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Abstract

The starting point of this paper is McMillan�s complete �nite pre�x of an unfolding

that has been obtained from a Petri net or a process algebra expression� The paper

addresses the question of how to obtain the �possibly in�nite� system behaviour

from the complete �nite pre�x� An algorithm is presented to derive from the pre�x

a graph rewriting system that can be used to construct the unfolding� It is shown

how to generate event sequences from the graph rewriting system which is important

for constructing an interactive simulator� Finally it is indicated how the graph

rewriting system yields a transition system that can be used for model checking

and test derivation�

� Introduction

In order to deal with the state explosion problem in validating distributed

systems� many alternatives to the standard interleaving semantics have been

proposed� A large class of them can be classi�ed as partial order semantics� of

which several types of event structures �Win���BC���Lan��	 and occurrence

nets �NPW�
�Eng�
	 are prominent examples� A problem with these models

is that in general recursion is dealt with via a �xed point technique leading

to in�nite structures� whereas one would like to have �nite representations�

especially for computer aided veri�cation�

An interesting direction of research has been initiated by McMillan� originally

for �nite state Petri nets �McM���McM��a�McM��b	� He has presented an
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algorithm that for a given Petri net constructs an initial part of the special oc�

currence net called unfolding or maximal branching process �NPW�
�Eng�
	�

This so�called complete �nite pre�x contains all information on reachable states

and transitions� An important optimization has been de�ned in �ERV�	� In

�LB��	 the complete �nite pre�x approach has been adapted for process alge�

bra �together with an e�cient optimization� for a model similar to occurrence

nets called condition event structures�

If the complete �nite pre�x contains all information on the �possibly in�nite�

system behaviour� how to make use of this information� How can the system

behaviour be recovered from the pre�x in a way that is useful for simulation�

model checking or test derivation� That this question is far from trivial can be

learned from studying �Esp���Gra�	� In this paper we propose an answer by

deriving a graph rewriting system from the complete �nite pre�x� We intend

to use this graph rewriting system as the basis for constructing the complete

unfolding� for simulation� for model checking both branching and linear time

properties� and for test derivation�

The paper is structured as follows� After a short introduction to condition

event structures in section �� we adapt the de�nition of complete �nite pre�x

in section �� In section � we present a graph rewriting system model� and in

section � we show how to derive a graph rewriting system from a complete

�nite pre�x� Section � is for conclusions and further work� Appendix A

addresses some correctness issues� and in Appendix B we show how the so�

called graph transition system can play a role in model checking�

� Condition event structures

In this section we de�ne an event structure model which is very similar to a

type of Petri nets called occurrence nets �NPW�
�Eng�
	� the role of places is

taken by conditions� and there is a binary relation between conditions called

choice� Condition event structures have been de�ned in �LB��	 for modelling

process algebra� and the choice relation is there to model the choice operator

in process algebra� Removing the choice relation from the model yields a

model equivalent to occurrence nets� in fact the results in this paper also hold

for occurrence nets�

De�nition ��� A condition event structure is a ��tuple E � �D� E� �� ��

with�

� D a set of conditions

� E a set of events

� � � D �D� the choice relation �symmetric and irre�exive�

� �� �D � E� � �E �D� the �ow relation �

We adopt some Petri net terminology� a marking is a set of conditions� A

node is either a condition or an event� The preset of a node x� denoted by
�x� is de�ned by

�x � fy � D � E j y � xg� the postset x� is de�ned by x� �
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fy � D � E j x � yg� The initial marking M� is de�ned by fd � D j �d � �g�

De�nition ��� The transitive and re�exive closure of � is denoted by ��
The con�ict relation on nodes� denoted by �� is de�ned by� let x� and x� be

two di�erent nodes� then x� � x� i� there are two nodes y� and y�� such that

y� � x� and y� � x�� with

� either y� and y� are two conditions in the choice relation� i�e� y� � y�
� or y� and y� are two events with �

y� 	 �

y� 
� � �

De�nition ��� A condition event structure is well�formed if the following

properties hold�


� � is anti�symmetric� i�e� x � x
� � x� � x� x � x

�

�� �nite precedence� i�e� for each node x the set fy � E �D j y � xg is �nite

�� no self�con�ict� i�e� for each node x� �x � x�

�� for each event e� �

e 
� � and e
� 
� �

�� for each condition d� j�dj � 


�� for all conditions d� and d�� d� � d� �
�

d� �
�

d� �

A well�formed condition event structure becomes a prime event structure

�Win��	 if we delete the conditions� Similarly as for prime event structures

we de�ne a con�guration as a set of events C that is con�ict�free ��e� e� � C �

�e � e
��� and left�closed ��e � C � e� � e� e

� � C��

Let d be a condition� then we de�ne ��d�� the set of conditions in choice with

d� by ��d� � fd� j d � d�g� Similarly for a set of conditions D� ��D� � fd� j �d �
D � d � d�g�

Suppose we have a condition event structure� with e an event� and M and M �

markings� then we say there is an event transition M
e

��M
� i� �

e � M and

M
� � �M � e�� n ��e� ���e�� �note there are no loops in well�formed condition

event structures��

An event sequence is a sequence of events e� � � � en such that there are mark�

ings M�� � � � � Mn with M�

e����M��� � � �
en���Mn� It can be proven that

fe�� � � � � eng is a con�guration if and only if e� � � � en is an event sequence�

Two nodes x and x� are said to be independent� notation x � x
�� i� �x � x

���
�x� � x� � �x � x

��� If X is a set of conditions� x � X i� �x� � X � x � x
��

A cut is a marking M such that for each pair of di�erent conditions d and d
�

in M holds� d � d
� or d � d�� such that M is maximal �w�r�t� set inclusion��

Theorem ��� Let C be a con�guration and M a cut� De�ne

Cut�C� � �M��C
��n ��C � ���C�� and Conf �M� � fe � E j�d �M � e � dg�

Then� Cut�C� is a cut� Conf �M� is a con�guration� Conf �Cut�C�� � C� and

Cut�Conf �M�� � M � �

The condition event structure model can be used to represent the unfolding

of a system� The unfolding of a system has been described as �a concurrent

version of the usual notion of the unfolding of a loop� �Esp��	� An unfolding

can be constructed from a Petri net� In that case we assume the conditions

are labelled with places of the Petri net� and the events are labelled with

�



Langerak

transitions� Algorithmically an unfolding can be constructed by starting with

conditions labelled with the initial marking of the Petri net� and then repete�

tively adding new events and conditions for transitions that are enabled by

this marking �ERV�	� For a precise de�nition in terms of net homomorphisms

we refer to �Eng�
	�

A similar algorithm has been de�ned for process algebra expressions �LB��	�

in that case the conditions are labelled with a kind of sequential components

similar to the one in �Old�
	� and the events are labelled with action occur�

rences�

Example ��� Consider the process algebra expression �a� stop j b� stop� �
c� stop where j is the parallel operator without synchronization� Then the

unfolding is given in �gure 
� Conditions are indicated by circles and events

by action names� The choice relation is represented by a dotted line� the

�ow relation by arrows� Note that here the unfolding is �nite as there is no

recursion in the process algebra expression� in general an unfolding may be

in�nite� In �gure 
 there is also the Petri net corresponding to the process

algebra expression� according to �Old�
	� Suppose we look at the marking

after transition a has happened� This marking is labelled with the set of

components fstop j� j b� stop � c� stopg� Now this set of components does

not directly correspond to the components of the expression stop j b� stop�
which is the process algebra expression after a� This lack of correspondence is

a nuisance when applying the complete �nite pre�x approach� For this reason

we have de�ned the condition event model� with which it is possible to directly

compute the unfolding� without making the detour via Petri nets and while

avoiding the above problem� �

cba

stop j stop j

a� stop j b� stop j c� stop

stop stop j stop j stop

a b c

b� stop j �c� stopa� stop j �c� stop

Fig� �� Example of a process algebra unfolding and its corresponding Petri net

So we work with labelled condition event structures� condition labels are places

in the case of Petri net unfoldings� and process algebra components in the case

of process algebra unfoldings�

For a Petri net unfolding we can de�ne a mapping St that maps a cut to

a reachable marking of the Petri net �by taking the set of places that the

conditions in the cut are mapped to�� For a process algebra we can de�ne a

mapping St that maps a cut to a process algebra expression �the expression

that can be decomposed into the components of the cut�� In this paper both

a reachable marking and a reachable process algebra expression will be called

a reachable state� So� St�M� is the reachable state of cut M � and it is de�ned

as the set of labels of the conditions in M �

�
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� A complete �nite pre�x for condition event struc�

tures

We recapitulate the complete �nite pre�x approach as originally de�nied by

McMillan for 
�safe Petri nets �McM���McM��a�McM��b	� A complete �nite

pre�x of an unfolding U is an initial part of the unfolding that has the following

two properties�

� for each cut M of U there is a cutM � of the complete �nite pre�x such that

St�M� � St�M ��� so the pre�x contains all reachable states�

� for each cut M with M
e

�� in U there is a cut M � in the pre�x such that

M �
e
�

��� and e and e� are labelled with the same transition or action�

Let e be an event of a condition event structure� then the local con�guration

�e	 is de�ned by �e	 � fe� � Eje� � eg �it is easy to prove that �e	 is indeed a

con�guration�� It is convenient to assume a pseudo�event � for which ��	 � ��

We assume we have a so�called adequate ordering � on the con�gurations of

a condition event structure � one of the properties of this ordering is that

it is well�founded �see �ERV�	 fo details�� The original ordering de�ned by

McMillan was C� � C� � jC�j � jC�j� in �ERV��LB��	 optimizations have

been de�ned that may lead to smaller pre�xes�

De�nition ��� Let U be an unfolding and let � be an adequate order on the

con�gurations of U � An event e is a cut�o� event if U has a local con�guration

�e�	 such that St�Cut��e	�� � St�Cut��e�	�� and �e�	 � �e	� e� is called the

corresponding event of e� �

De�nition ��� Let N be the set of nodes of unfolding U � �D�E� ���� such

that n � N i� no event causally preceding n is a cut�o� event� Then fp�U� is

de�ned by fp�U� � �D 	N� E 	N� �	�N �N�� � 	�N �N�� �

So fp�U� contains all local con�gurations� and stops at cut�o� events since

their local con�guration has been encountered already� The nice result proven

by McMillan �McM��b	� is that this is enough to guarantee completeness� so

fp�U� contains also all non�local con�gurations and in fact is a complete �nite

pre�x of U � In �McM��b	 an algorithm is given that constructs this complete

�nite pre�x directly from the Petri net� This algorithm is easily transformed

into an algorithm that generates the complete �nite pre�x directly from a

process algebra expression �LB��	�

Note that in general an unfolding may have many di�erent complete �nite

pre�xes� we refer to fp�U� as the complete �nite pre�x of U � or shortly as the

�nite pre�x�

Example ��� Consider B � P jb Q with P � a� b�P and Q � c� b� �e�P �

d�Q� where jb is a parallel operator with synchronization on b� similar to the

LOTOS or CSP operator �BB��Hoa��	� Then the �nite pre�x is given in

�gure �� cut�o� events are indicated by putting a box around them� �

�
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a c

b

a e

a

a� b�P jb jb c� b� �e�P � d�Q�

b�P jb jb b� �e�P � d�Q�

a� b�P jb jb e�P
jb d�Q

jb c� b� �e�P � d�Q�b�P jb jba� b�P

jb b�P

a� b�P jb jb a� b�P

b

d

Fig� �� Example of a complete �nite pre�x

Let M be a marking of a condition event structure E � �S�E� ����� De�ne

the successor nodes of M by N � fx � E � S j �y � M � y � xg� De�ne

�E M � �S 	N� E 	N� �	�N �N�� � 	�N �N��� It is easy to check that

�E M is a well�formed condition event structure� We denote �E M by �M if

E is an unfolding� and by �
p
M if E is the �nite pre�x of an unfolding�

If C� and C� are two con�gurations of an unfolding Unf such that St�C�� �

St�C��� then �Cut�C�� and �Cut�C�� are isomorphic� So there is an iso�

morphism IC�

C�
from �Cut�C�� to �Cut�C��� Let e be a cut�o� event� with

corresponding event e�� and let C� � �e�	 and C� � �e	� then we denote IC�

C�
by

Ie� and its inverse function IC�

C�
by I��

e
�

The function I��

e
plays an important role in the proof of the completeness

of the �nite pre�x� which roughly goes as follows� suppose we have some

reachable state S in an unfolding� so there is a cut M in the unfolding with

St�M� � S� Now either Conf �M� does not contain a cut�o� event� so M is

also a cut of the �nite pre�x� Or Conf �M� does contain some cut�o� event e�

but then there is also a cut I��

e
�M� in the pre�x� with St�I��

e
�M�� � St�M��

and I��

e
�M� �M � Repeat this procedure for I��

e
�M�� since v is well�founded

this can only be repeated a �nite number of times� so eventually we arive at

a cut in the �nite pre�x whose state is S�

So what this proof shows is� if M is a cut in the unfolding with Conf �M�

containing one or more cut�o� events� then we can �shift back� M in the

unfolding with the help of I��

e
functions� until we have arrived at a cut M �

with St�M �� � St�M� and where Conf �M �� does not contain any cut�o�

events �so M � is a cut in the �nite pre�x�� We denote M � by Shift�M��

Shift�M� is not necessarily uniquely determined �it may depend on the choice

of the cut�o� events over which the backwards shifting is performed� but that

is not important for us here�

A complete �nite pre�x contains all reachable states and events� in a sense the

�
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complete system behaviour is determined by the complete �nite pre�x� Can

we recover this behaviour from the pre�x� in other words� can we construct an

unfolding from a complete �nite pre�x� This problem will be dealt with in the

next two sections� we will transform the �nite pre�x into a graph rewriting

system that we intend to use as the basis of simulation and model checking�

� A graph rewriting system model

In this section we present a graph rewriting system model which has been

inspired by the model in �QJ��	� where a graph rewriting system formalism is

used to generate in�nite state transition systems�

De�nition ��� A graph X is a tuple �E � C� with E a labelled condition event

structure and C a set of events in E such that for each e � C � e�� � �� We

call C the set of cut�o� events of X� �

When we talk about events� conditions� cuts etc� in a graph� we refer to the

events� conditions� cuts etc� of the condition event structure of that graph� In

a complete �nite pre�x each cut�o� event has a corresponding event e�� but

that need not be the case for a cut�o� event of an arbitrary graph� A cut�o�

event in a graph is simply an event that has been marked as such� and that

has no causal successor events� However� as will be seen in the next section�

graphs can be constructed from complete �nite pre�xes� and each cut�o� in a

graph results from a cut�o� event in that complete �nite pre�x�

An event e can occur in di�erent graphs� If we talk about the local con�g�

uration of e� we need to know what is the graph of this local con�guration�

Therefore we use the subscript of the graph in the notation of the local con�

�guration� e�g� �e	X is the local con�guration of e in graph X�

De�nition ��� A graph rewriting system is a tuple �G�G�� where G is a set

of graphs� and G� � G is the initial graph� under the following constraint�

if e is a cut�o� event in some graph X � G� then there is a graph Y � G such

that St�Cut��e	X�� � St�Cut���	Y ��� �

Recall that ��	Y means the empty con�guration in graph Y � So the constraint

says for each cut C corresponding to a cut�o� event in some graph X there is

another graph Y whose initial cut has the same state as C�

It is convenient� especially for graphical representations� to be able to refer to

graphs via graph names� So we assume some injective mapping name � G �

Names into a set Names of graph names� We often will be sloppy about this

and identify a graph with its name�

If e is a cut�o� event in graph X� we call the cut Cut��e	X� an instantiation

of graph Y if it has the same state as the initial cut of Y � In pictures we use

the convention that we draw a black line through the initial cut of a graph

�and put the graph name close to it�� and we draw a gray line through an

instantiation �and put the graph name of the instantiation close to it��
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Example ��� An example of a graph rewriting system can be found in �gure
�� This graph rewriting system corresponds to the complete �nite pre�x of

�gure �� as will hopefully be clear after the next section� �

a c

b

a e

a

X

X

Y

Y

Y

d

b

a a

b

Y

X

Fig� �� Example of a graph rewriting system

In �gure � there is also a transition system which is given by the next de�nition�

De�nition ��� Let �G�G�� be a graph rewriting system� Then the graph

transition system is the transition system with a set of nodes G �actually the

names of G�� a transitions X � Y i� X contains an instantiation of Y � and

G� the initial node� �

We expect graph transition systems to play an important role in model check�
ing� we will come back to this in section �

So now we have a graph rewriting system� what can we do with it� One use

would be to consider it actually as a rewriting system similar to the one in
�QJ��	 by looking at the graphs as production rules and the graph instantia�

tions as nonterminals� Repetively substituting the graph instantations by the
corresponding graphs would lead to possibly in�nite condition event struc�

tures�

A di�erence with the approach in �QJ��	 is that in our rewriting system it is

possible that in a graph there are events and conditions causally dependent on

conditions in a a graph instantiation� this means that in applying a graph as
a rewriting rule possibly these events have to be identi�ed with some events

in the graph that replaces the instantiation� Look for example at graph X in

�gure �� In graph X� after the instantiation of X there is an event labelled
a� if the instantiation of X is replaced by X� then this a event needs to be

identi�ed with the a event just after the initial cut of X� Note that e�g� the
cut�o� event labelled b is not an event after the instantiation X as it is in

con�ict with the cut�o� event just preceding the instantiation of X�

�
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There are some technical details to be taken care of� but it is possible to use

the graph rewriting system in such a way that it will produce a possibly in�

�nite unfolding� However� this is not the direction we will take� as there is a

more interesting way of looking at a graph rewriting system� We will consider

each graph to be generalization of the concept of state� a graph is in fact a

set of states� namely all the possible cuts or con�gurations in that graph� If

we want to know in what state a system is� we need to know at what graph�

and at what cut or con�guration in that graph� the system is� So a state is a

pair of a graph and a con�guration� and we de�ne transitions between states�

De�nition ��� Let �G�G�� be a graph rewriting system� then we de�ne an

initial state �G�� �� and transitions�

� �X�C�
e

�� �X�C � feg� i�
� C does not contain any cut�o� events from X

� C � feg is con�ict free

� C � feg contains �e	X

� �X�C��� �Y� C n �e	X� i� e � C is a cut�o� event in X with Cut��e	X� an

instantiation of Y �this is an empty transition��

�

Example ��� Let us look at �gure �� Consider the second event labelled a

�the one after the event labelled b� in X� and let us denote by a slight abuse

of notation its local con�guration by fa� c� b� ag� Then we have

�X� fa� c� b� ag�
d

�� �X� fa� c� b� a� dg��� �X� fa� c� b� a� dg n �d	X� � �X� fag�� �

If �X�C� is the result of an empty transition as de�ned above� it need not

always be the case that C is a con�guration of X �when C contains successors

of a cut�o� event inX�� However� we can absorp empty transitions by de�ning

�X�C�
e

�� �Y�D� �where C is a con�guration without cut�o� events of X� and

D is a con�guration without cut�o� events of Y �� i� either �X�C�
e

�� �Y�D� �so

X � Y � or �X�C�
e

�� �X�� C���� � � ��� �Y�D�� In this way we have de�ned

event transitions for a graph rewriting system� In a completely standard way

�see e�g� �Lan��	� event sequences and partial order transitions can be de�ned�

These event transitions are important as the basis for an interactive graphical

simulator� only an initial part of the rest of the system behaviour is shown

to the user� and this initial part is updated in a �lazy� way as the system

run proceeds� The advantage of such a simulator over a simulator based on

interleaving semantics is that the user is not forced to resolve choices that are

there only because of the interleaving semantics�

In the de�nitions of event transitions we made use of con�gurations� so we

only need to refer to events and not to conditions� Therefore it is possible

to remove all conditions in a graph rewriting system� provided we introduce

some way of explicitly denotating graph instantiations� In this way we have

obtained a �nite representation of in�nite event structures� Sofar we have not

�



Langerak

paid any attention to the event identi�ers� which form the subject of appendix

A�

Note that we can consider an �ordinary� interleaving transition system �e�g�

the standard semantics for a process algebra expression� as a special case of

a graph rewriting system� by considering each state as a graph� and each

transition as a cut�o� event�

� Deriving a graph rewriting system from a �nite pre�x

How to construct a graph rewriting system from the �nite pre�x� The initial

graph is easy� this is simply the �nite pre�x with its cut�o� events� For each

cut�o� event e in the �nite pre�x we create a graph �
p
Cut��e�	�� where the

cut�o� events in this graph are those events marked cut�o� in the �nite pre�x�

How about the graphs corresponding to these cut�o� events� If for a cut�o�

event e
�
its local marking is completely contained in the graph� then there is

already a graph corresponding to it� namely �
p
Cut��e�

�
	�� However� this does

not need to be the case� We can have a situation like in �gure �� where a

graph X with a cut�o� event e
�
are schematically represented� Suppose M is

the initial cut of X in the �nite pre�x� Cut��e�	� is not completely in X� We

now want to create a graph for e
�
� where the instantiation of this graph is the

cut along the dotted lines� If we call this cut M
�
� then is not hard to see that

M
�
� Cut�Conf �M� � �e

�
	��

M

M�
X

e�

Cut��e�	


Fig� 	� A cut
o� event inside a graph

So we are looking for a cutM
�

�
for which St�M

�

�
� � St�M

�
� and that is �earlier�

than M
�
�w�r�t� the adequate order ��� Note that M

�
is a cut in �

p
Cut��e�	��

so there is an �earlier� cut with the same state in �Cut��e�
�
	� and this cut is

given by I
��

e� �M
�
��

An example of such a situation can be found in �gure �� Suppose we have

created the graph for e� then St�M� � St�Cut��e�	�� � f�� �g� Check that

St�M
�
� � St�Cut��e�	 � �e

�
	�� � f�� �g� and for M

�

�
� I

��

e� �M
�
� we have

St�M
�

�
� � f�� �g�

Now there is only one thing to take care of� it may be the case that M
�

�
is not

present in the �nite pre�x� This may happen if there is a cut�o� event e
��
in

Conf �M �

�
� �such an event has been baptized a tricky event in �Gra�	�� The

remedy is simply that we then have to shift M
�

�
backwards until it is in the

�nite pre�x� i�e� we have to take Shift�I��

e
�M

�
���


�
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rs

� �

�

v w

	�

� �


 	

� �
Cut��e��

Cut��e��� �

Cut��e���

e�

Fig� �� A Petri net and its �nite pre�x

We have now explained all steps of Algorithm ��
� which takes a �nite pre�x

and returns a graph rewriting system� In this algorithm P � C� G and G�

are global variables� all other variables are local to the �recursive� procedure

Inside graph�M�� which creates possibly new graphs for the cut�o� events

inside a graph with initial cut M �

Algorithm ���

Input� a �nite pre�x P with set of cut�o� events C

Output� a graph rewriting system �G�G��

G� �� �P� C��

G �� fG�g�

Inside graph�Cut���	��

where

process Inside graph�M�

begin

forall cut�o� events e in �
p
M do

M � �� Cut�Conf �M� � �e	��

if not � Y � G � St�Cut���	Y �� � St�M ��

then

M �

�
�� Shift�I��

e
�M ����

C � �� cut�o� events in �
p
M �

�
�

G �� G � f��
p
M �

�
� C ��g�

Inside graph�M �

�
�

end

�

Example ��� Algorithm ��
 transforms the �nite pre�x of �gure � into the

graph rewriting system of �gure �� and the �nite pre�x of �gure � results in

the graph rewriting system of �gure �� The interested reader will �nd that

working out the algorithm for these cases greatly enhances the intuition for
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complete �nite pre�xes and their corresponding graph rewriting systems� �

u
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Fig� � Graph rewriting system corresponding to �gure �

In some cases it is possible to also create an instantiation at Cut��e�	� for a

graph that is instantiated at cut�o� event e� and remove all events causally

dependent on e�� this would be an optimization� and there are several other

possible optimizations� which are a topic of future work�

� Conclusions

We have used the model of condition event structures �LB��	 in which we

can express unfoldings of either Petri nets or process algebra expressions� For

these unfoldings a complete �nite pre�x according to McMillan can be de�ned

�McM��a�ERV��LB��	�

We have de�ned a graph rewriting system model that can be used for pro�

ducing the unfolding� More interestingly� this graph rewriting system can be

seen as a generalisation of a transition system and event sequences can be

derived via the de�nition of event transitions� which may form the basis of

an interactive graphical simulator� We have presented an algorithm for trans�

forming a �nite pre�x into a graph rewriting system� and we have de�ned a

graph transition system�

In appendix A we have indicated how by parameterization of the graph rewrit�

ing system we can take care of the issue of event identi�ers that forms an

important aspect of the correctness proof� Finally in appendix B we have

hinted at how to use the graph transition system as the underlying model

for test derivation and model checking �for both branching and linear time

properties��

The graph transition system may yield a very compact representation of the

system behaviour� However� it is possible to �nd worst case examples in

which the size of the graph rewriting system is exponential in the size of

the complete �nite pre�x� We are currently studying several optimizations�


�
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both for obtaining a smaller pre�x �which may not be anymore complete� but

still produces the complete unfolding via the graph rewriting system� and for

avoiding the explosion in the size of the graph rewriting system� that will be

the subject of a forthcoming paper�
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Appendix A	 event identi�ers and correctness issues

Until now we have been rather vague about the labels of the events in condition

event structures� pre�xes and graph rewriting systems� These event identi�ers

however play an important role in proving the correctness of the approach� In

this section we will sketch the approach for complete �nite pre�xes generated

from process algebra expressions� we conjecture it is possible �and interesting�

to adapt this approach for Petri nets�

Di�erent event identi�ers model di�erent occurrences of actions� We have

shown in �Lan���LB��	 how these event identi�ers can be generated by having

annotations of actions and a slight modi�cation of the standard SOS rules�

We assume that each occurrence of an action in a process algebra expression

is indexed by a unique action index and each process instantiation by a unique

process identi�er� Here we assume action identi�ers to be integers and process

identi�ers to be greek letters� The modi�ed SOS rules yield transitions of the

form
a�e

��� which stands for a transition labelled with action a and event

identi�er e� such an event is also denoted by ae�

Example ��� Let P� be a process expression where P � a�� c��P�� Then

with the modi�ed SOS rules in �LB��	 we can derive the following sequence

of transitions�

P�

a���
����

c���
����P��

a����
�����

c����
�����P��� � � ��

From the expression P� jc Q� where Q � b�� c	�Q� we have �after transitions

with actions a and b� transitions
c���
���� and

c��	
���� synchronize to form a

transition
c������	�
������� � �

When de�ning the cut�o� events of the �nite pre�x we consider as the state

equality criterium �in e�g� St��e	� � St��e�	�� equality of the process algebra

expressions stripped from all process indices� This leads for the expression

P� jc Q� of the previous example to the complete �nite pre�x in �gure �

c�������

� m 
 X

X� m�


bn�am�

c�m��n��

a�� b��

� n 


� n� 


jc b��� c���Q��

jc b���� c����Q���

a��� c���P�� jc

c���P�� jc jc c���Q��

a���� c����P��� jc

Fig� �� Example of parameterization

We want the graph rewriting system that is generated from a complete �nite

pre�x to produce the same event identi�ers as the original process algebra

expression� In order to achieve this we have to parametrize the events and

conditions in a graph� The parameters are introduced at the conditions of

the initial cut of a graph� In �gure  we see the graph corresponding to


�
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the pre�x in the same �gure �the conditions inside that graph have been

deleted� so this graph rewriting system generates a prime event structure��

The parameterization can be obtained by replacing all process indices in a

consistent way by parameters� and introducing at a condition in the initial

cut of a graph the parameter corresponding to the process index of the action

pre�x at that condition�

The initial graph of a graph rewriting system needs to be instantiated with

the appropriate process indices� For instance� the graph rewriting system

corresponding to the complete �nite pre�x in �gure  is �fXg� X��� ����

Theorem ��� Let B be a process algebra� and �G�G�� the graph rewriting

system generated from the complete �nite pre�x of B� Then� � is an event

sequence of B � � is an event sequence of the unfolding of B � � is an event

sequence of �G�G��� �

Note that the involvement with event identities is mainly important for the

proof of the correctness of the approach� in applying this theory one is of�

ten interested in just the action labels� and need not be bothered by event

identi�ers�

Appendix B	 Graph transition systems and model check�

ing

In section � we have de�ned for a graph rewriting system a graph transition

system� which has as nodes the graphs of a graph rewriting system� and tran�

sitions X � Y i� Y is an instantiation in graph X� We can label such a

transition with a set of labelled partial orders� if the instantiation of Y is

reached from the initial cut of X via a labelled partial order p� p is in the

set that labels the transition X � Y � Note that it is possible that there are

di�erent instantiations of Y in X� hence we need a set of partial orders �see

the example in �gure � where there are di�erent instantiations of X in graph

X��

We think that looking at the graph transition system gives an insight in the

structure of a system that is di�cult to obtain from just looking at the com�

plete �nite pre�x� We expect that in addition the graph transition system

might play an important role in validating a system� for instance as the basis

for model checking or test derivation�

One possibility would be to check branching time logics properties in the spirit

of �Esp��	� Let us look at a simple example to get the basic idea� Suppose for

the graph rewriting system in �gure � we want to check whether state f�� �g
is always reachable from state f�� �g� Now as a �rst step we have to know

where in the graph rewriting system these states are� We �nd e�g� that f�� �g
is in a partial order from X to X� and f�� �g is in a partial order from Y to

Y � When all information of this kind is added to the graph transition system

we obtain the system in �gure �� The transition system in this �gure can
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be subjected to standard branching time model checking algorithms based on

labelling states�

Y

f�� �g

f�� �g

X

Z

f�� �g

f�� �g

Fig� �� State information added to a graph transition system

Another approach could be to check linear time temporal properties in the

style of �Wal��	� Then the approach could roughly be the following� First

translate a formula � into an automaton A
��� Now take the synchronization

of A
�� and the system where we only synchronize on the so�called visible ac�

tions �which means we restrict ourselves to stutter�invariant properties� not

including the next operator of linear time logic�� From this synchronization

we construct the complete �nite pre�x and subsequently the graph transition

system� We mark a transition if it is labelled with a partial order containing

an accepting state or transition� now we can use standard algorithms for de�

tecting the presence of a cycle with a marked transition�

Another use of the graph transition system would be to use it as the basis for

test derivation by adapting standard transition tour algorithms in a similar

way as has been done in �UK�	 for a slightly di�erent model�

The bene�t of using the graph transition system is that it is a reduced and

compact transition system� We expect this approach to o�er a better per�

formance �w�r�t� standard interleaving methods� for systems in which there

is a high level of concurrency �e�g� resulting from the existence of parallel

subsystems�� as in such systems the interleaving transition system will be of

exponential size� ofcourse this expectation needs to be con�rmed by experi�

mental results that will be worked at as soon as the implementation of the

approach �that is currently being worked on at the University of Twente� has

been �nished�





