Review

Cytochrome c oxidase: Intermediates of the catalytic cycle and their energy-coupled interconversion

Alexander A. Konstantinov *

A.N. Belozersky Institute, Moscow State University, Moscow 119991, Russia

A R T I C L E I N F O

Article history:
Received 2 August 2011
Revised 23 August 2011
Accepted 24 August 2011
Available online 30 August 2011

Edited by Miguel Teixeira and Ricardo O. Louro

Keywords:
Cytochrome oxidase
Catalytic cycle
Oxygen intermediate
Proton pumping
Time-resolved study

A B S T R A C T

Several issues relevant to the current studies of cytochrome c oxidase catalytic mechanism are discussed. The following points are raised. (1) The terminology currently used to describe the catalytic cycle of cytochrome oxidase is outdated and rather confusing. Presumably, it would be revised so as to share nomenclature of the intermediates with other oxygen-reactive heme enzymes like P450 or peroxidases. (2) A “catalytic cycle” of cytochrome oxidase involving complete reduction of the enzyme by 4 electrons followed by oxidation by O2 is a chimera composed artificially from two partial reactions, reductive and oxidative phases, that never operate together as a true multi-turnover catalytic cycle. The 4e- reduction–oxidation cycle would not serve a paradigm for oxygen reduction mechanism and protonmotive function of cytochrome oxidase. (3) The foremost role of the K-proton channel in the catalytic cycle may consist in securing faultless delivery of protons for heterolytic O–O bond cleavage in the oxygen-reducing site, minimizing the danger of homolytic scission reaction route. (4) Protonmotive mechanism of cytochrome oxidase may vary notably for the different single-electron steps in the catalytic cycle.

© 2011 Federation of European Biochemical Societies. Published by Elsevier B.V.

Open access under CC BY-NC-ND license.

1. Introduction

Cytochrome c oxidase (COX) is a terminal enzyme of the respiratory chain of mitochondria and many bacteria and a key enzyme of aerobic respiration. The enzyme is plugged through the coupling membrane of mitochondria or bacteria and catalyzes reduction of molecular oxygen to water. The free energy of the reaction is transduced to transmembrane difference of proton electrochemical potential, ΔμH⁺:

\[4\text{cyt}^2+ + O_2 + 8H_\text{in} = 4\text{cyt}^3+ + 2H_2O + 4H_\text{out}^+ + 8\text{e}^- \quad \text{(1)} \]

where 8e⁻ denotes net translocation of 8 positive charges across the coupling membrane from the inner negatively charged (N) to the outer positively charged (P) aqueous phase. Four charges cross the membrane because of anisotropic (vectorial) chemistry of the process, as the 4 electrons coming from cytochrome c at the outer P-side of the membrane combine with four “chemical” protons taken up from the inner N-aqueous phase in order to reduce O2 to 2H2O. Four charges more are translocated from the N- to the P-side of the membrane by virtue of proton pumping coupled to the reaction chemistry. In some bacterial oxidases the number of pumped protons (and hence the overall number of charges translocated) may be less than in the mitochondrial cytochrome c oxidase and its bacterial homologues.

The enzyme has been studied in great detail (see [1–4] for excellent recent reviews) and the protonmotive function of cytochrome oxidase with its vectorial chemistry coupled to proton pumping became a model paradigm in the studies of the molecular mechanism of energy transduction by the membrane-bound redox enzymes. In order to understand how COX conserves free energy of O2 reduction for generation of ΔμH⁺, it is important to resolve the complex catalytic cycle of the enzyme into intermediate steps and to explore the molecular mechanism of energy transduction at each of the steps.

Cytochrome c oxidase contains 4 redox-active metal centers. The electron transfer sequence can be described by a simple scheme:

\[\text{cyt}^2+ \rightarrow \text{Cu}_{A}^2+ \rightarrow \text{heme}^+ \rightarrow \text{heme}^2+ \rightarrow \text{Cu}_{B} \rightarrow O_2 \quad \text{(2)} \]

where heme a3 iron and “invisible” ion of CuB located within ~4.5 Å from each other form a dioxygen reducing site, often referred as “binuclear center” (BNC). In this center, heme iron serves primarily as an anchor oxygen during O2 reduction as well as an immediate donor of the 1st, 3rd and 4th electrons to the bound O2, whereas

Abbreviations: COX, cytochrome oxidase; PLS, proton loading site; ET, electron transfer; P- and N-phases, positively and negatively charged aqueous phases separated by the coupling membrane; Subscripts: bt, ts and pd, numbering of the residues in COX from bovine heart, Rhodobacter sphaeroides and Paracoccus denitrificans, respectively

* Fax: +7 095 939 31 81
E-mail addresses: konst@genebee.msu.su, konst1949@gmail.com
CuB operates as a redox-regulated gate for passage of oxygen dissolved in the membrane into the heme a_3/CuB cavity, and also serves as an acceptor for the OH$^-$/H$_2$O formed upon heterolytic splitting of the bound peroxide. This review goes briefly over a few selected issues in the current studies of the cytochrome oxidase mechanism which seem important to me.

2. Catalytic cycle intermediates

A catalytic cycle of cytochrome oxidase is outlined in Fig. 1. To begin with, some comments are due regarding the terminology.

2.1. Nomenclature of the intermediates

The set of the names and abbreviations currently used to denote the catalytic intermediates of COX is regrettfully outdated although still retained “for historical reasons”, which may be very confusing for a reader who is not in the picture of the history of the COX studies. I remember how Antonio Xavier complained to me about illogical system of abbreviations used in the cytochrome oxidase literature. A description of the catalytic cycle of COX in the current literature may look like following:

$$
O \rightarrow R^2 \rightarrow A_M \rightarrow P_M \rightarrow F \rightarrow O \hspace{1cm} (3)
$$

or

$$
O \rightarrow R^4 \rightarrow A_R \rightarrow P_R \rightarrow F \rightarrow O \hspace{1cm} (4)
$$

for the reactions passing via the 2- (R^2) and 4-electron reduced states (R^4), respectively. There are at least two apparent flaws inherent in the terminology.

First, while O, R, P, F are single-letter abbreviations for trivial names of different redox states (Oxidized, Reduced, Peroxy, Ferryl, respectively), the A denoting the oxygenated complex of ferrous heme a_3 is borrowed from the intermediate series A, B and A, C described by Chance and coworkers long ago [5]. Hence, A is obviously an alien in the sequences (3) and (4). (A recent attempt to correct the situation by re-interpreting A as an abbreviation for Ad-duct [6] is appreciated!). An abbreviation Oxy is used sometimes to denote the oxycomplex but it contains 3 letters while O is already in use for the oxidized form. It is then noted, that the oxycomplex of heme a_3^{2+} is actually a resonance mixture [ferrous-Oxy \leftrightarrow ferric-Superoxo], where the ferric-superoxo state is the dominating species ([7–10]). Therefore, an abbreviation S can be offered to replace A in description of COX catalytic cycle (Fig. 1).

Second, the abbreviation P (peroxy) still used to denote the compounds which are not at all peroxo as believed some 30 years ago [5,11] is fully outdated and misleading, which is further aggravated by the fact that the two “peroxy” intermediates “P$_M$” and “P$_R$” are at different redox levels of the binuclear center. As a matter of fact, the intermediates “P$_M$” and F formed after cleavage of the O–O bond in the ferric-peroxy state of COX, are equivalent to the ferryl-oxo Compounds I and II of peroxides, respectively [4,9,12], while “P$_R$” is simply an underprotonated form of F (Compound II), rather than a homologue of “P$_M$” (Compound I). Abbreviations F$_I$ and F$_II$ may be suggested for the two consecutive Ferryl states of heme a_3 [12,13], where the subscripts I and II

![Fig. 1. Catalytic cycle of cytochrome c oxidase. The cycle going through the 2 electron reduced state is modified from the schemes in [12,61]. The intermediates at the peroxo level of heme a_3 (P, ferric-hydroperoxy, and P$_0$, ferric-dihydroperoxy) have not yet been observed experimentally, hence shown in dotted boxes. They are homologous to the intermediates of P450 and peroxides [7,20,108] and are considered in theoretical models of the O–O bond splitting in cytochrome oxidase [9,18,19,109]. Ferric-hydroperoxy complex of heme a_3 has been trapped very recently during catalytic turnover of synthetic model of COX at low temperatures [48]. The singly-reduced R^1 state as well as the unprotonated ferric-peroxo intermediate (Fe$^{3+}$–O–O$^-$) formed on a way from S to P have been omitted for simplicity. The two internal protons required for generation of P$_0$, and heterolytic cleavage of the O–O bond may be borrowed from the binuclear center terminus of the K-proton channel via the water molecule(s) inside the heme cavity that equilibrate protonically with the K-channel via the OH group of Tyr244$_{A}$ [9,12,55,61] (see the text). These protons are denoted as H$_{acid}$ to distinguish them from the protons taken up all the way from the N-bulk aqueous phase (H$_{bulk}$). Description of the proton pumping events in the euoxudase half of the catalytic cycle is complicated by existence of multiple forms of the oxidized and singly-reduced forms of the enzyme, with differences among them not yet understood (cf. section 3.1). Therefore, working out in detail the individual proton pumping steps in this part of the cycle would be premature (see [1,4] for possible mechanisms).]
indicate homology of the two ferryl intermediates to the compounds I and II of peroxidases as well as the order of their appearance in the catalytic cycle of COX (Fig. 1). Accordingly, a subscript 0 is added to P in case of the ferric-dihydroperoxy complex of heme a3 to emphasize homology of the intermediate to Compound 0 of peroxidases formed transiently upon H2O2 binding with the ferric heme iron. The catalytic cycle passing through the 2e−-reduced state may then be depicted, omitting some details, by a scheme:

\[
O^{1}\text{st}e^{-} \rightarrow R^{2} \rightarrow R^{2-} S \rightarrow (P_{0}) \rightarrow F_{1} \rightarrow F_{4}^{3}\text{rd}e^{-} \rightarrow O
\]

(5)

2.2. The catalytic cycles running via the 2e− and 4e−-reduced state of COX

As noted above, there are two kinds of cytochrome oxidase catalytic cycle commonly considered in the literature in which the enzyme passes through the 4e−- or 2e−-reduced state. Under anaerobic conditions, the oxidized enzyme can be fully reduced by four electrons (O + 4e− → R4) with a strong chemical reductant like dithionite in vitro or, in vivo, by the low-potential respiratory substrates in anoxic tissues, and the fully-reduced enzyme can be oxidized by O2 via a number of intermediates back to the oxidized state (R4 → A0 → P0 → F → O). These two half-reactions can be put together on paper to form a cycle (Eq. (4)), composed of the reductive and oxidative phases. However, such a cycle is in fact no more than a chimera, an artificial sum of two partial reactions, and is not catalytic. That is, under no realistic conditions can it run multiple turnovers on a steady-state basis, which is a compulsory requirement for catalysis. In the respiratory chain, COX receives electrons from cytochrome c one by one, and electron supply from the cytochrome chain is much slower (say, 10 s−1 or less) than oxidation of the binuclear site by O2 (k, > 108 M−1 s−1, i.e. at least 102 s−1 at O2 concentration as low as 1 μM). Therefore under aerobic conditions, as soon as COX receives the first two electrons it will be immediately oxidized by O2 to Compound I (F1, “Pm−”) before any further reduction of the enzyme can occur. Hence, “the fully reduced enzyme is, as such, a very improbable state during turnover under physiological conditions” [4].

At the same time, oxidation of the fully reduced COX by oxygen followed by various time-resolved measurements (absorption, EPR, RR and FTIR spectroscopy of the enzyme, proton uptake/release, electrometric measurements of charge translocation across the membrane etc.) is a convenient and powerful experimental tool, amply used in the studies of the dioxygen reduction mechanism (reviewed in ref. [4, 14, 15]). However, since the mechanism of the O−O bond cleavage when starting from the fully reduced state is not the same as during oxidation of the two-electron reduced form, the intermediates formed during oxidation of the fully reduced COX (at least some of them, like “Pm−”) may not be identical to the intermediates involved in the normal catalytic cycle (cf. [16]), and discussion of these results is minimized in this paper ex proposito.

Fig. 1 outlines a catalytic cycle passing through the 2e−-reduced state (Eq. (3)), which may be more or less relevant to physiological conditions. Whereas the artificial cycle through the fully reduced state (Eq. (4)) contains distinct phases of reduction and oxidation, it is not the case with the cycle going through the 2e− reduced state. It is difficult to understand why reduction of COX by the 3rd and 4th electrons would be referred as an oxidative phase as often found in the literature (e.g., [17]). At the same time, the two halves of the cycle in Fig. 1 represent two easily recognizable reactions found in P450s and peroxidases.

In the first half, the oxidized enzyme receives sequentially 2 electrons from cytochrome c which enter eventually the oxygen-reducing site. Oxygen pathway form the hydrophobic membrane milieu to the intraprotein heme a3 cavity lies through a special oxygen channel which is plugged up at the end by Cux 5. Molecular oxygen does not react with the oxidized copper, Cu(I), but readily binds Cu(I). Therefore, reduction of Cux by one of the first two electrons received by the BNC opens a gate for O2 passage from the oxygen channel, via transient weak binding to Cux and into the heme cavity, where it is anchored finally by heme a3++ and a ferric-superoxo complex (S) is formed. Subsequently Cux+ will donate its electron together with a proton from a near by water molecule [9, 12, 18, 19] to the Fe(III)-superoxo complex S of heme a3 reducing it to Fe(III)-hydroperoxy state, P, analogous to the iron-hydroperoxide intermediate of P450 [7, 20], and addition of the second proton converts P to P0. The part of the cycle from O to P0 may be denoted as “euoxidase” phase of the cycle [12] because it includes 2e− reduction of the enzyme followed by its 2e− oxidation by molecular oxygen to (bound) H2O2, which is a typical oxidation reaction in enzymology.

Subsequent events follow a pattern typical of peroxidase reaction. As soon as the second proton is added to Fe(III)-hydroperoxy complex, the O−O bond in the unstable dihydroperoxy intermediate, Fe(III)–O–OH2 is cleaved heterolytically [9, 12, 18, 19]. The distal oxygen atom cleaves off with 2 extra electrons and 2 protons and forms the first H2O molecule which can coordinate to CuB5+ (e.g., as OH−) [1] or may make a hydrogen bond to Tyr244a [9, 21]. The second oxygen atom (oxene) that is an extremely strong oxidant remains tightly bound to heme a3 iron and converts to O2− ion, equivalent to doubly deprotonated water, withdrawing one electron from Fe(III) and one more from some near by aromatic residue (perhaps via transient formation of the porphyrin ring π-cation radical that is re-reduced rapidly by some near by aromatic). As a result, Compound I-type ferryl-oxo intermediate F1 is formed. The flawless heterolytic splitting of the O−O bond may be a crucial step in the entire O2 reduction cycle, since even minor deviations in the reaction profile can lead to homolytic scission of the O−O bond and formation of an extremely harmful hydroxyl radical at BNC with high probability of oxidative destruction of the porphyrin ring of heme a3.

Both protons required for splitting of the O−O bond are likely to be borrowed from the BNC terminus of the K-proton channel via a hydrogen bond network consisting of an H2O trapped between His240a and Tyr244a, Tyr244 phenolic group, and OH group of the hydroxyethylfarnesyl substituent in heme a3 hydrogen bonded via H2O to Tyr316a [9, 18, 19, 21, 22]. Therefore, the exergonic splitting of the O−O bond may provide a driving force for proton uptake via the K-channel. Securing faultless delivery of protons required for heterolytic cleavage of the O−O bond may constitute the primary and most important functional role of the K-channel.

3. Some specific comments on the intermediates

3.1. Oxidized state

3.1.1. Multiple forms

There is considerable uncertainty concerning the structure of the binuclear site in the oxidized COX. That the oxidized form of COX can exist in multiple states differing in catalytic, redox, spectral and ligand-binding characteristics has been long known: fast/slow, alkaline/acidic, pulsed/resting, oxygenated, Cl-bound, CO2-bound, “recently oxidized” and O4− forms can be mentioned [1, 23]. Structural and physico-chemical differences among these states are not well understood, but protonation state of His-Tyr244a phenolic group with pH ~ 6.8 [24] is definitely important [25]. Although crystal structure of the oxidized COX has been solved at high resolution for the mitochondrial and bacterial enzyme ([22, 28, 27] and references therein), the crystals are obtained at pH well below 7, while the “fast” form of the enzyme requires
that pH is kept at 8 or higher. Therefore, the 3D-structure of the oxidized COX likely corresponds to the acidic “slow” form of the enzyme with Tyr244bt protonated, and we do not know the structure of BNC in the active form of the enzyme for which most of the experimental work has been performed. The chloride- and CO2-bound forms of the mitochondrial oxidase [23,28] though not identified yet by crystal structure analysis, may be of physiological significance. Notably, Cl− ion fits ideally the space between heme a3 iron and CuB in the crystal structure of the oxidized COX ([27,29] and references therein).

3.1.2. Is there peroxide bound in the active site of the oxidized enzyme?

The crystal structure of the oxidized A-class oxidase (see [30] for classification) from either mitochondria or bacteria reveals electron density between heme a3 iron and CuB corresponding to the presence of two oxygen atoms [22,27,29,31]. The same feature has been revealed recently in the BNC of B-class ba3 oxidase from T. thermophilus [32]. According to analysis of the crystal structure [26,27,31,32] corroborated by RR spectroscopy data [33], the atoms may belong to peroxide diadiom bilingual heme a3+iron and CuB2+. As proposed in [26], the bridging peroxide may be a distinctive feature of the “resting” COX, as opposed to the “recently oxidized” enzyme (e.g., Oii, see below) with heme a3 in the Fe3+/OH− state [34,35]. The distance of 1.6–1.7 Å between the two oxygen atoms reported for the A-class oxidases [26,27,31] is somewhat longer than the ~1.5 Å expected for peroxide, but in the ba3 oxidase the bond length is close to 1.5 Å [32]. At variance with the above works, analysis of the crystal structures and theoretical modeling in [10] led to conclusion that the 2 oxygen atoms in the binuclear site are better explained by superoxoide bond to ferric heme a3 (though the O−O bond in superoxide has to be even shorter than 1.5 Å). The peroxide or superoxide may be formed in the binuclear site during collection of the data due to reduction by synchrotron radiation.

3.1.3. O3-state

Immediately after oxidation of the fully reduced COX from mitochondria or several bacterial species by molecular oxygen, a metastable form of the oxidized enzyme is formed denoted as Oii [36–39] that is functionally different from the resting oxidized state O. At this time it remains unknown whether the Oii state is formed under any conditions other than oxidation of the fully reduced oxidase, e.g., upon single-electron reduction of Compound II (Fhii) to Oii. There are two diagnostic features of Oii: (1) upon single-electron photoreduction of the intermediate, the electron goes rapidly from the low-spin heme a to CuB as the final acceptor; (2) this ET is coupled to transmembrane proton pumping and uptake of a chemical proton from the N-phase. In contrast, upon single-electron reduction of the “resting” oxidized form (even in the “fast” preparations), the electron received by CuB is transferred rapidly to heme a (heme b in ba3 oxidase), but subsequent ET to the binuclear site is (i) slow as compared to turnover number of the enzyme [40,41] and (ii) the electron goes to heme a3 rather than CuB [37], as shown most clearly for the ba3 oxidase [38]. Moreover, this slow ET is not coupled to proton pumping but only to proton uptake via the K-channel required to charge compensate reduction of heme a3 [41]. The Oii state relaxes spontaneously to the O state on a tens of seconds time scale [36]. Little if any is known about the differences in physico-chemical characteristics of the two oxidized forms. The Oii and O states do not reveal any differences in the absorption or EPR spectra [42] but in all probability, Eii of CuB in “Oii” is much higher than in O [37–39]. As argued by Yoshikawa and collaborators [21,43], trigonal planar coordination of CuB in the reduced oxidase is very stable which makes CuB2+ a poor electron donor with high Em. Binding of a strong axial ligand like hydroxide to the oxidized CuB upon oxidation of the reduced COX may tend to distort the coordination sphere to a tetrahedral form with lower Em (the ~+0.35 V value determined by equilibrium redox titrations [1]); unfortunately, there is no crystal structure available for the oxidized state of the “fast” form of the oxidase due to low pH at which the crystals are obtained. It can be suggested that after oxidation of COX by O2, CuB may retain for a while trigonal planar coordination stabilizing the reduced state and hence the high Em form of the redox-center. Subsequent slow relaxation of coordination sphere of CuB to fit the oxidized state of the metal ion could be responsible for the Oii → O transition.

3.2. Reduced state

Crystal structure is available for the fully reduced cytochrome oxidase (state R) [22,43,44] but presumably the structure of BNC and its surroundings should be the same in the R form. There are two features of the R-state structure to be underscored: (1) the absence of H2O/OH− ligands at heme a3 or CuB and (2) the opened gate for water/protons from the K-channel to the BNC rector cavity, the gate being closed in the oxidized state by a strong hydrogen bond between the OH groups of Tyr244 and hydroxyethylfarnesyl side chain in the porphyrin ring of heme a3 [22,43]. Hence the enzyme is prepared to bind O2 and, following two-electron reduction of the bound O2 by a3/CuB, to recruit protons from the K-channel required for cleavage of the O−O bond.

3.3. Oxycomplex

The electronic configuration of the oxycomplex of heme a3 is best described as ferric-superoxide [8–10,12,21] (Fig. 1). The crystal structure of the oxycomplex of COX is not available, but the structure of the reduced enzyme complexes with O2 analogs, such as CO, NO and CN− has been used to deduce characteristics of the oxycomplex [21,43]. According to this reasoning, the heme a3-bound oxygen in the oxycomplex of the reduced COX may be relatively well isolated from interaction with either CuB or Tyr244a, which prevents uncontrolled delivery of the second electron and protons to oxygen in Compound S and cleavage of the O–O bond “before the enzyme is prepared for proton pumping” [21]. Reduced CuB is likely to form a transient O2 binding site on the way of oxygen from membrane via the oxygen channel and into the a3/CuB cavity as deduced earlier from the CO photodissociation/recombination studies (reviewed, [45]). Transient binding of oxygen to CuB in the A-class oxidases is to be weak (it may be stronger in the B-class oxidases like ba3 from T. thermophilus as inferred from the CO binding studies [46]) and may occur in a side-on fashion [21,43]. The protonic/water connection of heme cavity with the K-proton channel observed in the R state is retained in the CN−-complexed reduced oxidase [21,22,43].

3.4. Compounds P

The iron-peroxy intermediates of COX have not been observed experimentally but were explored by theoretical modeling. Possible mechanisms of the bound dioxygen reduction to ferric-hydroperoxide and subsequent cleavage of the O−O bond are discussed in [9,18,19,47]. Very recently, formation of the ferric-hydroperoxy complex of heme a3 has been resolved with a catalytically active biomimetic cytochrome oxidase model at ~60°C [48].

3.5. Compounds I and II

3.5.1. Identity of a free radical in Compound I (Fh)

Both Compounds I and II of COX contain heme a3 iron in the ferryl-oxo state. As in the peroxidases, Compound II is single-electron deficient relative to the ferric state O, while two electron are required (the 3rd and 4th electrons in the catalytic cycle, Fig. 1) to convert Compound I to the resting oxidized state. Accordingly,
Compound I differs from Compound II by an extra oxidizing equivalent located at some aromatic residue (R in Fig. 1) close to the binuclear site. This aromatic residue provides the second of the two electrons (the first one is withdrawn from heme a_3 ferric iron converting it to the ferryl state) that are pulled out from the enzyme by the heme a_3 iron-bound oxene atom, formed upon the heterolytic cleavage of the O–O bond in Compound P_3. The identity of this aromatic group has not been firmly established. The problem is complicated by two circumstances: (1) the free radicals close to the metal centers in BNC cannot be easily seen by electron spin resonance spectroscopy; (2) the primary free radical formed can oxidize other nearby aromatic groups giving rise to the secondary radicals. The mainstream opinion attributes the primary radical to the covalently-bound tyrosine Y244ba (reviewed [12,44,49]). However, there is increasing evidence in favor of W236ba (W272pa) participation in the O–O bond cleavage [50–54], while the role of Y244ba may be reduced to gated proton transfer from the K-channel (cf. the “K-gate” model [55]) via a hydrogen-bonded water molecule (W510aa) to the iron-peroxo complex [9]. The primary tryptophan radical W236ba (W272pa) can be re-reduced by a near by tyrosine Y129aa (Y167sd) or by Tyr244ba giving rise to the secondary tyrosine free radical EPR signals [53,56–58].

3.5.2. The 607/580 nm transition in ferryl-oxo compounds of COX

The absorption maxima of the two ferryl intermediates at ∼607 and ∼580 nm (in the difference spectra vs the oxidized state) have been long thought to be associated with different redox states of the binuclear center in compounds “P” and “F”, respectively, that appear sequentially in the catalytic cycle. Eventually, it became clear that position of the 607/580 nm absorption maximum is not a specific marker of either Compound I or Compound II of COX, either of which can exist in ∼607 or ∼580 nm form. The transition from the ∼607 to the ∼580 nm state in Compound I or Compound II is associated with proton uptake from the bulk phase and protonation of some group in the binuclear site.

Conversion of Compound I (F_I) from the 607 nm to the 575 nm form is induced by lowering pH to ∼6 [28,59–62]. The acidic form of F_I characterized by a maximum at 573–576 nm, somewhat shorter than 578–584 nm typical of Compound II, was denoted by Rich as Compound F (“F dot”) [62] to emphasize the presence of free radical(s) in the intermediate. As to Compound II, the 607 → 580 nm conversion associated with proton uptake has been long known as the “P_{607}” → “F” step observed during oxidation of the fully reduced a_3 oxidases by oxygen [2,63].

The physical nature of the intense 607–610 nm absorption band in “compound P” has not been established. Recent findings of a very similar band in the “P_{607}” [64] and “P_{580}” [65] intermediates of b_{59} oxidase from T. thermophilus, where the absorption of the low-spin heme b_3 is well separated from the x-band of heme a_3, confirm at least that the band indeed belongs to heme a_3 and not to the low-spin heme a. As noted in [66] the narrowness of the x-band of “P”-state at ∼607 nm may indicate that this form of heme a_3 is diamagnetic due to an uniaxial distortion of the heme plane sufficient to lower the energy of the d_{5g}-orbital by the amount required to cause complete pairing of the four d-electrons of the ferryl heme iron.

Interestingly, the intense band at 610–615 nm is retained during the “P_{607}” → “F” transition in the b_{59} oxidase from T. thermophilus [64] despite that two protons are taken up by the b_{59} oxidase during this transition as in the case of the a_3 oxidases [67]. That intermediate F_{59} of b_{59} oxidase may retain the ∼610 nm absorption band of F_I is also implied by recent work [65].

4. Membrane potential generation coupled to single-electron transfer steps in the catalytic cycle

Steady state turnover of the A-class cytochrome oxidases is coupled to translocations of 4 protons and 8 electric charges across the membrane per O$_2$ molecule reduced (Eq. (1)). In order to understand the overall energy-transduction mechanism, it is important to resolve charge translocation steps associated with single-electron interconversions between the adjacent intermediates in the cycle. Our studies have been mainly focused on the peroxidase part of the reaction. The peroxidase half of the cycle running via reaction of the added H$_2$O$_2$ with ferric heme a_3 in the oxidized COX.
and formation of Compounds I and II (blue contour in Fig. 1) can be resolved as a partial catalytic reaction [69–71] coupled to generation of membrane potential and proton pumping [70,72]. The peroxidase phase includes two single-electron transitions, $F_{1} \rightarrow F_{0}$ and $F_{0} \rightarrow O$, each coupled to proton pumping. Time-resolved electrometric studies of charge translocation linked to each of these transitions have been carried out with the mitochondrial and bacterial oxidases using single-electron photoreduction technique (reviewed, [1,73,74]).

Some of the results are summarized in Table 1. A generic pattern of $\Delta \psi$ generation coupled to the $F_{1} \rightarrow F_{0}$ and $F_{0} \rightarrow O$ transitions is shared by the mitochondrial and bacterial A-class oxidases and is characterized by 3 major phases of charge translocation. A rapid (microsecond) electrogenic phase associated with the KCN-insensitive reduction of heme a is mainly due to vectorial electron transfer from Cu$_{A}$ to heme a (but see below); it is followed by two charge translocation phases of about equal magnitude associated with reoxidation of heme a by heme a_{3} denoted as the intermediate and slow electrogenic phases [75] or the electrogenic protonic phases 1 and 2, respectively [76].

There are two points to be noted. First, the pattern of charge translocation coupled to transfer of the 3rd and 4th electrons in the catalytic cycle of either mitochondrial or bacterial oxidase is very different from the electric response associated with the $F_{0} \rightarrow F_{1}$ transition resolved during the oxidation of the fully reduced enzyme by O_{2} in the flow-flash experiments [77,78] (see [74] for detailed comparison). Second and more important, despite the common generic pattern, the electrogenic responses of the mitochondrial and bacterial oxidases differ in several important details.

In bovine oxidase, the patterns of charge translocation coupled to transfer of the 3rd and 4th electrons are very similar except that the protonic phases associated with oxidation of heme a are 2–3-fold faster for the $F_{1} \rightarrow F_{0}$ transition (Table 1). In particular, the overall number of charges translocated across the membrane during the $F_{1} \rightarrow F_{0}$ and $F_{0} \rightarrow O$ steps transitions was shown to be the same [40]. Translocation of ~0.4 elementary charges in the rapid phase is within the range of values calculated theoretically for the electrogenicity of the Cu$_{A}$ → heme a vectorial electron transfer in [79], although the value might be slightly overestimated in case of incomplete formation of the ferryl-oxo state of heme a_{3} prior to electron photoinjection. Importantly, the same [protonic phase 1]/[protonic phase 2] magnitude ratio, $A_{1}/A_{2} = 0.84$ – 0.86, is observed for the $F_{1} \rightarrow F_{0}$ and $F_{0} \rightarrow O$ transitions, and in the both transitions it is the electrogenic protonic phase 1 that matches ET from heme a to heme a_{3}, whereas the major part of the protonic phase 2 takes place after completion of heme oxoreduction [12,74,80,81]. Thus, the mechanisms of charge translocation coupled to transfer of the 3rd and 4th electrons in the mitochondrial oxidase are likely to be much the same.

The bacterial enzyme reveals a number of distinctive features, apart from the 3–4-fold faster rates for each phase which correlates with the 3–4-fold faster turnover of the bacterial oxidase. First, contribution of the KCN-insensitive “rapid” electrogenic phase is significantly higher (~30% of the overall response). The same high contribution of the rapid phase has been observed for the $F_{0} \rightarrow O$ transition in the bacterial oxidase from P. denitrificans [17]. As found in [16], the rapid phase in R. sphaeroides oxidase is heterogenous and may include a minor contribution from a ~40 μs internal proton transfer step in addition to the 10 μs vectorial ET from Cu$_{A}$ to heme a (Table 1, the bottom raw). Second, in the $F_{1} \rightarrow F_{0}$ transition of bacterial COX, the number of charges translocated in the protonic phase 1 is 2.3-fold higher than in the protonic phase 2, as observed both for the R. sphaeroides (Table 1, [80]) and P. denitrificans oxidases [82,74], whereas the corresponding ratio for the $F_{0} \rightarrow O$ step is ~0.87, close to that in the mitochondrial oxidase (Table 1, [74]). Therefore, the promotive mechanisms associated with transfer of the 3rd and 4th electrons in the bacterial oxidases can hardly be the same. Third, in COX from R. sphaeroides, the two protonic electrogenic phases in the $F_{0} \rightarrow O$ transition match closely the two phases of heme a reoxidation by ferryl-oxo complex of heme a_{3} ([16,76]) whereas in the mitochondrial oxidase, heme a reoxidation is coupled almost exclusively to the electrogenic protonic phase 1 [12,74,80,81].

These and other differences (cf. [74]) suggest that the attempts to invoke a uniform promotive mechanism for all the single-electron steps in the catalytic cycle of COX, as well as for the same step in the different A-class oxidases (e.g. [1,82–84]), may be a deceptive simplification. Each single-electron step in the catalytic cycle in each enzyme species may need to be investigated.
5. Partial electrogenic steps within the single-electron transitions of COX

One of the lessons from Antonio Xavier as he published his papers on cytochrome oxidase [87,88] was that the mechanism of coupling between electron and proton transfer in cytochrome oxidase should not be reduced to a paradigm of electrostatic effects; e.g., to an assumption that reduction of a redox center is coupled electrostatically to proton binding by some nearby ionizable group, and that oxidation of the center leads to release of the proton. Perturbation induced by addition of an electron to a redox center can be transmitted through the protein via a specific chain of complex mechanochemical interactions leading at the end of the chain to perturbation of proton affinity of some group in either direction. Addition of an electron, say, to heme a may be coupled to proton uptake, or internal proton displacement, or even to proton release as proposed for instance in [44,86–88]. This view may be related to the concept of mechanically programmed molecular machine developed in Moscow by Blumenfeld [89] (and cf. a model of redox-induced conformationally coupled multiple pK changes in COX held to by Bari group [90]). A fascinating picture of articulate intraprotein group movements/adjustments coupled to the reduction of heme a via electrostatic and mechanical interactions that enable proton dislocation from E242a, at the bottom of the D-channel via Δpropionate of heme a2, and to the “Proton Loading Site” (PLS, cluster of interacting protonatable groups “above the hemes”) is revealed by theoretical calculations and molecular dynamics simulations (reorientation of E242a [91,92], formation and polarization of the water chains leading from E242 to ΔPro of heme a3 [93,94], loosening of hydrogen bonding of ΔPro with the arginines [25] and swinging of ΔPro to reach the water chain leading from E242 [95], etc.).

A generic scheme of partial charge translocation steps coupled to transfer of a single electron through cytochrome oxidase was formulated early [83,96]. The model proposed, long before the crystal structure of COX was solved [97,98], spatial arrangement of hemes a and a3 along rather than across the membrane, and predicted involvement of protonic channels in charge translocation by the enzyme (Fig. 2A).

The basic partial steps of the protonmotive mechanism denoted in Fig. 2A by arrows were rightly guessed, as confirmed by subsequent experimental work and theoretical modeling (reviewed, [1,3,4,74,79,99]). However, the original sequence of the steps (it will correspond to 1 → 3 → 2 → 4 → 6 → 5 in Fig. 2A) was based on a simplistic paradigm of electrostatic interactions criticized by Antonio Xavier [87,88] and had to be modified as shown in the figure. Thus, it was proposed originally that reduction of heme a (step 1) is electrostatically coupled to uptake of the pumped proton from the N-phase via the input proton channel (step 3). The proton is then transferred from the bottom of the input proton well to the bottom of the exit proton well—i.e., from E286 to the Proton Loading Site (PLS) in modern terminology (step 2 in the scheme),—which gates ET from heme a to the binuclear site (step 4). Upon ET from heme a to heme a3, the proton from PLS is released to the L-phase (step 6), and a chemical proton is taken up to neutralize the negative charge brought by electron to the binuclear site (step 5). The currently assumed picture of the events includes essentially the same basic steps as Fig. 2A (e.g. [84,100]) but is more elaborate.

A plausible electrogenic mechanism specifically relevant to the \(F_{H} \rightarrow O \) transition in COX and based essentially on the time-resolved electrometric and absorption measurements [13,16,40,75,76,80,81,101–103] correlated with the available crystal structure of the enzyme and theoretical modeling [55,79,93,94,104] is shown in Fig. 2B. A similar general scheme though not assigned to any specific single-electron step was considered in [84]. Unfortunately, important complementing information from the time-resolved
proton uptake/release measurements, available in the case of the flow-flash experiment studies on the oxidation of the fully reduced oxidase by oxygen (e.g. [105] and see the reviews [3,15]), is virtually missing for the single-electron reduction experiments [103].

In variance with the original scheme [83,96], the proton to be pumped outside is sitting at the bottom of the input D-channel (protonated E286a) prior to reduction of heme a. Reduction of heme a by Cuα gives rise to the rapid electrogenic phase (step 1) which is coupled energetically to deprotonation of E286 and relocation of the pumped H+ to the PLS (step 2), which is followed by immediate repromotion of E286 from the N-phase (step 3) and gates oxidation of heme a by the ferryl-oxo complex of heme a3 (non-electrogenic step 4). As a matter of fact, the exact order of the steps 2,3,4 has not been determined (e.g., it could be 4,2,3 [76,84] or even 2,4,3). The proton transfer steps 2 and 3 merge kinetically giving rise to the experimentally observed electrogenic protonic phase 1 coupled kinetically to partial (in R. sphaeroides) or almost complete (in bovine oxidase) ET from heme a to the binuclear site. Similarly, subsequent release of the pumped proton from the PLS to the P-phase (step 7), and protonation of the reduced binuclear site from the N-phase induced by reduction of the ferryl-oxo complex of heme a3 (steps 5,6) appear to be synchronous under most conditions (cf. ref. [105]), and show up as a single concerted process; so, the vectorial proton transfer steps 5,6 and 7 merge into a single electrogenic protonic phase 2. It is currently thought that as first proposed by Rich [106], uptake of the “chemical” proton from the N-phase precedes proton extrusion from the PLS to the P-side and even provides a driving force for it of ca. 0.2 eV [107]. Hence, the order of the steps 5,6,7 in Fig. 2B has been chosen to conform to this proposal.

The scheme in Fig. 2B corresponds primarily to the F0 → O transition in COX from R. sphaeroides. That it may also apply to the F0 → O and F3 → F4 steps in the mitochondrial oxidase may be assumed by analogy taking into account general similarity of the electrogenic responses (except for step 1; see below). In particular, the experimentally observed ratio of the two KCN-sensitive electrogenic protonic phases in the F0 → O transition of the R. sphaeroides COX, A1/A2 = 0.87, is very close to the A1/A2 ratio values found for the F0 → O and F3 → F4 steps in the bovine oxidase, which favors the same attribution of the protonic phases. However, the same specific usage of the proton channels in the bacterial and mammalian oxidases has not yet been confirmed experimentally and remains to be verified (cf. [26]). Notably, the scheme in Fig. 2B cannot accommodate the A1/A2 value of 2.3 observed for the F3 → F4 transition in the bacterial oxidases from R. sphaeroides and P. denitrificans (Table 1, [74,80,82]). Attribution of the protonic phases 1 and 2 has to be very different in this case, so the specific mechanisms of proton pumping coupled to transfer of the 3rd and 4th electrons, while similar in the bovine oxidase, appear to be different in the bacterial oxidases.

Step 1’ linked to step 1 has been included provisionally in Fig. 2B to illustrate one of the several possible interpretations of the KCN-insensitive ~40 µs protonic component of the rapid electrogenic phase in the bacterial oxidases (Table 1, [16,74]). This provisional explanation is based on the crystal structure analysis and theoretical modeling in [55,104] predicting that oxidation of Cuα during the Cuα → heme a ET may be coupled to release of a proton from the PLS to the P-phase, given the PLS is protonated prior to initiation of ET. The protonation state of the PLS in different intermediates of the catalytic cycle is not known but according to the electrostatic calculations [84], the [Fe4+ =O2−/Cuα2+−O3H−] state of the BNC in the F3 intermediate generated by the reaction of the oxidized bacterial COX with H2O2 would be consistent with the protonated state of NII in His334a (H291a). It can be remarked that H2O2 is likely to bind to heme iron as OOH−, placing its second proton to some near by protein group. Variation of the initial protonation state of the PLS among the single-electron transitions in the oxidases from different organisms, as well as among the 4 different single-electron transitions in the same enzyme, could explain variability of the magnitude of the rapid electrogenic phase in the single-electron photoreduction experiments, e.g. the difference between the mammalian and bacterial oxidases in the F3 → O and F1 → F2 steps (Table 1).

Acknowledgements

The work has been supported in part by the grants from Howard Hughes Medical Institute International Scholar Award (55005615) and Russian Fund for Basic Research (11-04-01330).

References

