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Abstract

In an abstract Wiener space setting, we construct a rigorous mathematical model of the one-loop ap-
proximation of the perturbative Chern–Simons integral, and derive its explicit asymptotic expansion for
stochastic Wilson lines.
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1. Introduction

Since the pioneering work of Witten [21] in 1989, a multitude of people studied on the
relationship between the Chern–Simons integral, a formal path integration over an infinite-
dimensional space of connections, and quantum invariants, new topological invariants of three-
manifolds and knots (see, for instance, Atiyah [3] and Ohtsuki [20] for overviews of recent
developments in this area). Amongst others, a rigorous mathematical model of the perturbative
Chern–Simons integral was constructed by Albeverio and his colleagues; first in the Abelian case
as a Fresnel integral [1], and then for the non-Abelian case within the framework of white noise
distribution [2].

Recently, an explicit representation of stochastic oscillatory integrals with quadratic phase
functions and the formula of changing variables, based on a method of computation of prob-
ability via “deformation of the contour integration,” have been established on abstract Wiener
spaces by Malliavin and Taniguchi [17]. Motivated by these antecedent results, the first-named
author studied the Chern–Simons integral, in [18,19], from the standpoint of infinite-dimensional
stochastic analysis.

The main objective of this paper is, based on the work of Bar-Natan and Witten [5] and the
mathematical formulation of the Feynman integral due to Itô [15], to construct, in an abstract
Wiener space setting, a rigorous mathematical model of the one-loop approximation of the per-
turbative Chern–Simons integral of Wilson lines, and derive its explicit asymptotic expansion.

To state our result succinctly, let M be a compact oriented smooth three-manifold, and con-
sider a (trivial) principal G-bundle P over M with a simply connected, connected compact
simple gauge group G with Lie algebra g. We denote by Ωr(M,g) the space of g-valued smooth
r-forms on M equipped with the canonical inner product ( , ), and identify a connection on P

with a g-valued 1-form A ∈ Ω1(M,g). Let

QA0 = (∗dA0 + dA0∗)J

be a twisted Dirac operator acting on Ωr(M,g), where ∗ is the Hodge ∗-operator defined by
a Riemannian metric chosen on M , dA0 is the covariant exterior differentiation defined by a
flat connection A0 on P , and J is an operator defined to be Jϕ = −ϕ if ϕ is a 0-form or a
3-form, and Jϕ = ϕ if ϕ is a 1-form or a 2-form. For a sufficiently large integer p, we define
the Hilbert subspace Hp(Ω+) of L2(Ω+) = L2(Ω1(M,g) ⊕ Ω3(M,g)) with new inner product
( , )p defined by (

(A,φ), (B,ϕ)
)
p

= (A,
(
I + Q2

A0

)p
B
)+ (φ,

(
I + Q2

A0

)p
ϕ
)
,

where I is the identity operator on L2(Ω+).
Now, let H = Hp(Ω+) and (B,H,μ) be an abstract Wiener space (see Section 3 for the

precise definition). Let λi and ei , i = 1,2, . . . , denote the eigenvalues and eigenvectors of the
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self-adjoint elliptic operator QA0 , and hi = (1 + λ2
i )

−p/2ei be the corresponding CONS of H ,
respectively. Choosing a sufficiently large p satisfying the condition

∞∑
i=1

(
1 + λ2

i

)−p|λi | < ∞,

we define the normalized one-loop approximation of the Lorentz gauge-fixed Chern–Simons
integral of the ε-regularized Wilson line Fε

A0
(x), defined in Section 4, to be

ICS
(
Fε

A0

)= lim sup
n→∞

1

Zn

∫
B

F ε
A0

(√
nx
)
e
√−1kCS(

√
nx) μ(dx), (1.1)

where

Zn =
∫
B

e
√−1kCS(

√
nx)μ(dx), CS(x) =

∞∑
i=1

(
1 + λ2

i

)−p
λi〈x,hi〉2,

and 〈,〉 denotes the natural pairing of B and its dual space B∗.
Then we obtain the following expansion theorem.

Theorem. For any fixed ε > 0 and positive integer N ,

ICS
(
Fε

A0

)= ∫
B

F ε
A0

(Rkx)μ(dx) =
∑
m<N

k−m/2 · J ε,m
CS + O

(
k−N/2), (1.2)

where

J
ε,m
CS = km/2 ·

∫
B

F
ε,m
A0

(Rkx)μ(dx), Rk = {−2
√−1k

(
I + Q2

A0

)−p
QA0

}−1/2
,

and F
ε,m
A0

(x) is defined by (5.3).

The organization of this paper is as follows. In Section 2, we recall relevant basic materials
and definitions regarding the one-loop approximation of the perturbative Chern–Simons integral.
Then, in Section 3, we define the notion of a stochastic holonomy, and in Section 4, that of a
stochastic Wilson line, which is realized as an HC∞-map on an abstract Wiener space. Section 5
is devoted to a rigorous mathematical model of the normalized one-loop approximation of the
Lorentz gauge-fixed Chern–Simons integral, which leads to (1.1) defined in an abstract Wiener
space setting. Working out this, we then prove our main result, the expansion formula (1.2). In
Section 6, as an example, we derive linking numbers of loops from our expansion formula for
the ε-regularized Wilson line.

Throughout the paper,
√

z is understood to denote the branch for which −π/2 <

arg
√

z < π/2.
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2. One-loop approximation

Let M be a compact oriented smooth three-manifold, G a simply connected, connected com-
pact simple Lie group, and P → M a principal G-bundle over M . Since G is simply connected,
P is a trivial bundle by topological reason, so that, with a choice of a trivialization of P , we may
identify the space of smooth r-forms taking values in the associated adjoint bundle P ×Ad g with
Ωr(M,g), the space of g-valued smooth r-forms on M .

Let A denote the space of connections on P and G the group of gauge transformations on P .
Note that, by fixing a reference connection on P as the origin, we may identify A with the
(infinite-dimensional) vector space Ω1(M,g), and G with the space C∞(M,G) of smooth maps
from M to G, respectively. Then the Chern–Simons integral of an integrand F(A) is given by∫

A/G

F(A)eL(A)D(A), (2.1)

where the Lagrangian L is defined by

L(A) = −
√−1k

4π

∫
M

Tr

{
A ∧ dA + 2

3
A ∧ A ∧ A

}
. (2.2)

Here D(A) is the Feynman measure integrating over all gauge orbits, that is, over the space A/G
of equivalence classes of connections modulo gauge transformations, Tr denotes the trace in the
adjoint representation of the Lie algebra g, that is, a multiple of the Killing form of g, normalized
so that the pairing (X,Y ) = −TrXY on g is the basic inner product, and the parameter k is a
positive integer called the level of charges.

Among various integrands, the most typical example of gauge invariant observables is the
Wilson line defined by

F(A) =
s∏

j=1

TrRj
P exp

∫
γj

A, (2.3)

where P denotes the product integral (see [11], or equivalently [7]), γj , j = 1,2, . . . , s, are
closed oriented loops, and the trace Tr is taken with respect to some irreducible representation
Rj of G assigned to each γj . It should be noted that the term P exp

∫
γj

A in (2.3) gives rise to
the holonomy of A around γj , which is defined to be a solution of the parallel transport equation
with respect to A along γj . From the standpoint of infinite-dimensional stochastic analysis, we
need to regularize the Wilson line (2.3), in a manner similar to that in Albeverio and Schäfer [1],
to obtain its ε-regularization Fε

A0
(A) (see Section 3).

We now recall the perturbative formulation of the Chern–Simons integral [4,5] and adopt the
method of superfields in the following manner. Let A0 be a critical point of the Lagrangian L

such that

dA0 + A0 ∧ A0 = 0,
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that is, A0 is a flat connection. For simplicity, we assume as in [4,5] that A0 is isolated up to gauge
transformations and that the group of gauge transformations fixing A0 is discrete, or equivalently
the cohomology H ∗(M,dA0) of dA0 vanishes, that is,

H 1(M,dA0) = {0}, H 0(M,dA0) = {0}, (2.4)

where dA0 is the covariant exterior differentiation acting on Ωr(M,g), defined by

dA0 = d + [A0, ·].
Here the bracket [A,B] of A =∑Aα ⊗ Eα ∈ Ωr1(M,g) and B =∑Bβ ⊗ Eβ ∈ Ωr2(M,g) is
defined to be

[A,B] =
∑
α,β

Aα ∧ Bβ ⊗ [Eα,Eβ ] ∈ Ωr1+r2(M,g),

where {Eα} is a basis of the Lie algebra g.
Then, for the standard gauge fixing, following [4,5], we introduce a Bosonic 3-form φ,

a Fermionic 0-form c, a Fermionic 3-form ĉ, which are g-valued smooth forms on M , and the
BRS operator δ. The BRS operator δ is defined by the laws

δA = −DAc, δc = 1

2
[c, c], δĉ = √−1φ, δφ = 0,

where DA = dA0 + [A, ·]. In order to define the Lorentz gauge condition, we now choose a
Riemannian metric g on M and denote by ∗ : Ωr(M,g) → Ω3−r (M,g) the Hodge ∗-operator
defined by g, which satisfies ∗2 = identity. Then the Lorentz gauge condition is given by

(dA0)
∗A = 0, (2.5)

where (dA0)
∗ = (−1)r ∗ dA0∗ denotes the adjoint operator of dA0 . We set

V (A) = k

2π

∫
M

Tr(ĉ ∗ dA0 ∗ A),

and define the gauge-fixed Lagrangian of (2.2) by

L(A0 + A) − δV (A),

where δV (A) is given by

δV (A) = k

2π

∫
M

Tr
(√−1φ ∗ dA0 ∗ A − ĉ ∗ dA0 ∗ DAc

)
.

Noting that around the critical point A0 of L, L(A0 + A) is expanded as

L(A0 + A) = L(A0) −
√−1k

4π

∫
Tr

{
A ∧ dA0A + 2

3
A ∧ A ∧ A

}
,

M
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this leads to the Lorentz gauge-fixed Chern–Simons integral written as∫
A

∫
Φ

∫
Ĉ

∫
C

D(A)D(φ)D(ĉ)D(c)F (A0 + A)

× exp

[
L(A0) −

√−1k

4π

∫
M

Tr

{
A ∧ dA0A + 2

3
A ∧ A ∧ A

+ 2φ ∗ dA0 ∗ A + 2
√−1ĉ ∗ dA0 ∗ DAc

}]
. (2.6)

Geometrically, one can derive (2.6) in the following way. First recall that the tangent space
TA0A ∼= Ω1(M,g) of the space of connections A at A0 is decomposed as

TA0A = ImdA0 ⊕ Ker(dA0)
∗,

since for each c ∈ Ω0(M,g) we have (d/dt)|t=0(exp tc)∗A = dAc. Thus the Lorentz gauge con-
dition (2.5) corresponds to the choice of the orthogonal complement of the tangent space to the
gauge orbit through A0. Under the assumption (2.4) we may think that the Lorentz gauge condi-
tion (dA0)

∗A = 0 has a unique solution on each gauge orbit of G. Then, denoting by detJ (A) the
Jacobian of the transformation G 
 g �→ (dA0)

∗(g∗(A0 +A)) ∈ Ω0(M,g) at the identity element
of G, we obtain the following basic identity for the Chern–Simons integral (2.1):∫

A/G

F(A)eL(A) D(A) =
∫
A

D(A)F (A)eL(A)δ
(
(dA0)

∗A
)

detJ (A), (2.7)

where δ denotes the Dirac delta function. Here it should be noted that the term δ((dA0)
∗A) can

be read into the Lagrangian in the form∫
Φ

D(φ) exp

[
−√−1

∫
M

Tr
{
(dA0)

∗A · φ}],
and the term detJ (A) in the form∫

Ĉ

∫
C

D(ĉ)D(c) exp

[∫
M

Tr
{
ĉ · (dA0)

∗DAc
}]

,

where ĉ and c should be understood as Grassmann (anti-commuting) variables (cf. [22]). Encod-
ing these contributions into (2.7), and taking account of the fact that, when deriving the identity
(2.7), the Lorentz gauge condition (2.5) may be replaced by

κ(dA0)
∗A = 0

for any non-zero constant κ ∈ C, we obtain (2.6), by choosing κ = −k/2π .
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Now, noticing that likewise one may simply substitute δ(κ(dA0)
∗A) for δ((dA0)

∗A) in (2.7),
we set

A′ =√1/2πA, φ′ =√1/2πφ and c′ =√k/2πc, ĉ′ = ∗√k/2πĉ

in (2.6), and collect the terms that are at most second order in A′, φ′, c′ and ĉ′. In the result, we
obtain the following Lorentz gauge-fixed path integral form of the one-loop approximation of
the Chern–Simons integral, written in variables c′, ĉ′ and (A′, φ′):∫

A′

∫
Φ ′

∫
Ĉ′

∫
C′

D(A′)D(φ′)D(ĉ′)D(c′)F (A0 + A′)

× exp
[
L(A0) + √−1k

(
(A′, φ′),QA0(A

′, φ′)
)
+ + (ĉ′,�0c

′)
]

(2.8)

(see [5,18] for details). Here we denote by ( , )+ the inner product of the Hilbert space L2(Ω+) =
L2(Ω1(M,g) ⊕ Ω3(M,g)) given by(

(A,φ), (B,ϕ)
)
+ = (A,B) + (φ,ϕ),

where the inner product and the norm on Ωr(M,g) are defined by

(ω,η) = −
∫
M

Trω ∧ ∗η, | · | =√(·,·). (2.9)

Furthermore, QA0 is a twisted Dirac operator defined by

QA0 = (∗dA0 + dA0∗)J, (2.10)

where Jϕ = −ϕ if ϕ is a 0-form or a 3-form, and Jϕ = ϕ if ϕ is a 1-form or a 2-form. It should
be noted that QA0 is a self-adjoint elliptic operator, and �0 = (dA0)

∗dA0 is the Laplacian acting
on Ω0(M,g).

Finally, balancing out the contributions coming of the term L(A0) as well as the Fermi integral∫
Ĉ′

∫
C′

D(ĉ′)D(c′) e(ĉ′,�0c
′),

we arrive at, from (2.8), the normalized one-loop approximation of the Lorentz gauge-fixed
Chern–Simons integral:

1

Z

∫
A

∫
Φ

F(A0 + A) exp
[√−1k

(
(A,φ),QA0(A,φ)

)
+
]
D(A)D(φ), (2.11)

where

Z =
∫ ∫

exp
[√−1k

(
(A,φ),QA0(A,φ)

)
+
]
D(A)D(φ).
A Φ
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Our primary objective is to give a rigorous mathematical meaning to this normalized one-loop
approximation of the perturbative Chern–Simons integral (2.11).

3. Stochastic holonomy

To handle the integral (2.11) in an abstract Wiener space setting, we need to extend the
holonomy of a smooth connection A around a closed oriented loop γ ,

P exp
∫
γ

A,

to a rough connection A. To this end we regularize the Wilson line in a manner similar to that
in [1], which is suitable for our abstract Wiener space setting.

As in the previous section, let M be a compact oriented smooth three-manifold, G a simply
connected, connected compact simple Lie group with Lie algebra g, and P → M a principal G-
bundle over M . Let A be the space of connections on P , which is identified with Ω1(M,g), the
space of g-valued smooth 1-forms on M , and denote by {Eα}, 1 � α � d , a given basis of g. Let
γ : [0,1] 
 τ �→ γ (τ) ∈ M be a closed smooth curve in M , and set γ [s, t] = {γ (τ) | s � τ � t}.
We regard γ [s, t] as a linear functional

(
γ [s, t])[A] =

∫
γ [s,t]

A =
t∫

s

A
(
γ̇ (τ )

)
dτ, A ∈ A,

defined on the vector space A. Then γ [s, t] is continuous in the sense of distribution and hence
defines a (g-valued) de Rham current of degree two.

To recall the regularization of currents, we first consider the case where γ is a closed smooth
curve in R3 and A is a g-valued smooth 1-form with compact support defined on R3. Let φ be a
non-negative smooth function on R3 such that the support of φ is contained in the unit ball B3

with center 0 ∈ R3 and ∫
R3

φ(x)dx = 1.

Then define φε(x) = ε−3φ(x/ε) for each ε > 0. If we write

A =
∑
α

Aα ⊗ Eα =
∑
i,α

Ai
α dxi ⊗ Eα, γ̇ (τ ) =

∑
i

γ̇ i (τ )

(
∂

∂xi

)
γ (τ)

for given A and γ , then we have

lim
ε→0

sup
s�τ�t

∣∣∣∣ ∫
3

Ai
α(x)φε

(
x − γ (τ)

)
dx − Ai

α
(
γ (τ)

)∣∣∣∣= 0, (3.1)
R
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and ∣∣∣∣∣
3∑

i=1

t∫
s

( ∫
R3

Ai
α(x)φε

(
x − γ (τ)

)
dx

)
γ̇ i (τ ) dτ

∣∣∣∣∣� c1(ε)
∥∥Aα

∥∥
L2(R3)

|t − s|. (3.2)

Here and in what follows, we denote by ck(�) a constant depending on the quantity � and simply
write ck whenever no confusion may occur.

Now, according to de Rham [10], the regulator of the current γ [s, t] is defined by(
Rεγ [s, t])[A] = (γ [s, t])[R∗

εA]

=
3∑

i=1

t∫
s

( ∫
R3

Ai
α
(
γ (τ) + y

)
φε(y) dy

)
γ̇ i (τ ) dτ ⊗ Eα

=
3∑

i=1

t∫
s

( ∫
R3

Ai
α(x)φε

(
x − γ (τ)

)
dx

)
γ̇ i (τ ) dτ ⊗ Eα,

to which is associated an operator defined by(
Aεγ [s, t])[B] = (γ [s, t])[A∗

εB]

=
3∑

i,j=1

t∫
s

{ ∫
R3

( 1∫
0

yiBij
α
(
γ (τ) + ty

)
dt

)
φε(y) dy

}
γ̇ j (τ ) dτ ⊗ Eα,

where B =∑Bij
α dxi ∧ dxj ⊗ Eα is a g-valued smooth 2-form with compact support on R3.

Then we have the following relation between the operators Rε and Aε , which is known as the
homotopy formula (see [10, §15] for details).

Proposition 1. For each ε > 0, Rεγ [s, t] and Aεγ [s, t] are currents whose supports are con-
tained in the ε-tubular neighborhood of γ [s, t], and satisfy

Rεγ [s, t] − γ [s, t] = ∂Aεγ [s, t] +Aε∂γ [s, t],

where ∂ is the boundary operator of currents.

As in [10], the above construction of regularization generalizes to our case in the following
manner. First take a diffeomorphism h of R3 onto the unit ball B3 with center 0 which coincides
with the identity on the ball of radius 1/3 with center 0. Denote by sy the translation sy(x) =
x + y and let sy be the map of R3 onto itself which coincides with h ◦ sy ◦ h−1 on B3 and with
the identity at all other points, that is,

sy(x) =
{

h ◦ sy ◦ h−1(x) if x ∈ B3,
3
x if x /∈ B .
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Note that with a suitable choice of h we may make sy to be a diffeomorphism. Then define
Rεγ [s, t] and Aεγ [s, t] by the same equations above, but now replacing γ (τ)+y and γ (τ)+ ty

with sy(γ (τ )) and sty(γ (τ )), respectively.
Now, let {Ui} be a finite open covering of M such that each Ui is diffeomorphic to the unit ball

B3 via a diffeomorphism hi , which can be extended to some neighborhoods of the closures of Ui

and of B3. Using these diffeomorphisms, we transport the transformed operators Rε and Aε

defined on R3 to M . Indeed, let f be a cutoff function which has its support in the neighborhood
of the closure of Ui and is equal to 1 on Ui . Set T = γ [s, t] for simplicity. Then T ′ = f T is a
current which has its support contained in the neighborhood of the closure of Ui , and hiT

′ is a
current which has its support contained in the neighborhood of the closure of B3. Note that the
support of T ′′ = T − T ′ does not meet the closure of Ui . We define

Ri
εT = h−1

i ◦ Rε ◦ hiT
′ + T ′′, Ai

εT = h−1
i ◦ Aε ◦ hiT

′

and set inductively

R(k)
ε T = R1

ε ◦R2
ε ◦ · · · ◦Rk

εT , A(k)
ε T = R1

ε ◦R2
ε ◦ · · · ◦Rk−1

ε ◦Ak
εT .

Then RεT and AεT are obtained to be

RεT = R(N)
ε T , AεT =

N∑
k=1

A(k)
ε T ,

where N is the number of open sets in {Ui}.
The construction of these operators Rε and Aε is easily generalized to any current T defined

on a compact smooth manifold of arbitrary dimension. We remark that the following properties
hold for regularization of currents.

Proposition 2. (See [10].) Let M be a compact smooth manifold. Then for each ε > 0 there
exist linear operators Rε and Aε acting on the space of de Rham currents with the following
properties:

(1) If T is a current, then RεT and AεT are also currents and satisfy

RεT − T = ∂AεT +Aε∂T .

(2) The supports of RεT and AεT are contained in an arbitrary given neighborhood of the
support of T provided that ε is sufficiently small.

(3) RεT is a smooth form.
(4) For all smooth forms ϕ we have

RεT [ϕ] → T [ϕ] and AεT [ϕ] → 0

as ε → 0.
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Given a closed smooth curve γ : [0,1] → M in M , for each t ∈ [0,1] and sufficiently small
ε > 0 we consider a smooth current associated to γ [0, t] defined by

Cε
γ (t) = ∗Rεγ [0, t],

where ∗ is the Hodge ∗-operator defined by a Riemannian metric chosen on M , and write
Cε

γ (t) =∑Cε
γ (t)α ⊗ Eα . Let Uγ be a tubular neighborhood of γ [0,1] in M and j : Uγ → M

denote the inclusion. Then

j∗(∗Cε
γ (t)

)= j∗(Rεγ [0, t])
is a g-valued smooth 2-form on Uγ and has a compact support in Uγ from Proposition 2. In
particular, for t = 1 we see that

dj∗(∗Cε
γ (1)

)= dj∗(Rεγ [0,1])= j∗d
(
Rεγ [0,1])= −j∗Rε∂

(
γ [0,1])= 0,

since Rε and ∂ commute and ∂(γ [0,1]) = ∅.
As a result, each j∗(∗Cε

γ (1)α) determines a cohomology class [j∗(∗Cε
γ (1)α)] ∈ H 2

c (Uγ ) in
the second de Rham cohomology of Uγ with compact support. Indeed, by virtue of Proposi-
tion 2(1), it is not hard to see that∫

Uγ

ω ∧ j∗(∗Cε
γ (1)α

)= ∫
γ

i∗ω

holds for any [ω] ∈ H 1
c (Uγ ), where i : γ [0,1] → Uγ denotes the inclusion. Namely, we have

Proposition 3. (See [1].) [j∗(∗Cε
γ (1)α)] ∈ H 2

c (Uγ ) is the compact Poincaré dual of γ in Uγ for
each α = 1,2,3.

Recalling the construction of regulators of currents and noting (3.1) and (3.2), it is not hard to
see that we have

lim
ε→0

sup
0�t�1

∣∣∣∣∣
3∑

i=1

t∫
0

( ∫
M

Ai
α(x)φε

(
x − γ (τ)

)
dx − Ai

α
(
γ (τ)

))
γ̇ i (τ ) dτ

∣∣∣∣∣= 0,

∣∣∣∣ ∫
γ [0,t]

Aα −
∫

γ [0,s]
Aα

∣∣∣∣� c2(A)|t − s|, (3.3)

and ∣∣Cε
γ (t) − Cε

γ (s)
∣∣� c1(ε)|t − s|, (3.4)

where | · | on the left side of (3.4) is the norm defined in (2.9).
Now, in order to extend the holonomy to a rough connection A, for a non-negative integer p,

let Hp(Ω+) denote the Hilbert subspace of L2(Ω+) = L2(Ω1(M,g) ⊕ Ω3(M,g)) with new
inner product ( , )p defined by
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(
(A,φ), (B,ϕ)

)
p

= ((A,φ),
(
I + Q2

A0

)p
(B,ϕ)

)
+

= (A,
(
I + Q2

A0

)p
B
)+ (φ,

(
I + Q2

A0

)p
ϕ
)
. (3.5)

Here I is the identity operator on L2(Ω+), and the p-norm on Hp(Ω+) is defined as usual by
‖ · ‖p = √(·,·)p . Henceforth we denote Hp(Ω+) briefly by Hp whenever no confusion may
occur.

Then the holonomy for a smooth connection A is extended to the stochastic holonomy
of (A,φ) ∈ Hp in the following manner. Since(

A,Cε
γ (t)

)= ((A,φ),
(
I + Q2

A0

)−p(
Cε

γ (t),0
))

p
,

by setting

C̃ε
γ (t) = (I + Q2

A0

)−p(
Cε

γ (t),0
)
, (3.6)

we obtain from (3.4) that ∥∥C̃ε
γ (t) − C̃ε

γ (s)
∥∥

p
� c1(ε)|t − s|. (3.7)

Given (A,φ) ∈ Hp , we now write

Aε
γ (t) =

d∑
α=1

(
(A,φ), C̃ε

γ (t)α ⊗ Eα

)
p
Eα, (3.8)

where C̃ε
γ (t) =∑ C̃ε

γ (t)α ⊗ Eα , and define

Ā(t) =
∫

γ [0,t]
A.

With these understood, recall that for the holonomy for a smooth connection A around A0,
it follows from (3.3) that, in terms of the product integral or Chen’s iterated integral (see Theo-
rem 4.3 of [11, p. 31] and also [7]), it is given by

P exp
∫
γ

A0 + A

= I +
∞∑

r=1

1∫
0

t1∫
0

· · ·
tr−1∫
0

d(Ā0 + Ā)(t1) d(Ā0 + Ā)(t2) · · ·d(Ā0 + Ā)(tr ), (3.9)

where 0 � tr−1 � · · · � t1 � t0 = 1. Then, noting (3.7), for each (A,φ) ∈ Hp we define the
ε-regularization of the holonomy by

Wε
γ (A) = I +

∞∑
Wε,r

γ (A), (3.10)

r=1
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where

Wε,r
γ (A) =

1∫
0

t1∫
0

· · ·
tr−1∫
0

d
(
Ā0 + Aε

γ

)
(t1) d

(
Ā0 + Aε

γ

)
(t2) · · ·d(Ā0 + Aε

γ

)
(tr ),

and the ε-regularized Wilson line by

Fε
A0

(A) =
s∏

j=1

TrRj
Wε

γj
(A), (3.11)

where the trace Tr is taken in the representation Rj of G assigned to each loop γj .

4. Stochastic Wilson line

We now proceed to extend the ε-regularized Wilson line Fε
A0

(A) in (3.11) even to an abstract
Wiener space setting. To this end, let M and G be as in Section 3, and denote by Hp(Ω+)

the Hilbert subspace of L2(Ω+) = L2(Ω1(M,g) ⊕ Ω3(M,g)) with inner product ( , )p defined
by (3.5). Then set H = Hp(Ω+) and let (B,H,μ) be an abstract Wiener space such that μ is a
Gaussian measure satisfying ∫

B

e
√−1〈x,ξ〉 μ(dx) = e−‖ξ‖2

p/2

for each ξ ∈ B∗. Here B is a real separable Banach space in which the separable Hilbert space H

is continuously and densely imbedded, 〈,〉 denotes the natural pairing of B and its dual space B∗,
and B∗ is considered as B∗ ⊂ H under the usual identification of H with H ∗ (cf. [17]).

We first note that the twisted Dirac operator QA0 of (2.10) has pure point spectrum, since QA0

is a self-adjoint elliptic operator (cf. [13]). Thus let

λi, ei = (eA
i , e

φ
i

)
, i = 1,2, . . . ,

be the eigenvalues and eigenvectors of QA0 . Recall that by our assumption (2.4) the eigenvectors
{ei} form a CONS (complete orthonormal system) of L2(Ω+). If we define

hj = (1 + λ2
j

)−p/2
ej , j = 1,2, . . . ,

then the set {hj } gives rise to a CONS of Hp , so that the increasing rate of the eigenvalues of QA0

guarantees the nuclearity of the system of semi-norms ‖ · ‖q , q = 1,2, . . . (see, for instance,
Lemma 1.6.3(c) in [13]). Hence there exists some integer p0 independent of p such that B is
realized as H−p−p0 (cf. [12]), where H−q is the dual space of Hq . If we choose a sufficiently
large p such that p > p0 and

∞∑(
1 + λ2

i

)−p|λi | < ∞,
i=1
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if necessary, then we see from (3.6) that

C̃ε
γ (t) ∈ Hp+p0 = B∗.

In what follows we take this suitable space as B throughout the paper.
According to (3.8), for each ε > 0 and x ∈ B , we define

xε
γ (t) =

d∑
α=1

〈
x, C̃ε

γ (t)α ⊗ Eα

〉
Eα,

where {Eα}, 1 � α � d , is a basis of the Lie algebra g, and briefly denote

xε,α
γ (t) = 〈x, C̃ε

γ (t)α ⊗ Eα

〉
,

which is a Gaussian random variable such that

E
[
xε,α
γ (t)2]= ∥∥C̃ε

γ (t)α ⊗ Eα

∥∥2
p
. (4.1)

Since it follows from (3.7) that∣∣xε,α
γ (t) − xε,α

γ (s)
∣∣� c1(ε)‖x‖B |t − s|, (4.2)

the Lebesgue–Stieltjes integral

t∫
0

dxε
γ (τ ) =

d∑
α=1

t∫
0

dxε,α
γ (τ ) · Eα

is well defined. Hence, according to (3.10), for each ε > 0 we define the ε-regularized stochastic
holonomy for x ∈ B by

Wε
γ (x) = I +

∞∑
r=1

Wε,r
γ (x), (4.3)

where

Wε,r
γ (x) =

1∫
0

t1∫
0

· · ·
tr−1∫
0

d
(
Ā0 + xε

γ

)
(t1) d

(
Ā0 + xε

γ

)
(t2) · · ·d(Ā0 + xε

γ

)
(tr ).

Then the ε-regularized Wilson line for x ∈ B (cf. [1]) is given by

Fε
A0

(x) =
s∏

j=1

TrRj
Wε

γj
(x). (4.4)

Now, we will see the well-definedness, the smoothness in H -Fréchet differentiation and the
integrability of the ε-regularized Wilson line Fε (x) as an analytic function in the sense of
A0
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Malliavin and Taniguchi [17]. Indeed, in the representation Rj of G assigned to each loop γj , if
we define for a given basis {Eα} of g and an n × n matrix A = (aij ),

cE = max
1�α�d

‖Eα‖, ‖A‖ =
n∑

i,j=1

|aij |,

then we have the following

Lemma 1. For ε > 0 and x ∈ B , define the ε-regularizations Wε
γ (x) and Fε

A0
(x) by (4.3)

and (4.4), respectively. Then the following hold.

(1) Wε
γ (x) is well defined and C∞ in H-Fréchet differentiation.

(2) For any positive integer q we have

E
[∥∥Wε

γ (x)
∥∥2q]

< ∞.

(3) For any positive integer q and positive number s we have

∞∑
k=0

sk

k! E
[( ∑

i1,i2,...,ik

∥∥DkWε
γ (x)(hi1 , hi2, . . . , hik )

∥∥2
)q]1/2q

< ∞

and

∞∑
k=0

sk

k! E
[( ∑

i1,i2,...,ik

∣∣DkFε
A0

(x)(hi1 , hi2, . . . , hik )
∣∣2)q]1/2q

< ∞,

where {hj } is a CONS of H .

Proof. First we prove (1). It follows from (3.3) and (4.2) that for any t � 0 we have∥∥∥∥∥
t∫

0

dĀ0

∥∥∥∥∥� σc2(A0)t,

∥∥∥∥∥
t∫

0

dxε
γ (τ )

∥∥∥∥∥� σc1(ε)‖x‖Bt,

where σ = d · cE . Then it is not hard to see that for x ∈ B

∥∥Wε
γ (x)

∥∥�
∞∑

r=0

∥∥∥∥∥
1∫

0

t1∫
0

· · ·
tr−1∫
0

d
(
Ā0 + xε

γ

)
(t1) d

(
Ā0 + xε

γ

)
(t2) · · ·d(Ā0 + xε

γ

)
(tr )

∥∥∥∥∥
�

∞∑
r=0

(
σ(c2(A0) + c1(ε)‖x‖B)

)r 1∫
0

t1∫
0

· · ·
tr−1∫
0

dt1 dt2 · · ·dtr

�
∞∑(

σ
(
c2(A0) + c1(ε)‖x‖B

))r
/r! = eσ(c2(A0)+c1(ε)‖x‖B), (4.5)
r=0
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which implies the well-definedness of Wε
γ (x).

To see the smoothness of Wε
γ (x) in H -Fréchet differentiation, we first note that for h ∈ H

DWε
γ (x)(h) = lim

s→0

{
Wε

γ (x + sh) − Wε
γ (x)

}
/s

= lim
s→0

1

s

∞∑
r=1

{ 1∫
0

t1∫
0

· · ·
tr−1∫
0

d
(
Ā0 + (x + sh)εγ

)
(t1) · · ·d(Ā0 + (x + sh)εγ

)
(tr )

−
1∫

0

t1∫
0

· · ·
tr−1∫
0

d
(
Ā0 + xε

γ

)
(t1) · · ·d(Ā0 + xε

γ

)
(tr )

}
.

Then, in a manner similar to the previous estimate, we have for |s| � 1

∥∥∥∥∥1

s

∞∑
r=1

{ 1∫
0

t1∫
0

· · ·
tr−1∫
0

d
(
Ā0 + (x + sh)εγ

)
(t1) · · ·d(Ā0 + (x + sh)εγ

)
(tr )

−
1∫

0

t1∫
0

· · ·
tr−1∫
0

d
(
Ā0 + xε

γ

)
(t1) · · ·d(Ā0 + xε

γ

)
(tr )

}∥∥∥∥∥
�
∥∥∥∥∥

∞∑
r=1

r∑
m=1

1∫
0

t1∫
0

· · ·
tr−1∫
0

d
(
Ā0 + xε

γ

)
(t1) · · ·d(Ā0 + xε

γ

)
(tm−1)

· dhε
γ (tm) d

(
Ā0 + (x + sh)εγ

)
(tm+1) · · ·d(Ā0 + (x + sh)εγ

)
(tr )

∥∥∥∥∥
�

∞∑
r=1

r∑
m=1

σ r
(
c2(A0) + c1(ε)‖x‖B

)m−1

× c1(ε)‖h‖B

(
c2(A0) + c1(ε)

{‖x‖B + ‖h‖B

})r−m
/r!

�
∞∑

r=1

σ r
(
c2(A0) + c1(ε)

{‖x‖B + ‖h‖B

})r−1
c1(ε)‖h‖B/(r − 1)!

= σc1(ε)‖h‖Beσ(c2(A0)+c1(ε)(‖x‖B+‖h‖B)) < ∞.

This, together with Lebesgue’s convergence theorem, implies that Wε
γ (x) is H -Fréchet differen-

tiable. Repeating this argument, we then obtain that Wε
γ (x) is C∞ in H -Fréchet differentiation.

For the proof of (2) we recall the following lemma due to Fernique (see [16]).

Lemma 2. There exists δ > 0 such that∫
B

eδ‖x‖2
B μ(dx) < ∞.
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Then it follows from (4.5) that

E
[∥∥Wγ (x)

∥∥2q]� E
[
e2qσ(c2(A0)+c1(ε)‖x‖B)

]
,

which together with Lemma 2 shows (2) of Lemma 1.
Before proceeding to the proof of (3), we remark the following

Lemma 3. Let q be a positive integer and Xi,j , i, j = 1,2, . . . , be real numbers. Then

∑
i

∣∣∣∣∑
j

Xi,j

∣∣∣∣2q

�
(∑

j

(∑
i

|Xi,j |2q

)1/2q)2q

.

Proof of Lemma 3. Note that(∑
j

|Xi,j |
)2q

=
∑

j1,j2,...,j2q

|Xi,j1 ||Xi,j2 | · · · |Xi,j2q
|,

and by using Hölder’s inequality recursively we have∑
i

|Xi,j1 ||Xi,j2 | · · · |Xi,j2q
|

�
(∑

i

|Xi,j1 |2q

)1/2q(∑
i

(|Xi,j2 | · · · |Xi,j2q
|)2q/(2q−1)

)(2q−1)/2q

�
(∑

i

|Xi,j1 |2q

)1/2q(∑
i

|Xi,j2 |2q

)1/2q

×
(∑

i

(|Xi,j3 | · · · |Xi,j2q
|)2q/(2q−2)

)(2q−2)/2q

and so on. Hence we obtain

∑
i

∣∣∣∣∑
j

Xi,j

∣∣∣∣2q

�
∑

i

( ∑
j1,j2,...,j2q

|Xi,j1 ||Xi,j2 | · · · |Xi,j2q
|
)

=
∑

j1,j2,...,j2q

(∑
i

|Xi,j1 ||Xi,j2 | · · · |Xi,j2q
|
)

�
∑

j1,j2,...,j2q

(∑
i

|Xi,j1 |2q

)1/2q(∑
i

|Xi,j2 |2q

)1/2q

· · ·
(∑

i

|Xi,j2q
|2q

)1/2q

=
(∑(∑

|Xi,j |2q

)1/2q)2q

,

j i
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which completes the proof of Lemma 3.
Now we proceed to proving (3) of Lemma 1. Noting that∑

i1,i2,...,ik

∥∥DkWε
γ (x)(hi1 , hi2, . . . , hik )

∥∥2

�
∑

i1,i2,...,ik

( ∞∑
r=k

∥∥DkWε,r
γ (x)(hi1 , hi2, . . . , hik )

∥∥)2

,

and by making use of Lemma 3 recursively, it is immediate to see that the right side of the above
inequality is dominated by( ∞∑

r=k

( ∑
i1,i2,...,ik

∥∥DkWε,r
γ (x)(hi1 , hi2, . . . , hik )

∥∥2
)1/2

)2

.

Let us denote for simplicity ∑
1�l1<l2<···<lk�r,

{j (l1),j (l2),...,j (lk)}={1,2,...,k}

by
∑

l1,l2,...,lk

.

Then, employing Lemma 3 again, we see that∑
i1,i2,...,ik

∥∥DkWε,r
γ (x)(hi1 , hi2, . . . , hik )

∥∥2

=
∑

i1,i2,...,ik

∥∥∥∥∥ ∑
l1,l2,...,lk

1∫
0

d
(
Ā0 + xε

γ

)
(t1) · · ·

tl1−1∫
0

dhε
ij (l1)

(tl1) · · ·

·
tlk−1∫
0

dhε
ij (lk )

(tlk ) · · ·
tr−1∫
0

d
(
Ā0 + xε

γ

)
(tr )

∥∥∥∥∥
2

�
∑

i1,i2,...,ik

(
cr
E

∑
l1,l2,...,lk

d∑
α1,α2,...,αr=1

∣∣∣∣∣
1∫

0

d(Ā
α1
0 + xε,α1

γ )(t1) · · ·

·
tl1−1∫
0

d
〈
hij (l1)

, C̃
ε,αl1
γ (tl1)

〉 · · · tlk−1∫
0

d
〈
hij (lk )

, C̃
ε,αlk
γ (tlk )

〉

· · · ·
tr−1∫
0

d
(
Ā

αr

0 + xε,αr
γ

)
(tr )

∣∣∣∣∣
)2

�
(

cr
E

∑
l1,l2,...,lk

d∑
α1,α2,...,αr=1

( ∑
i1,i2,...,ik

∣∣∣∣∣
1∫
d
(
Ā

α1
0 + xε,α1

γ

)
(t1) · · ·
0
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·
tl1−1∫
0

d
〈
hij (l1)

, C̃
ε,αl1
γ (tl1)

〉 · · · tlk−1∫
0

d
〈
hij (lk )

, C̃
ε,αlk
γ (tlk )

〉

· · · ·
tr−1∫
0

d
(
Ā

αr

0 + xε,αr
γ

)
(tr )

∣∣∣∣∣
2)1/2)2

,

where we write C̃ε,α
γ (t) = C̃ε

γ (t)α ⊗ Eα for simplicity.
Noticing that, for example,

∑
ij

∣∣∣∣∣
s∫

0

d
〈
hij , C̃

ε,α
γ (v)

〉 v∫
0

d
(
Ā

β

0 + xε,β
γ

)
(w)

∣∣∣∣∣
2

=
∑
ij

∣∣∣∣∣ lim
m→∞

m∑
t=0

〈
hij , C̃

ε,α
γ (τt+1) − C̃ε,α

γ (τt )
〉 τt∫

0

d
(
Ā

β

0 + xε,β
γ

)
(w)

∣∣∣∣∣
2

�
(

lim
m→∞

m∑
t=0

(∑
ij

∣∣〈hij , C̃
ε,α
γ (τt+1) − C̃ε,α

γ (τt )
〉∣∣2∣∣∣∣∣

τt∫
0

d
(
Ā

β

0 + xε,β
γ

)
(w)

∣∣∣∣∣
2)1/2)2

�
(

lim
m→∞

m∑
t=0

∥∥C̃ε,α
γ (τt+1) − C̃ε,α

γ (τt )
∥∥

p

∣∣∣∣∣
τt∫

0

d
(
Ā

β

0 + xε,β
γ

)
(w)

∣∣∣∣∣
)2

�
(

c1(ε)
(
c2(A0) + c1(ε)‖x‖B

) s∫
0

v∫
0

dv dw

)2

,

we obtain as in the proof of (4.5) that

∑
i1,i2,...,ik

∥∥DkWε,r
γ (x)(hi1 , hi2, . . . , hik )

∥∥2

�
(

σ r r!
(r − k)!

(
c2(A0) + c1(ε)‖x‖B

)r−k
c1(ε)

k

×
1∫

0

· · ·
tl1−1∫
0

· · ·
tlk−1∫
0

· · ·
tr−1∫
0

dt1 · · ·dtl1−1 · · ·dtlk−1 · · ·dtr

)2

�
(

σ r r!
(r − k)!r!

(
c2(A0) + c1(ε)‖x‖B

)r−k
c1(ε)

k

)2

.

Hence, noting that



748 I. Mitoma, S. Nishikawa / Journal of Functional Analysis 253 (2007) 729–771
∞∑
r=k

σ r 1

(r − k)!
(
c2(A0) + c1(ε)‖x‖B

)r−k
c1(ε)

k

=
∞∑

r=0

σ r+k 1

r!
(
c2(A0) + c1(ε)‖x‖B

)r
c1(ε)

k

= (σc1(ε)
)k

eσ(c2(A0)+c1(ε)‖x‖B),

we see with Lemma 2 that

∞∑
k=0

sk

k! E
[( ∑

i1,i2,...,ik

∥∥DkWε
γ (x)(hi1 , hi2, . . . , hik )

∥∥2
)q]1/2q

�
∞∑

k=0

sk

k!
(
σc1(ε)

)k
E
[
e2qσ(c2(A0)+c1(ε)‖x‖B)

]1/2q
< ∞,

which verifies the first part of (3).
By a similar argument we can also obtain the second half of (3), so is omitted the detail. �

5. Definition and expansion theorem

The aim of this section is to give a rigorous mathematical meaning, in an abstract Wiener space
setting, to the normalized one-loop approximation of the Lorentz gauge-fixed Chern–Simons
integral (2.11). We keep the notation in Section 4.

First, recall that for each x = (A,φ) ∈ L2(Ω+) = L2(Ω1 ⊕ Ω3) we have

(x,QA0x)+ =
∞∑
i=1

λi(x, ei)
2+ =

∞∑
j=1

(
1 + λ2

j

)−p
λj (x,hj )

2
p.

Then, adopting an idea due to Itô [15], we implement convergent factors

exp

[
− (x, x)

2n

]
with n > 0

into each finite-dimensional approximation of L2(Ω+). This leads us to the following
m-dimensional approximation of (2.11) written as

lim
n→∞

1

Zm,n

∫
Rm

F ε
A0

(xm) exp

[√−1k(x,Qx)m,+ − (x, x)m

2n

]
μm(dx)

(
√

2π)m
,

where μm is the m-dimensional Lebesgue measure,

xm =
m∑

xjhj , (x,Qx)m,+ =
m∑(

1 + λ2
j

)−p
λjx

2
j , (x, x)m =

m∑
x2
j

j=1 j=1 j=1



I. Mitoma, S. Nishikawa / Journal of Functional Analysis 253 (2007) 729–771 749
and

Zm,n =
∫

Rm

exp

[√−1k(x,Qx)m,+ − (x, x)m

2n

]
μm(dx)

(
√

2π)m
.

Note that, by setting x = √
ny, this can be rewritten in the form

lim
n→∞

1

Zm,n

∫
Rm

F ε
A0

(√
nym

)
exp
[√−1k

(√
ny,Q

√
ny
)
m,+
]

× 1

(
√

2π)m
exp

[
− (y, y)m

2

]
μm(dy),

where

Zm,n =
∫

Rm

exp
[√−1k

(√
ny,Q

√
ny
)
m,+
] 1

(
√

2π)m
exp

[
− (y, y)m

2

]
μm(dy).

We then look for the limit

lim
n→∞ lim

m→∞
1

Zm,n

∫
Rm

F ε
A0

(√
nym

)
exp
[√−1k

(√
ny,Q

√
ny
)
m,+
]

× 1

(
√

2π)m
exp

[
− (y, y)m

2

]
μm(dy). (5.1)

However, the canonical Gaussian measure cannot be defined on the Hilbert space L2(Ω+), so
that we shall achieve a realization of (5.1) in an abstract Wiener space setting as follows.

Thus, let H = Hp and (B,H,μ) the abstract Wiener space described in Section 4. Then,
within this framework, we now define the normalized one-loop approximation of the perturbative
Chern–Simons integral of the ε-regularized Wilson line to be

ICS
(
Fε

A0

)= lim sup
n→∞

1

Zn

∫
B

F ε
A0

(√
nx
)
e
√−1kCS(

√
nx) μ(dx), (5.2)

where

Zn =
∫
B

e
√−1kCS(

√
nx) μ(dx),

CS(x) = 〈x,
(
I + Q2

A0

)−p
QA0x

〉= ∞∑
j=1

(
1 + λ2

j

)−p
λj 〈x,hj 〉2,

and

lim sup
(
xn + √−1yn

)= lim supxn + √−1 lim supyn

n→∞ n→∞ n→∞
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for real numbers xn and yn.
Given ε > 0, we also set

Zε,0
γ (0) = I,

Zε,r
γ (i) =

∑
1�l1<l2<···<li�r

1∫
0

dĀ0(t1) · · ·
tl1−1∫
0

dxε
γ (tl1) · · ·

tli−1∫
0

dxε
γ (tli ) · · ·

tr−1∫
0

dĀ0(tr )

and

Zε
γ (i) =

∞∑
r=i

Zε,r
γ (i).

It should be noted that

Wε,r
γ (x) =

1∫
0

t1∫
0

· · ·
tr−1∫
0

d
(
Ā0 + xε

γ

)
(t1) d

(
Ā0 + xε

γ

)
(t2) · · ·d(Ā0 + xε

γ

)
(tr )

=
r∑

i=0

Zε,r
γ (i),

which combined with (4.3) yields

Wε
γ (x) = I +

∞∑
r=1

Wε,r
γ (x) =

∞∑
i=0

Zε
γ (i).

Thus we define

F
ε,m
A0

(x) =
∑

i1+i2+···+is=m

s∏
j=1

TrRj
Zε

γj
(ij ) (5.3)

and set

Rn,k = {I − 2
√−1nk

(
I + Q2

A0

)−p
QA0

}−1/2√
nI. (5.4)

Then, by applying the formula due to Malliavin and Taniguchi [17, Theorem 7.8], we obtain the
following expansion theorem.

Theorem 1. For any fixed ε > 0 and positive integer N ,

ICS
(
Fε

A0

)= lim sup
n→∞

∫
B

F ε
A0

(Rn,kx)μ(dx) =
∫
B

F ε
A0

(Rkx)μ(dx)

=
∑

k−m/2 · J ε,m
CS + O

(
k−N/2),
m<N
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where

Rk = {−2
√−1k

(
I + Q2

A0

)−p
QA0

}−1/2
, (5.5)

and

J
ε,m
CS = km/2 ·

∫
B

F
ε,m
A0

(Rkx)μ(dx).

Proof. Step 1. By making use of the so-called Fresnel integral formula

1√
2π

+∞∫
−∞

exp

[
−zx2

2

]
dx = 1√

z
, z ∈ C,

separately, we obtain

Zn = [det
{
I − 2

√−1nk
(
I + Q2

A0

)−p
QA0

}]−1/2
.

Also, it follows from (3.7) that∥∥√n
(
C̃ε

γ (t) − C̃ε
γ (s)

)∥∥
p

� c3(ε)|t − s|.

Hence, by mimicking the proof of (3) of Lemma 1, we see that for any sufficiently small fixed
ε > 0, the same inequalities in the course of the proof hold with Wε

γ (x) being replaced by
Wε

γ (
√

nx). This, together with (1) of Lemma 1, then yields that

∞∑
k=0

sk

k! E
[( ∑

i1,i2,...,ik

∣∣DkFε
A0

(√
nx
)
(hi1 , hi2, . . . , hik )

∣∣2)q]1/2q

< ∞

for any positive number s, implying the analyticity of Fε
A0

(
√

nx).
Therefore, we can apply the formula of Malliavin and Taniguchi [17, Theorem 7.8] to the

right side of (5.2) to obtain, for any sufficiently small fixed ε > 0, that

ICS
(
Fε

A0

)= lim sup
n→∞

∫
B

F ε
A0

(Rn,kx)μ(dx). (5.6)

Step 2. In order to determine the limit in (5.6), we first note that for any positive integer q we
have

E
[∥∥Wε

γ (Rn,kx)
∥∥2q]

< ∞. (5.7)

To see this and for later use as well, we now carry out a more precise estimate than that of
proving (2) of Lemma 1 in the following way.
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For the twisted Dirac operator QA0 , we define a
j
n,k, b

j
n,k ∈ R by

a
j
n,k + √−1b

j
n,k =

√
n√

1 − 2
√−1nk(1 + λ2

j )
−pλj

,

where λj are eigenvalues of QA0 as above. Then we set

R1
n,kC̃

ε
γ (t)α ⊗ Eα =

∞∑
j=1

a
j
n,k

(
C̃ε

γ (t)α ⊗ Eα,hj

)
p
hj ,

R2
n,kC̃

ε
γ (t)α ⊗ Eα =

∞∑
j=1

b
j
n,k

(
C̃ε

γ (t)α ⊗ Eα,hj

)
p
hj .

Note that, for each x ∈ B and t ∈ [0,1], the operator Rn,k defined by (5.4) gives rise to an element

Rn,kx
ε
γ (t) =

d∑
α=1

〈
x,Rn,kC̃

ε
γ (t)α ⊗ Eα

〉
Eα (5.8)

in the complexification of g, where Rn,kC̃
ε
γ (t)α ⊗ Eα is defined by

Rn,kC̃
ε
γ (t)α ⊗ Eα = R1

n,kC̃
ε
γ (t)α ⊗ Eα + √−1R2

n,kC̃
ε
γ (t)α ⊗ Eα.

For convenience we denote the accompanying Gaussian random variables by

R1
n,kx

ε,α
γ (t) = 〈x,R1

n,kC̃
ε
γ (t)α ⊗ Eα

〉
, R2

n,kx
ε,α
γ (t) = 〈x,R2

n,kC̃
ε
γ (t)α ⊗ Eα

〉
(5.9)

and set

Rn,kx
ε,α
γ (t) = R1

n,kx
ε,α
γ (t) + √−1R2

n,kx
ε,α
γ (t).

Now, noting that

1∫
0

t1∫
0

· · ·
tr−1∫
0

d
(
Ā0 + Rn,kx

ε
γ

)
(t1) d

(
Ā0 + Rn,kx

ε
γ

)
(t2) · · ·d(Ā0 + Rn,kx

ε
γ

)
(tr )

=
r∑

m=0

∑
1�l1<l2<···<lm�r

1∫
0

dĀ0(t1) · · ·
tl1−1∫
0

dRn,kx
ε
γ (tl1) · · ·

tlm−1∫
0

dRn,kx
ε
γ (tlm)

· · · ·
tr−1∫
0

dĀ0(tr ),

we obtain, by the same reasoning as in Lemma 3, that for any positive integer q and x ∈ B
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E
[∥∥Wε

γ (Rn,kx)
∥∥2q]

� E

[( ∞∑
r=0

r∑
m=0

∑
1�l1<l2<···<lm�r

d∑
α1,α2,...,αr=1

cr
E

∣∣∣∣∣
1∫

0

dĀ
α1
0 (t1) · · ·

·
tl1−1∫
0

dRn,kx
ε,αl1
γ (tl1) · · ·

tlm−1∫
0

dRn,kx
ε,αlm
γ (tlm) · · ·

tr−1∫
0

dĀ
αr

0 (tr )

∣∣∣∣∣
)2q]

� E

[( ∞∑
r=0

r∑
m=0

∑
1�l1<l2<···<lm�r,
ν1,ν2,...,νm∈{1,2}

d∑
α1,α2,...,αr=1

cr
E

∣∣∣∣∣
1∫

0

dĀ
α1
0 (t1) · · ·

·
tl1−1∫
0

dR
ν1
n,kx

ε,αl1
γ (tl1) · · ·

tlm−1∫
0

dR
νm

n,kx
ε,αlm
γ (tlm) · · ·

tr−1∫
0

dĀ
αr

0 (tr )

∣∣∣∣∣
)2q]

�
( ∞∑

r=0

r∑
m=0

∑
1�l1<l2<···<lm�r,
ν1,ν2,...,νm∈{1,2}

d∑
α1,α2,...,αr=1

cr
EE

[∣∣∣∣∣
1∫

0

dĀ
α1
0 (t1) · · ·

·
tl1−1∫
0

dR
ν1
n,kx

ε,αl1
γ (tl1) · · ·

tlm−1∫
0

dR
νm

n,kx
ε,αlm
γ (tlm) · · ·

tr−1∫
0

dĀ
αr

0 (tr )

∣∣∣∣∣
2q]1/2q)2q

.

(5.10)

To estimate the right side of (5.10), let si , i = 0,1, . . . , r , be non-negative integers and set

t
si
i =

{
0 if si = 0,

t
si−1
i + t

si−1
i−1 /2ni if si � 1,

with t
s0
0 = 1. Also, write for brevity

A
αi

0 [si] = Ā
αi

0

(
t
si+1
i

)− Ā
αi

0

(
t
si
i

)
,

Rν
n,kx

ε,αi
γ [si] = Rν

n,kx
ε,αi
γ

(
t
si+1
i

)− Rν
n,kx

ε,αi
γ

(
t
si
i

)
.

Then it follows from an estimate similar to that of (2) of Lemma 1 together with Lebesgue’s
convergence theorem that

E

[∣∣∣∣∣
1∫
dĀ

α1
0 (t1) · · ·

tl1−1∫
dR

ν1
n,kx

ε,αl1
γ (tl1) · · ·
0 0
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·
tlm−1∫
0

dR
νm

n,kx
ε,αlm
γ (tlm) · · ·

tr−1∫
0

dĀ
αr

0 (tr )

∣∣∣∣∣
2q]1/2q

= lim
n1,...,nr→∞E

[∣∣∣∣∣
2n1 −1∑
s1=0

A
α1
0 [s1] · · ·

2
nl1 −1∑
sl1=0

R
ν1
n,kx

ε,αl1
γ [sl1] · · ·

·
2nlm −1∑
slm=0

R
νm

n,kx
ε,αlm
γ [slm ] · · ·

2nr −1∑
sr=0

A
αr

0 [sr ]
∣∣∣∣∣
2q]1/2q

� c2(A0)
r−m lim

n1,...,nr→∞E

[(
2n1 −1∑
s1=0

· · ·
2nr −1∑
sr=0

∣∣t s1+1
1 − t

s1
1

∣∣ · · · ∣∣Rν1
n,kx

ε,αl1
γ [sl1 ]

∣∣
· · · · ∣∣Rνm

n,kx
ε,αlm
γ [slm ]∣∣ · · · ∣∣t sr+1

r − t srr

∣∣)2q]1/2q

,

which is, by the same reasoning as in Lemma 3, dominated by

c2(A0)
r−m lim

n1,...,nr→∞

2n1 −1∑
s1=0

· · ·
2nr −1∑
sr=0

E
[(∣∣t s1+1

1 − t
s1
1

∣∣ · · · ∣∣Rν1
n,kx

ε,αl1
γ [sl1 ]

∣∣ · · · ∣∣Rνm

n,kx
ε,αlm
γ [slm ]∣∣ · · · ∣∣t sr+1

r − t srr

∣∣)2q]1/2q
.

(5.11)

Furthermore, for the Gaussian random variables (5.9), we see from (3.7) and (4.1) that for
ν = 1,2

E
[∣∣Rν

n,kx
ε,α
γ (t) − Rν

n,kx
ε,α
γ (s)

∣∣2]= ∥∥Rν
n,kC̃

ε
γ (t)α ⊗ Eα − Rν

n,kC̃
ε
γ (s)α ⊗ Eα

∥∥2
p

=
∞∑

j=1

((
a

j
n,k or b

j
n,k

)(
C̃ε

γ (t)α ⊗ Eα − C̃ε
γ (s)α ⊗ Eα,hj

)
p

)2
�

∞∑
j=1

1

2k|λj |
(
Cε

γ (t)α ⊗ Eα − Cε
γ (s)α ⊗ Eα, ej

)2
� 1

2kρ

∥∥Cε
γ (t)α ⊗ Eα − Cε

γ (s)α ⊗ Eα

∥∥2
0

� 1

2kρ
c1(ε)

2|t − s|2, (5.12)

where we set

ρ = min |λj | > 0.

j
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Now we recall the following well-known lemma (see [8]).

Lemma 4. Let Xi , i = 1,2, . . . ,2l, be a mean-zero Gaussian system. Then

E[X1X2 · · ·X2l]
= 1

2l l!
∑

σ∈S2l

E[Xσ(1)Xσ(2)]E[Xσ(3)Xσ(4)] · · ·E[Xσ(2l−1)Xσ(2l)],

where S2l denotes the group of permutations of {1,2, . . . ,2l}.

Then it follows from (5.12) together with Lemma 4 that

E
[(∣∣Rν1

n,kx
ε,αl1
γ [sl1 ]

∣∣ · · · ∣∣Rνm

n,kx
ε,αlm
γ [slm ]∣∣)2q]

� (2qm)!(c1(ε)/
√

2kρ)2qm

2qm(qm)!
∣∣t sl1+1

l1
− t

sl1
l1

∣∣2q · · · ∣∣t slm+1
lm

− t
slm
lm

∣∣2q
,

from which we see that (5.11) is then dominated by

c2(A0)
r−m lim

n1,...,nr→∞

2n1−1∑
s1=0

· · ·
2nr −1∑
sr=0

{
(2qm)!(c1(ε)/

√
2kρ)2qm

2qm(qm)!
}1/2q

· ∣∣t s1+1
1 − t

s1
1

∣∣ · · · ∣∣t sr+1
r − t srr

∣∣
� c2(A0)

r−m

(
c1(ε)√

2kρ

)m{
(2qm)!

2qm(qm)!
}1/2q

1∫
0

t1∫
0

· · ·
tr−1∫
0

dt1 dt2 · · ·dtr

� c4(A0)
r

( √
2q√
2kρ

)m
√

m!
r! , (5.13)

since (qm)! � (m!qm)q , where c4(A0) = max{c2(A0), c1(ε)}.
Consequently, summing up these estimates and denoting σ = d · cE , we obtain

E
[∥∥Wε

γ (Rn,kx)
∥∥2q]� ( ∞∑

r=0

(
σc4(A0)

)r r∑
m=0

rCm

(
2
√

q

kρ

)m 1√
r!

)2q

=
( ∞∑

r=0

{
σc4(A0)

(
1 + 2

√
q

kρ

)}r 1√
r!

)2q

< ∞ (5.14)

with the bound being independent of n.
Step 3. Since B∗ is dense in H , for each h ∈ H , there is a sequence {ξn}∞n=1 of elements

in B∗ such that limn→∞ ‖h − ξn‖p = 0. As is well-known, 〈·, ξn〉 then converges to 〈·, h〉 in
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L2(B,R;μ) as n → ∞. Hence, taking a subsequence if necessary, we may assume that 〈x, ξn〉
converges to 〈x,h〉 for μ-almost every x ∈ B . Then we define for x ∈ B and h ∈ H

〈x,h〉 =
{

limn→∞〈x, ξn〉 if it exists,
0 otherwise,

(5.15)

as usual.
It should be noted that, given ξ ∈ B∗, the operator Rk defined by (5.5) takes ξ into H ; not into

B∗ in general. This leads us to define, by virtue of (5.15), elements in the complexification of g,
associated with x ∈ B and C̃ε

γ (t) ∈ B∗, by

Rkx
ε
γ (t) =

d∑
α=1

〈
x,RkC̃

ε
γ (t)α ⊗ Eα

〉
Eα,

RkC̃
ε
γ (t)α ⊗ Eα = R1

k C̃
ε
γ (t)α ⊗ Eα + √−1R2

k C̃
ε
γ (t)α ⊗ Eα,

and the accompanying Gaussian random variables

R1
kx

ε,α
γ (t) = 〈x,R1

k C̃
ε
γ (t)α ⊗ Eα

〉
, R2

kx
ε,α
γ (t) = 〈x,R2

k C̃
ε
γ (t)α ⊗ Eα

〉
in a manner similar to that in defining Rn,kx

ε
γ (t) and R1

n,kx
ε,α
γ (t), R2

n,kx
ε,α
γ (t) in (5.8) and (5.9),

respectively. Then it is immediate from (5.12) that we have

E
[∣∣Rkx

ε,α
γ (t) − Rkx

ε,α
γ (s)

∣∣2]� c5(ε)
2|t − s|2. (5.16)

Hence, by virtue of the Kolmogorov–Delporte criterion [9], Rkx
ε,α
γ (t) has a continuous modifi-

cation in t . Henceforth we denote such continuous modification by the same symbol Rkx
ε,α
γ (t).

Now, for any positive integer n, set

Tn =
2n∑

j=1

∣∣∣∣Rkx
ε,α
γ

(
j

2n

)
− Rkx

ε,α
γ

(
j − 1

2n

)∣∣∣∣.
Then, since Tn � Tn+1, it is easy to see from (5.16) that

E
[

lim
n→∞Tn

]
= lim

n→∞E

[
2n∑

j=1

∣∣∣∣Rkx
ε,α
γ

(
j

2n

)
− Rkx

ε,α
γ

(
j − 1

2n

)∣∣∣∣
]

� lim
n→∞

2n∑
j=1

E

[∣∣∣∣Rkx
ε,α
γ

(
j

2n

)
− Rkx

ε,α
γ

(
j − 1

2n

)∣∣∣∣2 ]1/2

� lim
n→∞

2n∑
j=1

c5(ε)

∣∣∣∣ j

2n
− j − 1

2n

∣∣∣∣
� c5(ε),



I. Mitoma, S. Nishikawa / Journal of Functional Analysis 253 (2007) 729–771 757
which implies that

lim
n→∞Tn < ∞ μ-almost everywhere.

Since Rkx
ε,α
γ (t) is continuous in t almost surely, this implies that Rkx

ε,α
γ (t) is of bounded varia-

tion for all x ∈ B ′ ⊂ B with μ(B ′) = 1. Therefore the Lebesgue–Stieltjes integral

1∫
0

t1∫
0

· · ·
tr−1∫
0

d
(
Ā0 + Rkx

ε
γ

)
(t1) d

(
Ā0 + Rkx

ε
γ

)
(t2) · · ·d(Ā0 + Rkx

ε
γ

)
(tr ) (5.17)

is well defined for all x ∈ B ′ ⊂ B with μ(B ′) = 1. According to (4.3) and (4.4), we then define
the stochastic holonomy given by Rkx to be

Wε,r
γ (Rkx) =

{
(5.17) for x ∈ B ′,
0 for x ∈ B \ B ′,

Wε
γ (Rkx) = I +

∞∑
r=1

Wε,r
γ (Rkx),

and the associated Wilson line by

Fε
A0

(Rkx) =
s∏

j=1

TrRj
Wε

γj
(Rkx).

The well-definedness of Wε
γ (Rkx) can be seen as follows. First we note that

E

[∣∣∣∣∣
1∫

0

t1∫
0

· · ·
tr−1∫
0

d
(
Ā

α1
0 + Rkx

ε,α1
γ

)
(t1) · · ·d(Āαr

0 + Rkx
ε,αr
γ

)
(tr )

∣∣∣∣∣
2q]

� E

[
lim

n1,...,nr→∞

∣∣∣∣∣
2n1 −1∑
s1=0

∣∣Aα1
0 [s1] + Rkx

ε,α1
γ [s1]

∣∣ · · · 2nr −1∑
sr=0

∣∣Aαr

0 [sr ] + Rkx
ε,αr
γ [sr ]

∣∣∣∣∣∣∣
2q]

� lim
n1,...,nr→∞

(
2n1 −1∑
s1=0

· · ·
2nr −1∑
sr=0

E
[(∣∣Aα1

0 [s1] + Rkx
ε,α1
γ [s1]

∣∣
· · · · ∣∣Aαr

0 [sr ] + Rkx
ε,αr
γ [sr ]

∣∣)2q]1/2q

)2q

. (5.18)

On the other hand, it is easy to see from (5.16) together with Lemma 4 that

E
[∣∣Aαi [si] + Rkx

ε,αi
γ [si]

∣∣2m]� c6(A0,m, ε)
∣∣t si+1 − t

si
∣∣2m
0 i i
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for any positive integer m, so that (5.18) is dominated by

c7(ε)

( 1∫
0

t1∫
0

· · ·
tr−1∫
0

dt1 dt2 · · ·dtr

)2q

.

This, together with Lebesgue’s convergence theorem, then yields that

E

[∣∣∣∣∣
1∫

0

t1∫
0

· · ·
tr−1∫
0

d
(
Ā

α1
0 + Rkx

ε,α1
γ

)
(t1) · · ·d(Āαr

0 + Rkx
ε,αr
γ

)
(tr )

∣∣∣∣∣
2q]

= lim
n1,...,nr→∞E

[∣∣∣∣∣
2n1 −1∑
s1=0

(
A

α1
0 [s1] + Rkx

ε,α1
γ [s1]

) · · · 2nr −1∑
sr=0

(
A

αr

0 [sr ] + Rkx
ε,αr
γ [sr ]

)∣∣∣∣∣
2q]

,

(5.19)

which assures that the above estimates obtained for Wε
γ (Rn,kx) in (5.10) through (5.14) also hold

for Wε
γ (Rkx) without essential change. In consequence, we obtain

E
[∥∥Wε

γ (Rkx)
∥∥2q]

< ∞, (5.20)

showing that Wε
γ (Rkx) is well defined for each x ∈ B .

Step 4. Furthermore, since Rν
n,kC̃

ε
γ (t)α ⊗ Eα converges to Rν

k C̃ε
γ (t)α ⊗ Eα in H as n → ∞

for ν = 1,2, it also follows from Lebesgue’s convergence theorem that

lim
n→∞E

[∥∥Wε
γ (Rn,kx) − Wε

γ (Rkx)
∥∥2q]= 0. (5.21)

Indeed, as in the estimation in (5.10) it holds that

E
[∥∥Wε

γ (Rn,kx) − Wε
γ (Rkx)

∥∥2q]
�
( ∞∑

r=0

r∑
m=0

∑
1�l1<l2<···<lm�r,
ν1,ν2,...,νm∈{1,2}

d∑
α1,α2,...,αr=1

cr
EE
[∣∣Dr,m

[
Rν

n,kx,Rν
k x
]∣∣2q]1/2q

)2q

,

where for brevity we write

Dr,m
[
Rν

n,kx,Rν
k x
]

=
1∫

0

dĀ
α1
0 (t1) · · ·

tl1−1∫
0

dR
ν1
n,kx

ε,αl1
γ (tl1) · · ·

tlm−1∫
0

dR
νm

n,kx
ε,αlm
γ (tlm) · · ·

tr−1∫
0

dĀ
αr

0 (tr )

−
1∫
dĀ

α1
0 (t1) · · ·

tl1−1∫
dR

ν1
k x

ε,αl1
γ (tl1) · · ·

tlm−1∫
dR

νm

k x
ε,αlm
γ (tlm) · · ·

tr−1∫
dĀ

αr

0 (tr ).
0 0 0 0
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Also, setting

Bj =
1∫

0

dĀ
α1
0 (t1) · · ·

tl1−1∫
0

dR
ν1
k x

ε,αl1
γ (tl1) · · ·

tlj −1∫
0

d
{
R

νj

n,kx
ε,αlj
γ (tlj ) − R

νj

k x
ε,αlj
γ (tlj )

}

· · · ·
tlm−1∫
0

dR
νm

n,kx
ε,αlm
γ (tlm) · · ·

tr−1∫
0

dĀ
αr

0 (tr ),

we obtain, by the same reasoning as in Lemma 3, that

E
[∣∣Dr,m

[
Rν

n,kx,Rν
k x
]∣∣2q]1/2q �

m∑
j=1

E
[|Bj |2q

]1/2q
. (5.22)

On the other hand, by an argument similar to that in obtaining (5.11), we see that each term of
the right side of (5.22) is dominated by

c2(A0)
r−m lim

n1,...,nr→∞

2n1−1∑
s1=0

· · ·
2nr −1∑
sr=0

E
[(∣∣t s1+1

1 − t
s1
1

∣∣ · · · ∣∣Rν1
k x

ε,αl1
γ [sl1 ]

∣∣ · · ·
· ∣∣Rνj

n,kx
ε,αlj
γ [slj ] − R

νj

k x
ε,αlj
γ [slj ]

∣∣ · · · ∣∣Rνm

n,kx
ε,αlm
γ [slm ]∣∣ · · · ∣∣t sr+1

r − t srr

∣∣)2q]1/2q
,

where it also holds as in (5.12) that

E
[∣∣Rνj

n,kx
ε,αlj
γ [slj ] − R

νj

k x
ε,αlj
γ [slj ]

∣∣2]
= ∥∥(Rνj

n,k − R
νj

k

)
C̃ε

γ

(
t
slj +1

lj

)α ⊗ Eα − (Rνj

n,k − R
νj

k

)
C̃ε

γ

(
t
slj
lj

)α ⊗ Eα

∥∥2
p

� 2

kρ
c1(ε)

2
∣∣t slj +1

lj
− t

slj
lj

∣∣2. (5.23)

Hence, by the same reasoning as in (5.13), we obtain that

E
[|Bj |2q

]1/2q

� c2(A0)
r−m lim

n1,...,nr→∞

2n1 −1∑
s1=0

· · ·
2nr −1∑
sr=0

{
(2qm)!(√2c1(ε)/

√
kρ)2qm

2qm(qm)!
}1/2q

· ∣∣t s1+1
1 − t

s1
1

∣∣ · · · ∣∣t sr+1
r − t srr

∣∣
� c4(A0)

r

(
2
√

q

kρ

)m
√

m!
r! . (5.24)

Since each Rν
n,kC̃

ε
γ (t)α ⊗ Eα converges to Rν

k C̃ε
γ (t)α ⊗ Eα in H as n → ∞, it follows from

the first identities in (5.12) and (5.23) combined with Lemma 4 that
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lim
n→∞E

[(∣∣t s1+1
1 − t

s1
1

∣∣ · · · ∣∣Rν1
k x

ε,αl1
γ [sl1 ]

∣∣ · · ·
· ∣∣Rνj

n,kx
ε,αlj
γ [slj ] − R

νj

k x
ε,αlj
γ [slj ]

∣∣ · · · ∣∣Rνm

n,kx
ε,αlm
γ [slm ]∣∣ · · · ∣∣t sr+1

r − t srr

∣∣)2q]= 0.

This, together with the estimates (5.23) and (5.24) with bound independent of n, then yields by
Lebesgue’s convergence theorem that

lim
n→∞

(
c2(A0)

r−m lim
n1,...,nr→∞

2n1 −1∑
s1=0

· · ·
2nr −1∑
sr=0

E
[(∣∣t s1+1

1 − t
s1
1

∣∣ · · · ∣∣Rν1
k x

ε,αl1
γ [sl1 ]

∣∣ · · ·
· ∣∣Rνj

n,kx
ε,αlj
γ [slj ] − R

νj

k x
ε,αlj
γ [slj ]

∣∣ · · · ∣∣Rνm

n,kx
ε,αlm
γ [slm ]∣∣ · · · ∣∣t sr+1

r − t srr

∣∣)2q]1/2q

)
= 0,

so that

lim
n→∞E

[∣∣Dr,m
[
Rν

n,kx,Rν
k x
]∣∣2q]1/2q = 0.

Also, noting that it holds

(u + v)m � 2m
(
um + vm

)
for u,v � 0, we have

E
[∣∣Dr,m

[
Rν

n,kx,Rν
k x
]∣∣2q]1/2q

� 2

(
E

[∣∣∣∣∣
1∫

0

dĀ
α1
0 (t1) · · ·

tl1−1∫
0

dR
ν1
n,kx

ε,αl1
γ (tl1)

· · · ·
tlm−1∫
0

dR
νm

n,kx
ε,αlm
γ (tlm) · · ·

tr−1∫
0

dĀ
αr

0 (tr )

∣∣∣∣∣
2q ]1/2q

+ E

[∣∣∣∣∣
1∫

0

dĀ
α1
0 (t1) · · ·

tl1−1∫
0

dR
ν1
k x

ε,αl1
γ (tl1)

· · · ·
tlm−1∫
0

dR
νm

k x
ε,αlm
γ (tlm) · · ·

tr−1∫
0

dĀ
αr

0 (tr )

∣∣∣∣∣
2q ]1/2q)

. (5.25)

Recalling that the estimates in (5.10) through (5.14) are valid for both Rn,kx and Rkx, and
the bounds in the estimates (5.12) and (5.14) are independent of n, it follows from (5.25) and
Lebesgue’s convergence theorem that

lim
n→∞

( ∞∑
r=0

r∑
m=0

∑
1�l1<l2<···<lm�r,
ν1,ν2,...,νm∈{1,2}

d∑
α1,α2,...,αr=1

cr
EE
[∣∣Dr,m

[
Rν

n,kx,Rν
k x
]∣∣2q]1/2q

)2q

= 0.

Hence we obtain (5.21).
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As a result, we see that TrRj
Wε

γ (Rn,kx) converges to TrRj
Wε

γ (Rkx) in L2(B,R;μ)

as n → ∞. This combined with (5.7) and (5.20) then verifies that

lim sup
n→∞

∫
B

F ε
A0

(Rn,kx)μ(dx) =
∫
B

F ε
A0

(Rkx)μ(dx).

Step 5. Finally, taking into account of (5.3), we note that the following integrability can be
proved in a manner similar to that in obtaining the estimates described above. Namely, we have

Lemma 5. For any positive integer N ,

E

[ ∞∑
m=N

F
ε,m
A0

(Rn,kx)

]
= O

(
k−N/2),

where O(k−N/2) means

lim
k→∞kN/2

∣∣O(k−N/2)∣∣< ∞.

Then Lemma 5 and the fact that∫
B

FA0(Rkx)μ(dx) =
∑
m<N

∫
B

F
ε,m
A0

(Rkx)μ(dx) +
∫
B

∞∑
m=N

F
ε,m
A0

(Rkx)μ(dx)

complete the rest of the proof of Theorem 1. �
6. Example

As an application of Theorem 1, we now calculate the Wilson line integral of two closed
oriented loops γ1 and γ2 in three-sphere S3.

To this end, let G = SU(2) and consider its canonical representation R. We denote by {Eα},
1 � α � 3, an orthonormal basis of the Lie algebra g = su(2) with respect to the inner product
(X,Y ) = −TrXY for X,Y ∈ g. For simplicity, we also assume for the ε-regularized Wilson line
(4.4) that A0 = 0, and write

Fε
0 (x) =

2∏
j=1

TrR Wε
γj

(x).

Step 1. Recalling (4.3), we begin with the evaluation of

E

[
2∏

j=1

TrR Wε,2
γj

(Rkx)

]
. (6.1)

Writing briefly 〈
Rkx, C̃ε

γ (t)α ⊗ Eα

〉
by

(
Rkx

α
γ

)
(t),
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we see that (6.1) is equal to

E
[
TrR Wε,2

γ1
(Rkx) ⊗ Wε,2

γ2
(Rkx)

]
=

3∑
α1,α2,β1,β2=1

TrEα1Eα2 ⊗ Eβ1Eβ2

· E

[ 1∫
0

t1∫
0

d
(
Rkx

α1
γ1

)
(t1) d

(
Rkx

α2
γ1

)
(t2)

1∫
0

τ1∫
0

d
(
Rkx

β1
γ2

)
(τ1) d

(
Rkx

β2
γ2

)
(τ2)

]
. (6.2)

Then, by changing the order of taking sum and expectation, in a similar manner as in the proof
of (5.19), we obtain

E

[ 1∫
0

t1∫
0

d
(
Rkx

α1
γ1

)
(t1) d

(
Rkx

α2
γ1

)
(t2)

1∫
0

τ1∫
0

d
(
Rkx

β1
γ2

)
(τ1) d

(
Rkx

β2
γ2

)
(τ2)

]

= lim
n1,n2→∞
m1,m2→∞

2n1 −1∑
s1=0

2n2−1∑
s2(s1)=0

2m1 −1∑
s1=0

2m2 −1∑
s2(s1)=0

E
[((

Rkx
α1
γ1

)(
t
s1+1
1

)
− (Rkx

α1
γ1

)(
t
s1
1

))((
Rkx

α2
γ1

)(
t
s2(s1)+1
2

)− (Rkx
α2
γ1

)(
t
s2(s1)
2

))
· ((Rkx

β1
γ2

)(
τ

s1+1
1

)− (Rkx
β1
γ2

)(
τ

s1
1

))((
Rkx

β2
γ2

)(
τ

s2(s1)+1
2

)− (Rkx
β2
γ2

)(
τ

s2(s1)
2

))]
. (6.3)

Here we set for i = 1,2,

t
si (si−1)

i =
{0 if si(si−1) = 0,

t
si (si−1)−1
i + t

si−1(si−2)

i−1 /2ni if si(si−1) � 1,

and

τ
si (si−1)

i =
{0 if si(si−1) = 0,

τ
si (si−1)−1
i + τ

si−1(si−2)

i−1 /2mi if si(si−1) � 1,

where si(si−1) are non-negative integers and we use the convention such that s1(s0) = s1,
s0(s−1) = 1 and t1

0 = τ 1
0 = 1.

Writing for brevity

j i =
{

(Rkx
αi
γ1 )(t

si (si−1)+1
i ) − (Rkx

αi
γ1 )(t

si (si−1)

i ) if i � 2,

(Rkx
βi−2
γ2 )(τ

si−2(si−3)+1
i−2 ) − (Rkx

βi−2
γ2 )(τ

si−2(si−3)

i−2 ) if i > 2,

we see from Lemma 4 that the right side of (6.3) is equal to
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lim
n1,n2→∞
m1,m2→∞

2n1 −1∑
s1=0

2n2 −1∑
s2(s1)=0

2m1 −1∑
s1=0

2m2 −1∑
s2(s1)=0

1

2!22

∑
σ∈S4

E[jσ(1)jσ(2)]E[jσ(3)jσ(4)]

= lim
n1,n2→∞
m1,m2→∞

2n1−1∑
s1=0

2n2 −1∑
s2(s1)=0

2m1 −1∑
s1=0

2m2 −1∑
s2(s1)=0

∑
σ∈S2

E[j1jσ(1)+2]E[j2jσ(2)+2] + Tself

= lim
n1,n2→∞
m1,m2→∞

2n1−1∑
s1=0

2n2 −1∑
s2(s1)=0

2m1 −1∑
s1=0

2m2 −1∑
s2(s1)=0

∑
σ∈S2

E
[((

Rkx
α1
γ1

)(
t
s1+1
1

)− (Rkx
α1
γ1

)(
t
s1
1

))
· ((Rkx

βσ(1)
γ2

)(
τ

sσ(1)(sσ(1)−1)+1
σ(1)

)− (Rkx
βσ(1)
γ2

)(
τ

sσ(1)(sσ(1)−1)

σ (1)

))]
× E

[((
Rkx

α2
γ1

)(
t
s2(s1)+1
2

)− (Rkx
α2
γ1

)(
t
s2(s1)
2

))
· ((Rkx

βσ(2)
γ2

)(
τ

sσ(2)(sσ(2)−1)+1
σ(2)

)− (Rkx
βσ(2)
γ2

)(
τ

sσ(2)(sσ(2)−1)

σ (2)

))]+ Tself,

where Tself stands for the collection of self-linking terms containing

E
[((

Rkx
α1
γ1

)(
t l+1
1

)− (Rkx
α1
γ1

)(
t l1
))((

Rkx
α2
γ1

)(
t l+1
2

)− (Rkx
α2
γ1

)(
t l2
))]

or

E
[((

Rkx
β1
γ2

)(
τ l+1

1

)− (Rkx
β1
γ2

)(
τ l

1

))((
Rkx

β2
γ2

)(
τ l+1

2

)− (Rkx
β2
γ2

)(
τ l

2

))]
.

Since Rkx
α
γi

(t) and Rkx
β
γj

(t) are independent if α �= β , we then have

E
[((

Rkx
α1
γ1

)(
t
s1+1
1

)− (Rkx
α1
γ1

)(
t
s1
1

))
· ((Rkx

βσ(1)
γ2

)(
τ

sσ(1)(sσ(1)−1)+1
σ(1)

)− (Rkx
βσ(1)
γ2

)(
τ

sσ(1)(sσ(1)−1)

σ (1)

))]
× E

[((
Rkx

α2
γ1

)(
t
s2(s1)+1
2

)− (Rkx
α2
γ1

)(
t
s2(s1)
2

))
· ((Rkx

βσ(2)
γ2

)(
τ

sσ(2)(sσ(2)−1)+1
σ(2)

)− (Rkx
βσ(2)
γ2

)(
τ

sσ(2)(sσ(2)−1)

σ (2)

))]
= δα1βσ(1)

E
[((

Rkx
α1
γ1

)(
t
s1+1
1

)− (Rkx
α1
γ1

)(
t
s1
1

))
· ((Rkx

βσ(1)
γ2

)(
τ

sσ(1)(sσ(1)−1)+1
σ(1)

)− (Rkx
βσ(1)
γ2

)(
τ

sσ(1)(sσ(1)−1)

σ (1)

))]
× δα2βσ(2)

E
[((

Rkx
α2
γ1

)(
t
s2(s1)+1
2

)− (Rkx
α2
γ1

)(
t
s2(s1)
2

))
· ((Rkx

βσ(2)
γ2

)(
τ

sσ(2)(sσ(2)−1)+1
σ(2)

)− (Rkx
βσ(2)
γ2

)(
τ

sσ(2)(sσ(2)−1)

σ (2)

))]
= E

[((
Rkx

α1
γ1

)(
t
s1+1
1

)− (Rkx
α1
γ1

)(
t
s1
1

))
· ((Rkx

α1
γ2

)(
τ

sσ(1)(sσ(1)−1)+1
σ(1)

)− (Rkx
α1
γ2

)(
τ

sσ(1)(sσ(1)−1)

σ (1)

))]
× E

[((
Rkx

α2
γ1

)(
t
s2(s1)+1
2

)− (Rkx
α2
γ1

)(
t
s2(s1)
2

))
· ((Rkx

α2
γ

)(
τ

sσ(2)(sσ(2)−1)+1)− (Rkx
α2
γ

)(
τ

sσ(2)(sσ(2)−1)))]
.

2 σ(2) 2 σ(2)
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Furthermore, since Rkx
α
γi

(t) and Rkx
β
γi

(t) are identically distributed if α �= β , we obtain

(6.3) =
1∫

0

t1∫
0

1∫
0

τ1∫
0

∑
σ∈S2

dE
[(

Rkx
α1
γ1

)
(t1)
(
Rkx

α1
γ2

)
(τσ(1))

]
· dE

[(
Rkx

α2
γ1

)
(t2)
(
Rkx

α2
γ2

)
(τσ(2))

]+ Tself

=
1∫

0

t1∫
0

1∫
0

τ1∫
0

∑
σ∈S2

dE
[(

Rkx
α
γ1

)
(t1)
(
Rkx

α
γ2

)
(τσ(1))

]
· dE

[(
Rkx

α
γ1

)
(t2)
(
Rkx

α
γ2

)
(τσ(2))

]+ Tself. (6.4)

Consequently, (6.2)–(6.4) yield for each α = 1,2,3 that

E

[
2∏

j=1

TrR Wε,2
γj

(Rkx)

]

= Tr
3∑

α1,α2=1

Eα1Eα2 ⊗ Eα1Eα2

×
1∫

0

t1∫
0

1∫
0

τ1∫
0

∑
σ∈S2

dE
[(

Rkx
α
γ1

)
(t1)
(
Rkx

α
γ2

)
(τσ(1))

]
dE
[(

Rkx
α
γ1

)
(t2)
(
Rkx

α
γ2

)(τσ(2))
]

+ Tself. (6.5)

Now, noting that

1∫
0

τ1∫
0

∑
σ∈S2

dE
[(

Rkx
α
γ1

)
(t1)
(
Rkx

α
γ2

)
(τσ(1))

]
dE
[(

Rkx
α
γ1

)
(t2)
(
Rkx

α
γ2

)
(τσ(2))

]

=
1∫

0

1∫
0

dE
[(

Rkx
α
γ1

)
(t1)
(
Rkx

α
γ2

)
(τ1)
]
dE
[(

Rkx
α
γ1

)
(t2)
(
Rkx

α
γ2

)
(τ2)
]

and

1∫
0

t1∫
0

1∫
0

1∫
0

dE
[(

Rkx
α
γ1

)
(t1)
(
Rkx

α
γ2

)
(τ1)
]
dE
[(

Rkx
α
γ1

)
(t2)
(
Rkx

α
γ2

)
(τ2)
]

=
1∫ t1∫ 1∫ 1∫

dE
[(

Rkx
α
γ1

)
(t1)
(
Rkx

α
γ2

)
(τ2)
]
dE
[(

Rkx
α
γ1

)
(t2)
(
Rkx

α
γ2

)
(τ1)
]
,

0 0 0 0
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we see from (6.5) that

E

[
2∏

j=1

TrR Wε,2
γj

(Rkx)

]

= Tr

(
3∑

α1=1

Eα1 ⊗ Eα1

)2

× 1

2!
1∫

0

1∫
0

1∫
0

1∫
0

dE
[(

Rkx
α
γ1

)
(t1)
(
Rkx

α
γ2

)
(τ1)
]
dE
[(

Rkx
α
γ1

)
(t2)
(
Rkx

α
γ2

)
(τ2)
]+ Tself

= Tr

(
3∑

α1=1

Eα1 ⊗ Eα1

)2
1

2!E
[(

Rkx
α
γ1

)
(1)
(
Rkx

α
γ2

)
(1)
]2 + Tself.

On the other hand, it follows from (3.5), (4.1) and (5.5) that

E
[(

Rkx
α
γ1

)
(1)
(
Rkx

α
γ2

)
(1)
]

= E
[〈
x,RkC̃

ε
γ1

(1)α ⊗ Eα

〉〈
x,RkC̃

ε
γ2

(1)α ⊗ Eα

〉]
= (RkC̃

ε
γ1

(1)α ⊗ Eα,RkC̃
ε
γ2

(1)α ⊗ Eα

)
p

= (Rk

(
C̃ε

γ1
(1)α ⊗ Eα,0

)
,
(
1 + Q2

0

)p
Rk

(
C̃ε

γ2
(1)α ⊗ Eα,0

))
+

= − 1

2
√−1k

((
Cε

γ1
(1)α ⊗ Eα,0

)
,Q−1

0

(
Cε

γ2
(1)α ⊗ Eα,0

))
+

= − 1

2
√−1k

(
Cε

γ1
(1)α ⊗ Eα,ωα

2 ⊗ Eα

)
,

where

ω2 = 1-form part of Q−1
0

(
Cε

γ2
(1),0

)
.

Recall that, as seen in Proposition 3, ∗Cε
γ2

(1)α is a representative of the compact Poincaré

dual of γ2 extended by zero to all of S3, and the second de Rham cohomology H 2
DR(S3) = {0},

so that we have dωα
2 = ∗Cε

γ2
(1)α , since ∗Cε

γ2
(1)α is closed and exact. Hence, for each α = 1,2,3,(

Cε
γ1

(1)α ⊗ Eα,ωα
2 ⊗ Eα

)= ∫
S3

Cε
γ 1(1)α ∧ ∗ωα

2

yields the linking number L(γ1, γ2) of loops γ1 and γ2, provided that ε > 0 is sufficiently small
so that the ε-tubular neighborhoods of γ1 and γ2 are pairwise disjoint (see [6] for details). Also,
by investigating deformed Wilson loops, it has been proved by Hahn [14] that Tself = 0 for non-
self-intersected links.

Step 2. We proceed to evaluate mth order coefficients of the expansion, that is,

E
[
TrR Wε,m1

γ (Rkx)TrR Wε,m2
γ (Rkx)

]
, (6.6)
1 2
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where m = m1 + m2. Note that if m is odd, then (6.6) is equal to zero. Even if m is even, when
m1 �= m2, the term (6.6) belongs to Tself, where Tself denotes the collection of self-linking terms
containing the limits of

E
[· · · ((Rkx

α1
γ1

)(
t l+1
1

)− (Rkx
α1
γ1

)(
t l1
))((

Rkx
α2
γ1

)(
t l

′+1
2

)− (Rkx
α2
γ1

)(
t l

′
2

))]
or

E
[· · · ((Rkx

β1
γ2

)(
τ l+1

1

)− (Rkx
β1
γ2

)(
τ l

1

))((
Rkx

β2
γ2

)(
τ l′+1

2

)− (Rkx
β2
γ2

)(
τ l′

2

))]
as |t l+1

j − t lj |, |τ l′+1
j ′ − τ l′

j ′ | → 0. Hence it suffices to evaluate the case with m1 = m2.

Consequently, (6.6) is equal to

E
[
TrR Wε,m1

γ1
(Rkx) ⊗ Wε,m2

γ2
(Rkx)

]
=

3∑
α1,α2,...,αm1 =1

3∑
β1,β2,...,βm1 =1

TrEα1Eα2 · · ·Eαm1
⊗ Eβ1Eβ2 · · ·Eβm1

× E

[ 1∫
0

t1∫
0

· · ·
tm1−1∫
0

1∫
0

τ1∫
0

· · ·
τm1−1∫
0

d
(
Rkx

α1
γ1

)
(t1) d

(
Rkx

α2
γ1

)
(t2) · · ·

· d
(
Rkx

αm1
γ1

)
(tm1) d

(
Rkx

β1
γ2

)
(τ1) d

(
Rkx

β2
γ2

)
(τ2) · · ·d(Rkx

βm1
γ2

)
(τm1)

]
+ Tself. (6.7)

Then writing for brevity

j i =
{

(Rkx
αi
γ1 )(ti) if i � m1,

(Rkx
βi−m1
γ2 )(τi−m1) if i > m1,

we obtain, in a manner similar to the derivation of (6.3), that

E

[ 1∫
0

t1∫
0

· · ·
tm1−1∫
0

1∫
0

τ1∫
0

· · ·
τm1−1∫
0

d
(
Rkx

α1
γ1

)
(t1) d

(
Rkx

α2
γ1

)
(t2) · · ·

· d(Rkx
αm1
γ1

)
(tm1) d

(
Rkx

β1
γ2

)
(τ1) d

(
Rkx

β2
γ2

)
(τ2) · · ·d(Rkx

βm1
γ2

)
(τm1)

]

=
1∫

0

t1∫
0

· · ·
tm1−1∫
0

1∫
0

τ1∫
0

· · ·
τm1−1∫
0

1

m1!2m1

∑
σ∈S2m1

dE[jσ(1)jσ(2)]

· dE[jσ(3)jσ(4)] · · ·dE[jσ(2m −1)jσ(2m )]. (6.8)

1 1
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Since in the right side of (6.8) those terms having σ(i − 1) and σ(i) both in {1,2, . . . ,m1} or
{m1 + 1,m1 + 2, . . . ,2m1} belong to Tself, it follows that

(6.8) =
1∫

0

t1∫
0

· · ·
tm1−1∫
0

1∫
0

τ1∫
0

· · ·
τm1−1∫
0

∑
σ∈Sm1

dE[j1jm1+σ(1)]dE[j2jm1+σ(2)]

· · ·dE[jm1
jm1+σ(m1)

] + Tself

=
1∫

0

t1∫
0

· · ·
tm1−1∫
0

1∫
0

τ1∫
0

· · ·
τm1−1∫
0

∑
σ∈Sm1

dE
[(

Rkx
α1
γ1

)
(t1)
(
Rkx

βσ(1)
γ2

)
(τσ(1))

]
· dE

[(
Rkx

α2
γ1

)
(t2)
(
Rkx

βσ(2)
γ2

)
(τσ(2))

] · · ·dE
[(

Rkx
αm1
γ1

)
(tm1)

(
Rkx

βσ(m1)

γ2

)
(τσ(m1))

]
+ Tself.

Again, since (Rkx
α
γ1

)(t1) and (Rkx
β
γ1)(t1) are independent and identically distributed if α �= β ,

we have

E
[(

Rkx
αj
γ1

)
(tj )
(
Rkx

βσ(j)
γ2

)
(τσ(j))

]= δαj βσ(j)
E
[(

Rkx
αj
γ1

)
(tj )
(
Rkx

αj
γ2

)
(τσ(j))

]
= δαj βσ(j)

E
[(

Rkx
α
γ1

)
(tj )
(
Rkx

α
γ2

)
(τσ(j))

]
from which we see that the right side of (6.8) is equal to

1∫
0

t1∫
0

· · ·
tm1−1∫
0

1∫
0

τ1∫
0

· · ·
τm1−1∫
0

∑
σ∈Sm1

m1∏
j=1

δαj βσ(j)
dE
[(

Rkx
α
γ1

)
(t1)
(
Rkx

α
γ2

)
(τσ(1))

]
· dE

[(
Rkx

α
γ1

)
(t2)
(
Rkx

α
γ2

)
(τσ(2))

] · · ·dE
[(

Rkx
α
γ1

)
(tm1)

(
Rkx

α
γ2

)
(τσ(m1))

]
+ Tself. (6.9)

It then follows from (6.7)–(6.9) that

E
[
TrR Wε,m1

γ1
(Rkx)TrR Wε,m2

γ2
(Rkx)

]
=

3∑
α1,α2,...,αm1 =1

TrEα1Eα2 · · ·Eαm1
⊗ Eα1Eα2 · · ·Eαm1

×
1∫

0

t1∫
0

· · ·
tm1−1∫
0

1∫
0

τ1∫
0

· · ·
τm1−1∫
0

∑
σ∈Sm1

dE
[(

Rkx
α
γ1

)
(t1)
(
Rkx

α
γ2

)
(τσ(1))

]
· dE

[(
Rkx

α
γ1

)
(t2)
(
Rkx

α
γ2

)
(τσ(2))

] · · ·dE
[(

Rkx
α
γ1

)
(tm1)

(
Rkx

α
γ2

)
(τσ(m1))

]
+ Tself. (6.10)
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Now, noting that

1∫
0

τ1∫
0

· · ·
τm1−1∫
0

∑
σ∈Sm1

dE
[(

Rkx
α
γ1

)
(t1)
(
Rkx

α
γ2

)
(τσ(1))

]
· dE

[(
Rkx

α
γ1

)
(t2)
(
Rkx

α
γ2

)
(τσ(2))

] · · ·dE
[(

Rkx
α
γ1

)
(tm1)

(
Rkx

α
γ2

)
(τσ(m1))

]
=

1∫
0

1∫
0

· · ·
1∫

0

dE
[(

Rkx
α
γ1

)
(t1)
(
Rkx

α
γ2

)
(τ1)
]
dE
[(

Rkx
α
γ1

)
(t2)
(
Rkx

α
γ2

)
(τ2)
]

· · ·dE
[(

Rkx
α
γ1

)
(tm1)

(
Rkx

α
γ2

)
(τm1)

]
,

and for any σ ∈ Sm1

1∫
0

t1∫
0

· · ·
tm1−1∫
0

1∫
0

1∫
0

· · ·
1∫

0

dE
[(

Rkx
α
γ1

)
(t1)
(
Rkx

α
γ2

)
(τ1)
]

· dE
[(

Rkx
α
γ1

)
(t2)
(
Rkx

α
γ2

)
(τ2)
] · · ·dE

[(
Rkx

α
γ1

)
(tm1)

(
Rkx

α
γ2

)
(τm1)

]
=

1∫
0

t1∫
0

· · ·
tm1−1∫
0

1∫
0

1∫
0

· · ·
1∫

0

dE
[(

Rkx
α
γ1

)
(tσ (1))

(
Rkx

α
γ2

)
(τ1)
]

· dE
[(

Rkx
α
γ1

)
(tσ (2))

(
Rkx

α
γ2

)
(τ2)
] · · ·dE

[(
Rkx

α
γ1

)
(tσ (m1))

(
Rkx

α
γ2

)
(τm1)

]
,

we find from (6.10) that for each α = 1,2,3,

E
[
TrR Wε,m1

γ1
(Rkx)TrR Wε,m2

γ2
(Rkx)

]
= Tr

(
3∑

α1=1

Eα1 ⊗ Eα1

)m1
1

m1!

×
1∫

0

t1∫
0

· · ·
tm1−1∫
0

1∫
0

1∫
0

· · ·
1∫

0

∑
σ∈Sm1

dE
[(

Rkx
α
γ1

)
(tσ (1))

(
Rkx

α
γ2

)
(τ1)
]

· dE
[(

Rkx
α
γ1

)
(tσ (2))

(
Rkx

α
γ2

)
(τ2)
] · · ·dE

[(
Rkx

α
γ1

)
(tσ (m1))

(
Rkx

α
γ2

)
(τm1)

]
+ Tself

= Tr

(
3∑

α1=1

Eα1 ⊗ Eα1

)m1
1

m1!

×
1∫ 1∫

· · ·
1∫ 1∫ 1∫

· · ·
1∫
dE
[(

Rkx
α
γ1

)
(t1)
(
Rkx

α
γ2

)
(τ1)
]

0 0 0 0 0 0
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· dE
[(

Rkx
α
γ1

)
(t2)
(
Rkx

α
γ2

)
(τ2)
] · · ·dE

[(
Rkx

α
γ1

)
(tm1)

(
Rkx

α
γ2

)
(τm1)

]+ Tself

= Tr

(
3∑

α1=1

Eα1 ⊗ Eα1

)m1
1

m1!E
[(

Rkx
α
γ1

)
(1)
(
Rkx

α
γ2

)
(1)
]m1 + Tself.

Summing up the above argument together with Lebesgue’s convergence theorem guaranteed
by an estimate similar to that in the proof of (2) of Lemma 1, we finally obtain

ICS
(
Fε

0

)= E
[
Fε

0 (Rkx)
]= E

[
2∏

j=1

TrR Wε
γj

(Rkx)

]

= (Tr I )2 +
∞∑

n=1

Tr

(
3∑

α1=1

Eα1 ⊗ Eα1

)n
1

n!E
[(

Rkx
α
γ1

)
(1)
(
Rkx

α
γ2

)
(1)
]n + Tself.

Step 3. Now, noting that an orthonormal basis of su(2) is given by

E1 = 1√
2

[√−1 0

0 −√−1

]
, E2 = 1√

2

[
0 −1

1 0

]
, E3 = 1√

2

[
0

√−1√−1 0

]
,

so that

E1 ⊗ E1 = 1

2

⎡⎢⎣
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎤⎥⎦ , E2 ⊗ E2 = 1

2

⎡⎢⎣
0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

⎤⎥⎦ ,

E3 ⊗ E3 = 1

2

⎡⎢⎣
0 0 0 −1
0 0 −1 0
0 −1 0 0

−1 0 0 0

⎤⎥⎦ ,

we have

3∑
α1=1

Eα1 ⊗ Eα1 = 1

2

⎡⎢⎣
−1 0 0 0
0 1 −2 0
0 −2 1 0
0 0 0 −1

⎤⎥⎦ .

Since the eigenvalues of 2
∑

Eα1 ⊗ Eα1 are −1,−1,−1,3, we obtain

Tr

(
3∑

α1=1

Eα1 ⊗ Eα1

)n

= (−1)n + (−1)n + (−1)n + 3n

2n
.

Consequently, we have
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ICS
(
Fε

0

)= E
[
Fε

0 (Rkx)
]

= (Tr I )2 +
∞∑

n=1

Tr

(
3∑

α1=1

Eα1 ⊗ Eα1

)n
1

n!E
[(

Rkx
α
γ1

)
(1)
(
Rkx

α
γ2

)
(1)
]n + Tself

= 4 +
∞∑

n=1

(−1)n + (−1)n + (−1)n + 3n

2n

1

n!
(

− 1

2
√−1k

L(γ1, γ2)

)n

+ Tself

= 4 +
∞∑

n=1

√−1
n{(−1)n + (−1)n + (−1)n + 3n}

(4k)n

1

n!L(γ1, γ2)
n + Tself

= 3e−√−1L(γ1,γ2)/4k + e3
√−1L(γ1,γ2)/4k + Tself,

where

L(γ1, γ2) = the linking number of loops γ1 and γ2.
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