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Abstract

The starting point of this paper is McMillan’s complete finite prefix of an unfolding
that has been obtained from a Petri net or a process algebra expression. The paper
addresses the question of how to obtain the (possibly infinite) system behaviour
from the complete finite prefix. An algorithm is presented to derive from the prefix
a graph rewriting system that can be used to construct the unfolding. It is shown
how to generate event sequences from the graph rewriting system which is important
for constructing an interactive simulator. Finally it is indicated how the graph
rewriting system yields a transition system that can be used for model checking
and test derivation.

1 Introduction

In order to deal with the state explosion problem in validating distributed
systems, many alternatives to the standard interleaving semantics have been
proposed. A large class of them can be classified as partial order semantics, of
which several types of event structures [Win89,BC94,Lan92| and occurrence
nets [NPW81,Eng91] are prominent examples. A problem with these models
is that in general recursion is dealt with via a fixed point technique leading
to infinite structures, whereas one would like to have finite representations,
especially for computer aided verification.

An interesting direction of research has been initiated by McMillan, originally
for finite state Petri nets [McM92,McM95a,McM95b|. He has presented an
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algorithm that for a given Petri net constructs an initial part of the special oc-
currence net called unfolding or maximal branching process [NPW81,Eng91].
This so-called complete finite prefiz contains all information on reachable states
and transitions. An important optimization has been defined in [ERV97]. In
[LB99] the complete finite prefix approach has been adapted for process alge-
bra (together with an efficient optimization) for a model similar to occurrence
nets called condition event structures.

If the complete finite prefix contains all information on the (possibly infinite)
system behaviour, how to make use of this information? How can the system
behaviour be recovered from the prefix in a way that is useful for simulation,
model checking or test derivation? That this question is far from trivial can be
learned from studying [Esp94,Gra97]. In this paper we propose an answer by
deriving a graph rewriting system from the complete finite prefix. We intend
to use this graph rewriting system as the basis for constructing the complete
unfolding, for simulation, for model checking both branching and linear time
properties, and for test derivation.

The paper is structured as follows. After a short introduction to condition
event structures in section 2, we adapt the definition of complete finite prefix
in section 3. In section 4 we present a graph rewriting system model, and in
section 5 we show how to derive a graph rewriting system from a complete
finite prefix. Section 6 is for conclusions and further work. Appendix A
addresses some correctness issues, and in Appendix B we show how the so-
called graph transition system can play a role in model checking.

2 Condition event structures

In this section we define an event structure model which is very similar to a
type of Petri nets called occurrence nets [NPW81,Eng91]; the role of places is
taken by conditions, and there is a binary relation between conditions called
choice. Condition event structures have been defined in [LB99] for modelling
process algebra, and the choice relation is there to model the choice operator
in process algebra. Removing the choice relation from the model yields a
model equivalent to occurrence nets; in fact the results in this paper also hold
for occurrence nets.

Definition 2.1 A condition event structure is a 4-tuple € = (D, E, §, <)
with:

- D a set of conditions

- F a set of events

-4 C D x D, the choice relation (symmetric and irreflexive)

- <C (D x E)U(E x D) the flow relation O

We adopt some Petri net terminology: a marking is a set of conditions. A
node is either a condition or an event. The preset of a node z, denoted by
*r, is defined by *z = {y € DUE | y < x}, the postset x* is defined by x* =
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{y € DUE | x < y}. The initial marking M, is defined by {d € D | *d = 0}.

Definition 2.2 The transitive and reflexive closure of < is denoted by <.
The conflict relation on nodes, denoted by #, is defined by: let x; and x5 be
two different nodes, then x; # x5 iff there are two nodes y; and ys, such that
y1 < x1 and yo < T9, With
- either g, and yy are two conditions in the choice relation, i.e. y; §ys
- or y; and ¥, are two events with *y; N *yy # O

Definition 2.3 A condition event structure is well-formed if the following
properties hold:
1. < is anti-symmetric, i.e. z < 2' A2’ <x = x =2

2. finite precedence, i.e. for each node x the set {y € EUD | y < x} is finite
3. no self-conflict, i.e. for each node z: —(z # )

4. for each event e: *e # () and e® # ()

5. for each condition d: |*d| <1

6. for all conditions d; and ds: difds = °d; = °ds O

A well-formed condition event structure becomes a prime event structure
[Win89] if we delete the conditions. Similarly as for prime event structures
we define a configuration as a set of events C' that is conflict-free (Ve,e' € C':
(e # ¢')) and left-closed (Ve € C : ¢/ <e=¢€ € C).

Let d be a condition, then we define §(d), the set of conditions in choice with
d, by #(d) = {d' | dtd'}. Similarly for a set of conditions D, {(D) = {d' | 3d €
D:dtd'}.

Suppose we have a condition event structure, with e an event, and M and M’
markings, then we say there is an event transition M- M' iff *e C M and
M = (MUe®*)\ (*eUt(*%e)) (note there are no loops in well-formed condition
event structures).

An event sequence is a sequence of events e ...e, such that there are mark-

ings My, ..., M, with My—> M,— ...+ M,. It can be proven that
{e1,...,e,} is a configuration if and only if e; . ..e, is an event sequence.

Two nodes x and z’ are said to be independent, notation z < ', iff =(z < ')A
(2" <x)A=(z # o). If X is a set of conditions, v < X iff Vo' € X : x < 2/.
A cut is a marking M such that for each pair of different conditions d and d’
in M holds: d < d' or d{d', such that M is maximal (w.r.t. set inclusion).

Theorem 2.4 Let C' be a configuration and M a cut. Define

Cut(C) = (MyUC®)\ (*CUL(*C)) and Conf(M) ={e€ E|3d € M : e < d}.
Then: Cut(C) is a cut, Conf(M) is a configuration, Conf(Cut(C)) = C, and
Cut(Conf(M)) = M. O

The condition event structure model can be used to represent the unfolding
of a system. The unfolding of a system has been described as “a concurrent
version of the usual notion of the unfolding of a loop” [Esp94]|. An unfolding
can be constructed from a Petri net. In that case we assume the conditions
are labelled with places of the Petri net, and the events are labelled with
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transitions. Algorithmically an unfolding can be constructed by starting with
conditions labelled with the initial marking of the Petri net, and then repete-
tively adding new events and conditions for transitions that are enabled by
this marking [ERV97]. For a precise definition in terms of net homomorphisms
we refer to [Eng91].

A similar algorithm has been defined for process algebra expressions [LB99];
in that case the conditions are labelled with a kind of sequential components
similar to the one in [Old91], and the events are labelled with action occur-
rences.

Example 2.5 Consider the process algebra expression (a;stop | b;stop) +
c¢;stop where | is the parallel operator without synchronization. Then the
unfolding is given in figure 1. Conditions are indicated by circles and events
by action names. The choice relation is represented by a dotted line, the
flow relation by arrows. Note that here the unfolding is finite as there is no
recursion in the process algebra expression; in general an unfolding may be
infinite. In figure 1 there is also the Petri net corresponding to the process
algebra expression, according to [Old91]. Suppose we look at the marking
after transition a has happened. This marking is labelled with the set of
components {stop |, |b;stop + ¢;stop}. Now this set of components does
not directly correspond to the components of the expression stop | b; stop,
which is the process algebra expression after a. This lack of correspondence is
a nuisance when applying the complete finite prefix approach. For this reason
we have defined the condition event model, with which it is possible to directly
compute the unfolding, without making the detour via Petri nets and while

avoiding the above problem. O
- a; stop| +c; stop b; stop| +c; stop
C\>a§ stop | C|> b; stop| C\Dc; stop
a b X\A
¢ ' ;i
O stop| O stop| QO stop stop | é:)stop\ O stop

Fig. 1. Example of a process algebra unfolding and its corresponding Petri net

So we work with labelled condition event structures: condition labels are places
in the case of Petri net unfoldings, and process algebra components in the case
of process algebra unfoldings.

For a Petri net unfolding we can define a mapping St that maps a cut to
a reachable marking of the Petri net (by taking the set of places that the
conditions in the cut are mapped to). For a process algebra we can define a
mapping St that maps a cut to a process algebra expression (the expression
that can be decomposed into the components of the cut). In this paper both
a reachable marking and a reachable process algebra expression will be called
a reachable state. So: St(M) is the reachable state of cut M, and it is defined
as the set of labels of the conditions in M.
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3 A complete finite prefix for condition event struc-
tures

We recapitulate the complete finite prefix approach as originally definied by
McMillan for 1-safe Petri nets [McM92,McM95a,McM95b]. A complete finite
prefiz of an unfolding U is an initial part of the unfolding that has the following
two properties:

o for each cut M of U there is a cut M’ of the complete finite prefix such that
St(M) = St(M'"), so the prefix contains all reachable states;

o for each cut M with M- in U there is a cut M’ in the prefix such that

M’e—,> and e and ¢’ are labelled with the same transition or action.

Let e be an event of a condition event structure, then the local configuration
le] is defined by [e] = {¢' € Ele’ < e} (it is easy to prove that [e] is indeed a
configuration). It is convenient to assume a pseudo-event L for which [L] = ().
We assume we have a so-called adequate ordering T on the configurations of
a condition event structure ; one of the properties of this ordering is that
it is well-founded (see [ERVI7] fo details). The original ordering defined by
McMillan was C, C Cy < |C4| < |Cy|; in [ERVI7,LB99] optimizations have
been defined that may lead to smaller prefixes.

Definition 3.1 Let U be an unfolding and let — be an adequate order on the
configurations of U. An event e is a cut-off event if U has a local configuration
leg] such that St(Cut([e])) = St(Cut([eo])) and [eo] T [e]; eo is called the
corresponding event of e. a

Definition 3.2 Let N be the set of nodes of unfolding U = (D, E, §, <) such
that n € N iff no event causally preceding n is a cut-off event. Then fp(U) is
defined by fp(U) = (DN N, ENN, tN(N x N), <N(N x N)) O

So fp(U) contains all local configurations, and stops at cut-off events since
their local configuration has been encountered already. The nice result proven
by McMillan [McM95b)) is that this is enough to guarantee completeness, so
fp(U) contains also all non-local configurations and in fact is a complete finite
prefix of U. In [McM95b] an algorithm is given that constructs this complete
finite prefix directly from the Petri net. This algorithm is easily transformed
into an algorithm that generates the complete finite prefix directly from a
process algebra expression [LB99].

Note that in general an unfolding may have many different complete finite
prefixes; we refer to fp(U) as the complete finite prefix of U, or shortly as the
finite prefix.

Example 3.3 Consider B = P |, @ with P = a;b; P and Q = ¢;b;(e; P +
d; Q) where [, is a parallel operator with synchronization on b, similar to the

LOTOS or CSP operator [BB87,Hoa85]. Then the finite prefix is given in
figure 2; cut-off events are indicated by putting a box around them. a
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Cﬁa;b;Plb C\>|bc§ b;(e; P +d; Q)

I {
b; Py Olpb; (e; P+ d; Q)
\ /
;b;PIbb\}th)d;Q
| a ‘ ‘beyP Hdﬂ
£b§P|b %b‘“”?P éle; b; (e; P +d; Q)

Olpb; P

Oa;b; P, Olp a; b; P

Fig. 2. Example of a complete finite prefix

Let M be a marking of a condition event structure & = (S, E, {, <). Define
the successor nodes of M by N ={z € EUS |3dy € M : y < z}. Define
e M =(SNN, ENN, tN(N x N), <N(N x N)). It is easy to check that
fte M is a well-formed condition event structure. We denote o M by {} M if
& is an unfolding, and by 1, M if £ is the finite prefix of an unfolding.

If Cy and Cy are two configurations of an unfolding Unf such that St(Cy) =
St(Cy), then {} Cut(Cy) and ff Cut(Cy) are isomorphic. So there is an iso-
morphism I§;* from f} Cut(Cy) to ft Cut(Cs). Let e be a cut-off event, with
corresponding event eg, and let C) = [ey] and Cy = [e], then we denote Igf by
I, and its inverse function I} by 1.

The function 7! plays an important role in the proof of the completeness
of the finite prefix, which roughly goes as follows: suppose we have some
reachable state S in an unfolding, so there is a cut M in the unfolding with
St(M) = S. Now either Conf (M) does not contain a cut-off event, so M is
also a cut of the finite prefix. Or Conf (M) does contain some cut-off event e,
but then there is also a cut I, '(M) in the prefix, with St(I;'(M)) = St(M),
and I '(M) C M. Repeat this procedure for I} (M), since C is well-founded
this can only be repeated a finite number of times, so eventually we arive at
a cut in the finite prefix whose state is S.

So what this proof shows is: if M is a cut in the unfolding with Conf (M)
containing one or more cut-off events, then we can “shift back” M in the
unfolding with the help of I;! functions, until we have arrived at a cut M’
with St(M') = St(M) and where Conf(M') does not contain any cut-off
events (so M’ is a cut in the finite prefix). We denote M’ by Shift(M);
Shift(M) is not necessarily uniquely determined (it may depend on the choice
of the cut-off events over which the backwards shifting is performed) but that
is not important for us here.

A complete finite prefix contains all reachable states and events; in a sense the
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complete system behaviour is determined by the complete finite prefix. Can
we recover this behaviour from the prefix, in other words: can we construct an
unfolding from a complete finite prefix? This problem will be dealt with in the
next two sections: we will transform the finite prefix into a graph rewriting
system that we intend to use as the basis of simulation and model checking.

4 A graph rewriting system model

In this section we present a graph rewriting system model which has been
inspired by the model in [QJ96], where a graph rewriting system formalism is
used to generate infinite state transition systems.

Definition 4.1 A graph X is a tuple (£,C) with £ a labelled condition event
structure and C a set of events in &€ such that for each e € C : e*® = (). We
call C the set of cut-off events of X. O

When we talk about events, conditions, cuts etc. in a graph, we refer to the
events, conditions, cuts etc. of the condition event structure of that graph. In
a complete finite prefix each cut-off event has a corresponding event ey, but
that need not be the case for a cut-off event of an arbitrary graph. A cut-off
event in a graph is simply an event that has been marked as such, and that
has no causal successor events. However, as will be seen in the next section,
graphs can be constructed from complete finite prefixes, and each cut-off in a
graph results from a cut-off event in that complete finite prefix.

An event e can occur in different graphs. If we talk about the local config-
uration of e, we need to know what is the graph of this local configuration.
Therefore we use the subscript of the graph in the notation of the local con-
figuration, e.g. [e]x is the local configuration of e in graph X.

Definition 4.2 A graph rewriting system is a tuple (G, Gg) where G is a set
of graphs, and Gy € G is the initial graph, under the following constraint:

if e is a cut-off event in some graph X € G, then there is a graph Y € G such
that St(Cut([e]x)) = St(Cut([L]y)). O

Recall that [ L]y means the empty configuration in graph Y. So the constraint
says for each cut C' corresponding to a cut-off event in some graph X there is
another graph Y whose initial cut has the same state as C'.

It is convenient, especially for graphical representations, to be able to refer to
graphs via graph names. So we assume some injective mapping name : G —
Names into a set Names of graph names. We often will be sloppy about this
and identify a graph with its name.

If e is a cut-off event in graph X, we call the cut Cut([e]x) an instantiation
of graph Y if it has the same state as the initial cut of Y. In pictures we use
the convention that we draw a black line through the initial cut of a graph
(and put the graph name close to it), and we draw a gray line through an
instantiation (and put the graph name of the instantiation close to it).
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Example 4.3 An example of a graph rewriting system can be found in figure
3. This graph rewriting system corresponds to the complete finite prefix of
figure 2, as will hopefully be clear after the next section. a

Fig. 3. Example of a graph rewriting system

In figure 3 there is also a transition system which is given by the next definition.

Definition 4.4 Let (G,Gy) be a graph rewriting system. Then the graph
transition system is the transition system with a set of nodes G (actually the
names of G), a transitions X — Y iff X contains an instantiation of Y, and
Gy the initial node. O

We expect graph transition systems to play an important role in model check-
ing; we will come back to this in section 7.

So now we have a graph rewriting system; what can we do with it? One use
would be to consider it actually as a rewriting system similar to the one in
[QJ96] by looking at the graphs as production rules and the graph instantia-
tions as nonterminals. Repetively substituting the graph instantations by the
corresponding graphs would lead to possibly infinite condition event struc-
tures.

A difference with the approach in [QJ96] is that in our rewriting system it is
possible that in a graph there are events and conditions causally dependent on
conditions in a a graph instantiation; this means that in applying a graph as
a rewriting rule possibly these events have to be identified with some events
in the graph that replaces the instantiation. Look for example at graph X in
figure 3. In graph X, after the instantiation of X there is an event labelled
a; if the instantiation of X is replaced by X, then this a event needs to be
identified with the a event just after the initial cut of X. Note that e.g. the
cut-off event labelled b is not an event after the instantiation X as it is in
conflict with the cut-off event just preceding the instantiation of X.
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There are some technical details to be taken care of, but it is possible to use
the graph rewriting system in such a way that it will produce a possibly in-
finite unfolding. However, this is not the direction we will take, as there is a
more interesting way of looking at a graph rewriting system. We will consider
each graph to be generalization of the concept of state: a graph is in fact a
set of states, namely all the possible cuts or configurations in that graph. If
we want to know in what state a system is, we need to know at what graph,
and at what cut or configuration in that graph, the system is. So a state is a
pair of a graph and a configuration, and we define transitions between states:

Definition 4.5 Let (G,Gy) be a graph rewriting system, then we define an
initial state (Gy, () and transitions:

« (X,0)5 (X,CU{e}) iff
- (' does not contain any cut-off events from X
- C'U{e} is conflict free
- C'U{e} contains [e]y
¢ (X,0)— (Y,C\ [e]x) iff e € C is a cut-off event in X with Cut([e]y) an
instantiation of Y (this is an empty transition).

O

Example 4.6 Let us look at figure 3. Consider the second event labelled a
(the one after the event labelled b) in X, and let us denote by a slight abuse
of notation its local configuration by {a, ¢, b,a}. Then we have

(X, {a,c,b, a})i> (X, {a,c,b,a,d})— (X, {a,c,b,a,d} \ [dx) = (X, {a}). O

If (X,C) is the result of an empty transition as defined above, it need not
always be the case that C' is a configuration of X (when C' contains successors
of a cut-off event in X). However, we can absorp empty transitions by defining
(X,C)—= (Y, D) (where C is a configuration without cut-off events of X, and
D is a configuration without cut-off events of Y), iff either (X, C')-<+ (Y, D) (so
X =Y)or (X,0)%(X,,0)— ...— (Y, D). In this way we have defined
event transitions for a graph rewriting system. In a completely standard way
(see e.g. [Lan92]) event sequences and partial order transitions can be defined.
These event transitions are important as the basis for an interactive graphical
simulator: only an initial part of the rest of the system behaviour is shown
to the user, and this initial part is updated in a “lazy” way as the system
run proceeds. The advantage of such a simulator over a simulator based on
interleaving semantics is that the user is not forced to resolve choices that are
there only because of the interleaving semantics.

In the definitions of event transitions we made use of configurations, so we
only need to refer to events and not to conditions. Therefore it is possible
to remove all conditions in a graph rewriting system, provided we introduce
some way of explicitly denotating graph instantiations. In this way we have
obtained a finite representation of infinite event structures. Sofar we have not
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paid any attention to the event identifiers, which form the subject of appendix

A.

Note that we can consider an “ordinary” interleaving transition system (e.g.
the standard semantics for a process algebra expression) as a special case of
a graph rewriting system, by considering each state as a graph, and each
transition as a cut-off event.

5 Deriving a graph rewriting system from a finite prefix

How to construct a graph rewriting system from the finite prefix? The initial
graph is easy: this is simply the finite prefix with its cut-off events. For each
cut-off event e in the finite prefix we create a graph {1, Cut([eo]), where the
cut-off events in this graph are those events marked cut-off in the finite prefix.
How about the graphs corresponding to these cut-off events? If for a cut-off
event e’ its local marking is completely contained in the graph, then there is
already a graph corresponding to it, namely {, Cut([ep]). However, this does
not need to be the case. We can have a situation like in figure 4, where a
graph X with a cut-off event e’ are schematically represented. Suppose M is
the initial cut of X in the finite prefix; Cut([¢]) is not completely in X. We
now want to create a graph for e/, where the instantiation of this graph is the
cut along the dotted lines. If we call this cut M’, then is not hard to see that
M'" = Cut(Conf (M) U[e']).

Cut([e’])

Fig. 4. A cut-off event inside a graph

So we are looking for a cut M for which St(Mg) = St(M') and that is “earlier”
than M’ (w.r.t. the adequate order C). Note that M' is a cut in f, Cut([¢']),
so there is an “earlier” cut with the same state in 1} Cut([ep], and this cut is
given by I/'(M').

An example of such a situation can be found in figure 5. Suppose we have
created the graph for e, then St(M) = St(Cut([eo])) = {3,4}. Check that
St(M") = St(Cut([eo] U [€])) = {2,3}, and for Mj = I,'(M') we have
St(M}) ={2,3}.

Now there is only one thing to take care of: it may be the case that M is not
present in the finite prefix. This may happen if there is a cut-off event e” in
Conf (M) (such an event has been baptized a tricky event in [Gra97]). The
remedy is simply that we then have to shift M} backwards until it is in the
finite prefix, i.e. we have to take Shift(1;'(M')).
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Fig. 5. A Petri net and its finite prefix

We have now explained all steps of Algorithm 5.1, which takes a finite prefix
and returns a graph rewriting system. In this algorithm P, C, G and G
are global variables; all other variables are local to the (recursive) procedure
Inside_graph (M), which creates possibly new graphs for the cut-off events
inside a graph with initial cut M.

Algorithm 5.1
Input: a finite prefix P with set of cut-off events C
Output: a graph rewriting system (G, Gy)

GO = (Pa C)’
G :={Goy};
Inside_graph(Cut([L]))

where

process Inside_graph(M)
begin
forall cut-off events e in {}, M do
M'":= Cut(Conf (M) U [e]);
ifnot 3Y € G : St(Cut([L]y)) = St(M')
then
My = Shift(I7 (M)
C' := cut-off events in 1, M;
G = GU{(, M}, C)}:
Inside_graph (M)
end
O

Example 5.2 Algorithm 5.1 transforms the finite prefix of figure 2 into the
graph rewriting system of figure 3, and the finite prefix of figure 5 results in
the graph rewriting system of figure 6. The interested reader will find that
working out the algorithm for these cases greatly enhances the intuition for
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complete finite prefixes and their corresponding graph rewriting systems. O

O

.3\ /4. Y

t

Fig. 6. Graph rewriting system corresponding to figure 5

In some cases it is possible to also create an instantiation at Cut([ey]) for a
graph that is instantiated at cut-off event e, and remove all events causally
dependent on egy; this would be an optimization, and there are several other
possible optimizations, which are a topic of future work.

6 Conclusions

We have used the model of condition event structures [LB99] in which we
can express unfoldings of either Petri nets or process algebra expressions. For
these unfoldings a complete finite prefix according to McMillan can be defined
[McM95a,ERV97,1L.B99].

We have defined a graph rewriting system model that can be used for pro-
ducing the unfolding. More interestingly, this graph rewriting system can be
seen as a generalisation of a transition system and event sequences can be
derived via the definition of event transitions, which may form the basis of
an interactive graphical simulator. We have presented an algorithm for trans-
forming a finite prefix into a graph rewriting system, and we have defined a
graph transition system.

In appendix A we have indicated how by parameterization of the graph rewrit-
ing system we can take care of the issue of event identifiers that forms an
important aspect of the correctness proof. Finally in appendix B we have
hinted at how to use the graph transition system as the underlying model
for test derivation and model checking (for both branching and linear time
properties).

The graph transition system may yield a very compact representation of the
system behaviour. However, it is possible to find worst case examples in
which the size of the graph rewriting system is exponential in the size of
the complete finite prefix. We are currently studying several optimizations,
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both for obtaining a smaller prefix (which may not be anymore complete, but
still produces the complete unfolding via the graph rewriting system) and for
avoiding the explosion in the size of the graph rewriting system, that will be
the subject of a forthcoming paper.
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Appendix A: event identifiers and correctness issues

Until now we have been rather vague about the labels of the events in condition
event structures, prefixes and graph rewriting systems. These event identifiers
however play an important role in proving the correctness of the approach. In
this section we will sketch the approach for complete finite prefixes generated
from process algebra expressions; we conjecture it is possible (and interesting)
to adapt this approach for Petri nets.

Different event identifiers model different occurrences of actions. We have
shown in [Lan92,L.B99] how these event identifiers can be generated by having
annotations of actions and a slight modification of the standard SOS rules.
We assume that each occurrence of an action in a process algebra expression
is indexed by a unique action index and each process instantiation by a unique
process identifier. Here we assume action identifiers to be integers and process
identifiers to be greek letters. The modified SOS rules yield transitions of the
form —<s which stands for a transition labelled with action @ and event
identifier e; such an event is also denoted by a,.

Example 6.1 Let P, be a process expression where P = a;;c3; P,. Then
with the modified SOS rules in [LB99] we can derive the following sequence
of transitions:
P a,al . c,a3 a,apl c,a¢3\

@ 7 7 g 7 ? Do -+ -
From the expression P, |. Q3 where ) = by; c4; Qy we have (after transitions

. : . a3 64 :
with actions ¢ and b) transitions ——» and o, synchronize to form a

(3,584
transition &) O

When defining the cut-off events of the finite prefix we consider as the state
equality criterium (in e.g. St([e]) = St([eo])) equality of the process algebra
expressions stripped from all process indices. This leads for the expression
P, |c Qs of the previous example to the complete finite prefix in figure 7.

C\Daal;ca& ao |c C|>|cbﬁ’2;cﬂ4; Q,Bl/) -( m ) ( n FX
Qa1 ba2 l l

A1

écoﬁ Pagle Olccpa; Qpy \/

P

(mg) (nyp) X

Gag1; Cags; Page B e bay2; Capa; Qpyy

Fig. 7. Example of parameterization

We want the graph rewriting system that is generated from a complete finite
prefix to produce the same event identifiers as the original process algebra
expression. In order to achieve this we have to parametrize the events and
conditions in a graph. The parameters are introduced at the conditions of
the initial cut of a graph. In figure 7 we see the graph corresponding to
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the prefix in the same figure (the conditions inside that graph have been
deleted, so this graph rewriting system generates a prime event structure).
The parameterization can be obtained by replacing all process indices in a
consistent way by parameters, and introducing at a condition in the initial
cut of a graph the parameter corresponding to the process index of the action
prefix at that condition.

The initial graph of a graph rewriting system needs to be instantiated with
the appropriate process indices. For instance, the graph rewriting system
corresponding to the complete finite prefix in figure 7 is ({ X}, X («, 3)).

Theorem 6.2 Let B be a process algebra, and (G, Gy) the graph rewriting
system generated from the complete finite prefix of B. Then: ¢ is an event
sequence of B < o is an event sequence of the unfolding of B < ¢ is an event
sequence of (G, Gyp). O

Note that the involvement with event identities is mainly important for the
proof of the correctness of the approach; in applying this theory one is of-
ten interested in just the action labels, and need not be bothered by event
identifiers.

Appendix B: Graph transition systems and model check-
ing

In section 4 we have defined for a graph rewriting system a graph transition
system, which has as nodes the graphs of a graph rewriting system, and tran-
sitions X — Y iff YV is an instantiation in graph X. We can label such a
transition with a set of labelled partial orders: if the instantiation of Y is
reached from the initial cut of X via a labelled partial order p, p is in the
set that labels the transition X — Y. Note that it is possible that there are
different instantiations of Y in X, hence we need a set of partial orders (see
the example in figure 6 where there are different instantiations of X in graph
X).

We think that looking at the graph transition system gives an insight in the
structure of a system that is difficult to obtain from just looking at the com-
plete finite prefix. We expect that in addition the graph transition system
might play an important role in validating a system, for instance as the basis
for model checking or test derivation.

One possibility would be to check branching time logics properties in the spirit
of [Esp94]. Let us look at a simple example to get the basic idea. Suppose for
the graph rewriting system in figure 6 we want to check whether state {4, 5}
is always reachable from state {2,3}. Now as a first step we have to know
where in the graph rewriting system these states are. We find e.g. that {2, 3}
is in a partial order from X to X, and {4,5} is in a partial order from Y to
Y. When all information of this kind is added to the graph transition system
we obtain the system in figure 8. The transition system in this figure can
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be subjected to standard branching time model checking algorithms based on

labelling states.
{2, 3}\
X
- {4,5)

Y {15}

Fig. 8. State information added to a graph transition system

Another approach could be to check linear time temporal properties in the
style of [Wal98|. Then the approach could roughly be the following. First
translate a formula ¢ into an automaton A_4. Now take the synchronization
of A-4 and the system where we only synchronize on the so-called wisible ac-
tions (which means we restrict ourselves to stutter-invariant properties, not
including the nezt operator of linear time logic). From this synchronization
we construct the complete finite prefix and subsequently the graph transition
system. We mark a transition if it is labelled with a partial order containing
an accepting state or transition; now we can use standard algorithms for de-
tecting the presence of a cycle with a marked transition.

Another use of the graph transition system would be to use it as the basis for
test derivation by adapting standard transition tour algorithms in a similar
way as has been done in [UK97] for a slightly different model.

The benefit of using the graph transition system is that it is a reduced and
compact transition system. We expect this approach to offer a better per-
formance (w.r.t. standard interleaving methods) for systems in which there
is a high level of concurrency (e.g. resulting from the existence of parallel
subsystems), as in such systems the interleaving transition system will be of
exponential size; ofcourse this expectation needs to be confirmed by experi-
mental results that will be worked at as soon as the implementation of the

approach (that is currently being worked on at the University of Twente) has
been finished.
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