1, reaches cell 1 at time kf + k - 1. If k 3 1, f(k) is active in cell 

I, and the product f(k) * y( 1) is computed. Consider the computation of k, (n): k,(n) is 



Systolic convolution of arithmetic functions 223 

bout 

gin 

aCtivein) 

bin 

gout 

(foutj 
activeout ) 

. . . 

(store gin in g_rey if nonmarked} 

if nonmarked then 

hegin g_reg := gl.; nonmarked :=false; end 

else go”, := g,.; 
{active f-input } 

if active,, then 

begin 

{inactivate first f-input} 
ifjrst_f then begin actioe,,:=false; first_/ :=false; end 

{update hi,} 
h,,, := hi, + g-reg *f,.; 

end 

{delay all f-inputs} 

(fO”,> actice,,,):= DelayPMechanism (J., actils,); 

Fig. 17. Operation of the cells of the array. 

h 

.-. _.. mm_ 

Fig. 18. Systolic array for the arithmetic convolution h =f * g, 
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(4’jnj active’in) 

“in 

bout 

9 in 

(fin, activein) 

(g’,utJ active&) 

LJt 

bin 

gout 

u out 1 activeout) 

{store gi. in y-q and& in f_reg if nonmarked} 

if nonmarked then 
begin y_reg := yin; f_ reg :=f;b; nonmurked :=,false; end 

else 
begin you, := qr”; j&, :=./;A; end 

{active ,f-input and g’-input. Note that activei, = actice;, by symmetry) 

if actice,, then 
begin 

[inactivatef- and y’-inputs} 

if f;rst_fg’ then 
begin active,, :=,false; actire:, :=false; first-jg’ :=false; end 

{update h,,) 

h,,,:=k,.+g~r~g*.1;,+f_reg*gr,; 

end 
{delay all 1’ and g’-inputs) 

(“/A, actice,,,) := Delay-Mechanism (A., active,,): 

(gL,,, actire&,) := Delay-Mechanism (g;,, active:.); 

Fig. 19. Operation of the cells for the arithmetic convolution h =j’* g. 

in cell I at time n-l+ 1. It meets some f(k) there if and only if U--I+ 1 =n-l+ 1, i.e. 

kl= n. Then h, (n) is updated into hI (n):= hl (n) +f( k)g( I) if and only if f( k) is active 

or, equivalently, k>l. Therefore, the final value of h,(n) is hl(n)=~~,,n,,~,f(k)g(l) 
as expected. 

3.2. Systolic arithmetic convolution 

For computing ~(~)=~,,&‘(k)g(4, we use two copies of the previous array. In the 

first array, we compute hl(n)=~:,,,,,,~,f(k)g(l) as before. 

In the second array, we compute h2(n)=xkl=n,k,l g(k)f(l). We interchange the 

Bows off and g in the second array: the f’s are stored in the cells, and the g’s move 
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rightwards with delays. The only modification is that the second array should not 

compute products j(k) *g(k), as they are already computed by the first array. We 

simply modify the operation of the cells (except the first one) as follows: the first time 

they receive an active g-input, they let h,(k’):=O rather than h,(k2):=f(k)* g(k). In 

fact, we can make things simpler by coalescing the corresponding cells of both arrays, 

as described in Fig. 18. Again, the first cell is slightly different because it deletes its first 

f-input (bottom part) and its first g-input (top part). Also, it duplicates f- and 

g-inputs. See Fig. 19 for the operation of all cells but the first one, and Fig. 20 for the 

operation of the first cell. 

gin 

fin 

‘out 

bin 

gout 

(rout I activeout) 

if nonmarked then 
begin 

{yx. =g( 1);1;, =.f( 1); store and mark cell} 

J_reg :=J,; y_rey:=yi,; nonmarked:=false; 

{delete fou, and y&,1 fI,, := nil; y&, := nil; 

{compute h(l)) h,,, :=fin*yln; 
end 

else 
begin 

{transmit gin and .G I CL,, := g,.; .!A :=.fi,; 
{update h,,} h,,, := hi. +y-rey*j;” +f-rey*y;,; 

{activatef-input and g’-input 1 actiue,, := true; active,‘, := true; 

{delay alIS_ and y’-inputs} 

CL,> active,,,) := De/a~_Mechanism(f;,, activei,); 

(yl,.,, actioeA.,) :=Delay~Mrchanism(gl,. acti&); 
end 

Fig. 20. Operation of first cell for the arithmetic convolution h=f* g. 
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3.3. Performances 

For the computation of (h(n); 1 dn < N), we have designed an array of N”’ 

processing cells (which perform multiply-and-adds). Note that the total number of 

delays is proportional to N log N, and not to N, although we have only O(N) inputs. 

To see this, consider for instance the first array. The last element that we need to 

consider in cell k is .f( N/k), to be multiplied by g(k). f( N/k) has been delayed by N/k 
units of time in cells 1,2,. . , , k - 1 before reaching cell k. So that we need N/2 delays in 

cell 1 (due to f( N/2)), N/3 delays in cell 2 (due to f( N/3)), N/4 delays in cell 3 (due to 

f(N/4)), and so on up to N/N ‘I2 delays in the cell before the last one (due to f(N”‘)). 

3.4. The inverse arithmetic convolution problem 

The previous array can be very easily modified to solve the inverse arithmetic 

problem. This is quite similar to the technique used for moving from FIR filtering to 

IIR filtering [7] or from polynomial multiplication to polynomial division [6]. 

To compute (whenever possible) the function f such that f* g = h, we observe that 

.f(l)=h(l)ltr(l)> 

.f(n)= h(n)- 
1 

c f(k)g(l) 
kl=n. l<k.l6n,k#n Ii g(1) if n> 1. 

We input to the array the sequence (g(n); n3 1) in the same format as before. We 

replace the input sequence (j”(n); n> 1) by the sequence (h(n); nB l), with the same 

format (Fig. 21). All cells operate exactly as before, except the first one whose program 

is given in Fig. 22. 

. . . . . . . . . 

. 
f-r- out 

. I 

’ h-sum 
I 

g-v 4 g_w --* g-w + 
g 

h:_ 

___ ___ .._ 

Fig. 21. Systolic array for the inverse arithmetic convolution problem. 
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gin 

f-res,ut 

bin 

(9’ out, active’out) 

fbut 

h_sumin 

gout 

(f out I activeout) 

if nonmarked then 

begin 

{yi,=y(l); h,,=h(l); computef_res,,,=f(l)} f_res,,, :=hi,/gi,; 
{store and mark cell} f_reg:=f_res,,,; g-reg := gin; nonmarked :=false; 

{delete fOu, and g:.,} fOut := nil ; g&, := nil; 

end 

else 

begin 

{compute f-res,,,} f-i-es,,, := (hi,- h-sum,.-f_reg*gi.)/gpreg; 
{transmit gi. and f,b} g.., := gin; fd,, :=f_res& 
{activate f-input and g’-input} activei,:= true; active:, := true; 
{delay all f- and g’-inputs} 

CL.,> actioe,,,) :=Delay_Mechanism( f_res,,,, active,,); 

(i.,, active;.,) := Delay_Mechanism(gj., active:,); 
end 

Fig. 22. Program of first cell for the inverse convolution problem. 

The performances are the same as for the direct arithmetic convolution. We use 

N ‘1’ processing cells and 0( N log N) delays for the computation of the sequence 

(f(n); 1 ~nb N) with N units of time. 

4. Conclusion 

We have presented two linear systolic arrays for the real-time solution of the 

arithmetic convolution and of the inverse arithmetic convolution problem. Both 
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arrays extend Verhoeff ‘s design for the Mobius function to solve the general arith- 

metic convolution problem. Our first design is a linear array of O(N) cells that solves 

the problem in time O(N), thereby delivering the same performances as Verhoeff ‘s 

design. Our second design requires only O(N “‘) computational cells. We believe it 

would be an interesting challenge to derive this second design completely automati- 

cally, using the synthesis methods of [l, 3, 10, 1 l] or the parallel constructs of [15, 161. 
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