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1. Introduction
Let X and Y be Euclidean spaces. Let G be an open convex subset of X, and

fiGCX—>Y

a Fréchet differentiable function. Consider the following system of nonlinear equations

fx)=0. (1.1)

As it is well known, solving such a system is a very general subject which is widely used in both theoretical and applied
areas of mathematics. Newton’s method with initial point xq is defined by

Xnp1 =%n — f ) f(xn), n=0,1,..., (12)

which is the most efficient method known for solving such systems.

There are three types of convergence issues about Newton’s method: local, semi-local and global convergence analysis.
The first is to determine the convergence ball based on the information in a neighborhood of the solution of f(x) =0, the
second is the convergence criterion based on the information only in a neighborhood of the initial point xg, and the last
is the convergence analysis based on the information on the whole domain of f. In the present paper, we are interested
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in the semi-local convergence analysis. As it is well known, there are mainly two points of view to analyze the semi-
local convergence: Kantorovich like theorems and Smale’s point estimate theorems. The first kind gives the convergence
criterion in terms of the value of the function at the initial point xg and the behavior of f” or f’ in a neighborhood of the
initial point xo with an assumption that f” is bounded or f’ satisfies the Lipschitz conditions, see for example, Ortega and
Rheinboldt [11], Ostrowski [12], Kantorovich and Akilov [8]. The second one assumes that f is analytic at the initial point
Xo, and gives the convergence criterion in terms of the following invariants:

a(f,xo0) =B(f,x0)y (f.X0),

B(f.x0) = || f'(x0)~" f(x0)] (13)

®
V(£ %0) = Supys; | f/(x0) ! L2

)

see for example, [9,13,14]. Motivated by the works above, there are many other authors who studied the semi-local con-
vergence of Newton's method under various of conditions, see [4,17-19]. Gutiérrez in [4] assumed f”(x) satisfies a kind of
Lipschitz condition in a neighborhood of the initial point, which is a generalization of Kantorovich like condition. Wang and
Han in [19] discussed « criteria under some “weak condition” and generalized Smale’s point estimate theory. In particular,
Wang in [17,18] introduced some weak Lipschitz conditions called Lipschitz conditions with L-average, under which Kan-
torovich like convergence criteria and Smale’s point estimate theory can be put together to be investigated. For a survey on
the convergence analysis of Newton’s method, the reader is referred to [20].

All the above mentioned studies are based on the invertibility of f’, which sometimes may fail, that is, f’ is singular.
One typical example is the case when X and Y are two Euclidean spaces with dim X # dimY. Clearly, in this case, f’ is not
invertible and (1.1) becomes an overdetermined system (i.e. dimX < dimY) or an underdetermined system (i.e. dimX >
dimY), for which the convergence analysis of Newton’s method has been extensively studied, see for example [3,5-7,13]. In
particular, Dedieu and Shub in [3] established Smale’s point estimate theory for Newton’s method for the overdetermined
system such that f’(x) is of full rank. Dedieu and Kim in [2] generalized the results in [3] to such case where f’(x) is
of constant rank (not necessary full rank). Recently, Li et al. in [10], and Xu and Li in [21] extended respectively the local
convergence results in [3] and [2] to the case when the derivative satisfies Lipschitz conditions with L-average.

In the present paper, under the hypothesis that the derivatives satisfy the center Lipschitz condition in the inscribed
sphere with L-average introduced in [17], we will investigate the semi-local convergence of Newton’s method for singular
systems (not necessary dim X < dimY) with constant rank derivatives. In Section 2, we introduce some preliminary notions
and results. The convergence criterion is established in Section 3. In the last section, applications to two special and impor-
tant cases: the classical Lipschitz condition and the Smale’s assumption, are provided, and the corresponding convergence
result due to Dedieu and Kim in [2] is improved.

2. Notions and preliminary results

In the rest of this paper, X and Y denote two Euclidean spaces with m def dimX and ld:'EfdimY. Let f:GCX—>Y
be a continuously Fréchet differentiable system with rank f’(x) <r for any x € G, where G is an open convex subset and
r < min{m, [} is a positive integer. We use the following conventions: Ix denotes the identity on X and [T denotes the
orthogonal projection onto a subspace E C X. For & € X and R > 0, we use B(&p, R) to denote the open ball with radius R
and center &p.

To give Newton’s method for the case when f’ is not of full rank, we need the notion and some properties of Moore-
Penrose inverse. For a detailed description of the Moore-Penrose inverse, one can refer to [1,15,16]. Let A be an [ x m matrix
(or equivalently, a linear operator A : X — Y). If another m x | matrix A" (or equivalently, a linear operator AT:Y — X),
satisfies the following four equalities:

AATA=A,  ATAAT=AT,  (AAT)"=AAT,  (ATA)"=ATA,
where A* is the conjugate of A, then AT is called the Moore-Penrose inverse of A. Let ker A and im A denote the kernel
and image of A, respectively. Then the following properties hold:

ATA=Ty s and AAT=Tipa. (2.1)

The next two lemmas are on the perturbation of Moore-Penrose inverse. The first one can be obtained by Corollar-
ies 71.1(2) and 7.1.4 in [16], and the two results of the second one are stated in Corollaries 7.1.1(2) and 7.1.2 in [16],
respectively.

Lemma 2.1. Let A and B be two m x | matrices with rank B = rank A =r and ||AT||||B — A|| < 1. Then

IAT|12|1B — Al

I~ t] < cJATIB AL
1—||AT|[|B — A]
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where
HTS ifr < min{m, I},
C=1+v2 ifr=min{m,I} (m#1), (2.2)
1 ifr=m=1L

Remark 2.1. In the rest of the paper, we only focus on such singular cases when r < min{m, [}. Then C = ”T‘@ in Lemma 2.1.
The full rank case, r = min{m, I}, can be studied similarly.

Lemma 2.2. Let A and B be two m x | matrices with rank(A + B) < rank A =r and ||AT||||B|| < 1. Then

IAT]|

rank(A+B)=r and [|[(A+B)|<—"—F—.
” | 1— || AT||||B]|

Let L(u) be a positive nondecreasing function defined on [0, 0o). In order to estimate || f'(xo)~1(f'(x) — f'(y))|l, Wang
in [17] introduced the following concepts of center Lipschitz condition with L-average and center Lipschitz condition in the
inscribed sphere with L-average, which play a key role in the study of Newton’s method for nonsingular systems.

Definition 2.1. Suppose that m =1 and that f is a continuously Fréchet differentiable function from X to Y. Let R > 0 and
let xo € X be such that f'(xo)~! exists.

(i) 1If
lIx=xoll
If' &) (f/ (0 = f'(x0))|| < / L(uw)du, xeB(xg,R), (2.3)
0
then f’ is said to satisfy center Lipschitz condition with L-average in B(xg, R).
(ii) If
Ix=xoll 41l y—xII
IFeo (Fw-ro)ls [ wds (24)
Ix=xoll

holds for any x € B(xg, R) and y € B(x, R — ||x —Xo||), then f’ is said to satisfy center Lipschitz condition in the inscribed
sphere with L-average in B(xg, R).

In the following lines, we want to modify this notion to suit to the singular systems considered here. Since f’(xg)~!
does not exist, we will replace f’(xg)~! by f’(xo)". On the other hand, noting that f’(xo)' = BITim f/(xy)» Where B is the
right inverse of f’(xg) with the domain im f’(xg) and the image ker f’(xg)’, we lose the information about the component
of f’(x) on im f’(xo)* via f’(xo)T. Thus, we give the modification of Definition 2.1 as follows.

Definition 2.2. Suppose that f is a continuously Fréchet differentiable function from X to Y. Let xo € X and R > 0.

(i) If
lIx=xoll
w150 Feol< [ Lwdu xeBoo. R (25)
0
then f’ is said to satisfy center Lipschitz condition with L-average in B(xg, R).
(ii) If
lIx=xoll+1ly—xIl
IFelllrw-rol< [ s (26)
Ix=xoll

holds for any x € B(xg, R) and y € B(x, R — ||x — Xo||), then f” is said to satisfy center Lipschitz condition in the inscribed
sphere with L-average in B(xg, R).

Remark 2.2. From the definitions, we know that if f’ satisfies center Lipschitz condition in the inscribed sphere with L-
average in B(xg, R), then it satisfies center Lipschitz condition with L-average there.
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The following lemmas are useful when we prove the convergence theorem in the next section.

Lemma 2.3. Suppose that f’ satisfies center Lipschitz condition with L-average in B(xg, R) and that x € B(xo, R) satisfies rank f’(x) <
rank f’(xo) = and f()”"_x”” L(w)dp < 1. Then the following assertions hold.

(i) rank f'(x) =r.
Ix=xoll
1
i ! < f + — L(p)du.
(ii) [ el <ol +mss 0/ (wydp
et
(iii) e ILf' o)l

1— f()”X_XO” L(M)dM
Proof. (i) Noting that

Myer frixg) + F/x0) T f/ (0 = Ix — f'x0) ' (' (x0) — f' (%))
and
Ix—xol

I o) || £ x0) — F'0)] < f Lwydp <1, 2.7)
0

we know that ITier f/(x) + f'(X0)' f'(x) is nonsingular. By (2.1),

i jrx0) ' 0 = ' (%0) [ )T (%) + ' (X0) Mer frxg) = f' %0) (f'x0) T/ (X) + Mer fxp)-
Hence

rank (i f/(x) f' (%)) = rank f'(xo) =r.
Thus

rank f'(x) > rank(fim o) f/ (%)) =T

This together with the assumed condition rank f’(x) < rank f’(xg) =r implies that (i) holds.
(ii) This assertion follows from

Ix=xoll

1
‘W< | F +|fx—f < f +— L(u)du.
If'@| <[ f' x|+ [ f® - x| < |f' o) TS 0/ () dpu

(iii) Set A = f'(xo) and B = f’(x) — f'(Xo). Then by the assumptions and (2.7), rankA = r and |AT|||B] <
j;)”xfx‘)” L(m)dp < 1. Thus, Lemma 2.2 is applicable to concluding that

AT If o)l
T—ATIHIBI ~ 1 — [0 Ly dp

The proof of Lemma 2.3 is complete. O

I =]n+B] <

Lemma 2.4. Suppose that f’ satisfies center Lipschitz condition in the inscribed sphere with L-average in B(xg, R) and fOR L(w)ydu < 1.
Let x € B(xg, R) and y € B(x, R — ||x — xq||) be such that rank f’(x) < rank f’(xg) =r and rank f’(y) < rank f’(xo) =r. Then
1475 1P NI oI fo” ™ Lalx — xoll + )

Fo'=fef] < — :
H ” 2 11T o) S L% = xoll + ) die

Proof. Set A= f’(x) and B = f’(y). Then by Lemma 2.3(i) and (iii), we have

rank A = rank B = rank f'(xo) =1
and
I (o)
1- f 7 Lo du

|AT] < (2.8)
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By the assumed center Lipschitz condition, one has that

[lx—xo [l 4+Ily—xI|
I £ o) 1B — All < / L dpe

llx=xo
[lx=xo I+ly—xIl [lx—xo I
= L(pwydp — / L(n)ydu
0 0
lIx—xo
< [oodu— [ Laod
0 0
lIx=xo
<1-— / L(w)du.
0

Combining this with (2.8) yields that IAT|[1B = A]l < 1. Therefore Lemma 2.1 is applicable and so
145 1N ) - f @l
2 1= @I 5 - F®l
B B Aol GO o R AL
2 1= 1T oI R T Ly du
1V I @TIPIF e I f? Lle— xo ) + ) dpe
2 1= 1@ oI )T LA — xoll + wydi

which completes the proof. O

Ifot = <

The following lemma is a direct consequence of the known results [10, Lemma 2.3] and [17, Proposition 3.2].

Lemma 2.5. Let p > 0 and define the functions 1 and v, as follows:
t
Y1(t) = %/L(,u)d,u., t € (0, +00),
0
and
t
Yo (t) == %f(t —wWL(p+wydu, te(0,+o0).
0

Then 1 and v, are positive nondecreasing on (0, +00).

Lemma 2.6. Suppose that f’ satisfies center Lipschitz condition in the inscribed sphere with L-average in B(xo, R) and let x, y €
B(xo, R) be such that ||x — xo|| + ||y — x|| < R. Then the following assertions hold.

ly—=xI

(i) [f @@=+ f@-fy]< (Ily = xIl = p)L(1Ix = Xoll + 1) dpe.

I x0TI
ly=x

(ii) |f = feo] < (Iy —xl = w)L(Ix = xoll + ) dpe + | £ GO [ 1y = xlI.

-
1f/ o)l

Proof. By the assumed center Lipschitz condition, one has that

[f'Co =%+ feo—fw] =

1
/ [F/00— F(x+ 70 —x)]y—xdt
0
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1 [lx=xoll+Tlly—xII

L(wydu |y — x|l dt

1

< -
S0l
0 [lx—xol

Ix=xoll+lly—xII

- ”f(lT.)T” Iy — I+ 1x — xoll — p)L(t0) e
[lx—xol
ly—xI|
= ool (Iy = xI = w)L(IIx = xoll + ) dpe.

This proves (i).
Since

[F) = fF@| <|fO@—x+Ff@—FfO|+]f @[y —xI.

(ii) now follows from (i) and the proof is complete. O
3. Convergence criterion
In the rest of the paper, we assume that X and Y are two Euclidean spaces with finite dimensions, and f is a continu-

ously Fréchet differentiable function from an open subset G of X to Y. Let X € G. Newton’s method for f with initial point
Xo is defined by

X1 =Xn — f () f(Xn), n=0,1,.... (3.1)

We note that when f’(x,) is an isomorphism, (3.1) becomes the classical Newton’s method (1.2).
Remark 3.1. Let

Z={teX: f®'fFE& =0} (32)
In general, when f is a singular system, Newton’s method (3.1) may converge to a point in Z rather than a solution of the

equation f =0.

Suppose that L(u) is a positive nondecreasing function defined on [0, co). For simplicity, we introduce some notations.
Let

K=|f'&)|[ f x| (3.3)
B=|f x| fx)]. (3.4)
B
8 = / LB+ wdu, (3.5)
0
2B
52 = f L(uydu, (36)
0
B
A= /(ﬂ - L2+ wydu, (3.7)
0
2B
Ay = f (2B — WL@B + wydu, (38)
0
N 1+ /5 81(B + B8+ 3BK + Ay + Ap) (39)
P=50-s) 2 B —8)(1 =81 —82) '

Our main result is as follows.
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Theorem 3.1. Suppose that f’ satisfies center Lipschitz condition in the inscribed sphere with L-average in B(xg, 28) and suppose that

rank f’(x) < rank f’(xo) for each x € B(xo, 28). If

1
§1+8 <1 and pgi,

(3.10)

then the Newton’s sequence {x,} defined by (3.1) converges to a point & in Z, which is defined by (3.2), and the following assertions

hold:

2
lIxo — &1l < 2l1x1 — Xoll.

1 n
IXn+1 — Xnll < (—) X1 —xoll, n=1,2,...,

Proof. To prove (3.11), it suffices to show

1
1Xer1 — X Il < EHXk —xe—1ll, k=1,2,....

We use mathematical induction to prove (3.13). Since §; + 82 < 1, we have

[lx—=xol| 2B
L(wydp < / Lwydpu=8; <1, VxeB(xo,2).
0 0

It follows from Lemma 2.3(i) that rank f’(x) = rank f’(xp). Noting that

X1 —x0 = —f(x0)' f(x0) € ker f'(xo)*

and

fx0) f'(x0) = Tlier fr(xg) - »

we have

X2 —x1 = f'x0) f(x0) (X1 — x0) + f'(x0)" f (X0) — f'(x1)T f(x1)

(3.11)

(3.12)

(3.13)

(3.14)

= f(x0)T[f'(x0) (%1 — x0) + f(x0) — FxD)] + [f' o) = F/x)T|[f (x1) = fFxa)] + [f'x0)' — F/x)T] f (x0).

Since ||x; — xo|| < B and L(u) is nondecreasing, it follows from Lemmas 2.4, 2.5 and 2.6 that
[IX1=%oll

llx2 — x1]| < [ (I1x1 — xoll — ) L(llx1 — Xoll + ) dpt
0

+.1+\/§ fo“xl_x‘)"L(u)du
2 1 _fOH)ﬂ*XO“ L(/“L)d/“'“

1_’_\/5 ‘3/‘0”)‘1_)‘0” L(M)dll«
2 1 _f(l‘x17XO|l L(M)dﬂ

A 1+v5 § A 1+45 &
<{—1+ V3 1(—1+1<)+ V5 _4

[IX1=xoll
( / (IIx1 — xoll — ) L(1Ix1 — Xoll + ) dpe + K1 x1 —Xoll)
0

}”Xl — Xp|

B 2 1-5\ 8 2 1-4
(A 145 5
_{F_*_Tm(ﬁ—{-ﬂK%—Al)}Hxl—X0||

1
< pllx1 —xoll < 5”"1 — Xol.
This shows that (3.13) holds for k =1.
Suppose that n > 1 and (3.13) holds for k =2, 3,...,n. With the same argument as estimating |x2 — x1]|, we get
Ixn41 = Xall < |/ Go)) || ' Ga1) G = xn-1) + £ Gnm1) = F ) | + | F/ Cnm)T = )T | £ ) = F ) |
+ | Gt = £ )| | £ )|

- N .
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Below we will estimate Tq, T and T3, respectively. Since (3.13) holds for k=2, 3,...,n, it follows that

n
Ixi = Xoll < D lIxk — X | < 2[1%1 = x0l| <28, i=n—1,n.
k=1

Thus, applying Lemma 2.3(iii), one has that

Il f' (xo)Tll et 1 &0

f’(x —1)T < X =
Sl 1= [ yde 11— [P Lgodp 1-8

By (3.15),

L(Ixa —Xoll + 1) <LRB+ ), Yu=>0.

Combining this with the induction hypothesis (||x; — xp—1|| < |[[X1 — xo|| < 8), we apply Lemma 2.5 to get that

1%n —xn—1l IXn—%n—11l

1
(I1Xn — xn—1ll = ) L(I1xa — Xoll + p) dpp < —————
1 — xn—1l|

Aq
< — 1% — Xn—11l.

B
This, together with Lemma 2.6(i), yields the following bound of T;:

IXn—Xn—11l

A
f (1% — xn—1ll — ) L(IIxn — X0l + 1) dpa < !
0

< [Fge=su
I f"(xo)ll

B(1—42)

(3.15)

(3.16)

(317)

(I1Xn = Xn—11l = ) L2B + ) dpt | X0 — X1l

To obtain some bounds for T, and T3, we first estimate their common factor, ||f'(xa—1)" — f’(x2)T|l. By (3.17), the

induction hypothesis and Lemma 2.5, we have

[1%n —Xn—1l IX1—xo|
L(lIx Xoll + ) du < !
—1 — A0 X .
J " X1 — xoll

From Lemma 2.4, we obtain

)
LB+ p)du Xy — xa—1]l < B

145 1 G217 o) I ) L (1 — x0ll + ) dpe

| Gn—)t = F/ )T <

2 A= D )T S L3y — ol + ) dpe

145 el s 1% — X1
< X 7 X o X 5
2 (1-42) B1- m”xn — Xn—1ll
1+4/5 "xo) |18
< Il f (x0)" 1181 1% — %01 .

2 B -48)(1—-81—62)

For the other factor of T, it follows from Lemma 2.6(ii) and Lemma 2.3(ii) that

%0 —xn—1l

_
1f/ o)l

A ; [lxn—1—Xoll
! (K + / L(w) du)ﬂ
0

| f ) = fxn—n)| <

< +
17 @oTl I Go)l

B2 + BK + Aq
<=
If" (x|
This, together with (3.18), yields that

1++/5 Il £ (x0)" 181 By + BK + Ay
T < lXn — Xn—1|l x BT RC T
2 BA-5)(1—8 —8) 1 o)
145 81(Bs2 + BK + A1)
= lXn — Xn—11l.

2 B —=8)A -6 —8)

(10 = xn—1 1l = ) L(I1Xa—1 — xoll + ) dpt + | £ Gne1)|| 1 X0 — Xn—1 I

(3.18)
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In order to get a bound for T3, it suffices to estimate | f (x,—1)||. By Lemma 2.6(i), we have

[ Fn=D|| < | f@&o) | + || f' Xo) | I1xa=1 — Xoll + || f (Xa—1) — f(x0) — f'(x0) (Xa—1 — X0) ||
I%n—1—%0ll

< | fxo)| +28] f'xo)| + (

_ a1 — %ol — )L d
1 (o)l n-t 0l REH

2
<[l +28]1 ol + 7o (x i

Hence it follows from (3.18) that

1 ex) T
T3 < ”2“/5/3(1 _”;;)(Z‘f)_”;]_ S Lads 1||<||f(xo) | +26| f x| + T )Tn)
1++/5 81(B+2BK + A2) X — o1 |
T2 pA-sp-s -8 " T
Therefore
IXp41 —xpll < T1 + T2+ T3
{ Aq 1+J§51(ﬂ+ﬁ32+3ﬁ1<+A1+A2)}||Xn_Xn1”
B(1—62) 2 B —=8)(1 =81 —6&)
= pllXn — Xn_1l

< S l%n = Xl

Hence (3.13) holds by mathematical induction.
We turn to prove the rest of the theorem. From (3.11), it is not difficult to see that {x,} is a Cauchy sequence, thus, it
converges to a point in X, say &. Letting n — oo in

Xn41 =Xn — f/(xn)Tf(Xn),
we get f(£)Tf(€) =0, that is, & € Z. Since

n+1 n+1 1 k—1
x4 = xoll < Y l1x — X1 | < (Z(2> )nxl — xoll < 2[1x1 — X0,

k=1 k=1

taking n — oo gives (3.12). The proof is complete. O

4. Applications

In this section, we will apply the obtained results in the previous section to two concrete cases, one is the case when
L(m) =L is a constant function and the other case when L is defined by

1
L) :=2y/(0—yu)?, Ve [0, ;), (41)

where y > 0 is a constant. For the first case, Theorem 3.1 gives the Kantorovich like convergence result; and for the second
case, it gives Smale’s point estimate result. The latter one improves the corresponding convergence result in [2].
When L(u) =L is a constant function, the center Lipschitz condition in the inscribed sphere with L-average (2.6) be-
comes
I o) | f@ = F»| <Lly—xl. ¥xeBxo,R), y €B(x,R—[lx— xol))- (4.2)

Therefore, if f satisfies the classical Lipschitz condition in B(xg, R), then f satisfies center Lipschitz condition in the in-
scribed sphere with constant L-average in B(xg, R). In this case, the expressions (3.5)—(3.8) and (3.9) take the following
forms, respectively,

si=Lg=L|f x|
8y =2LB =261,
Y.
2 20
Ay =2LB% =258,
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and

, 81 ( 1+J§2+61<+951>

T 2(1-28)) 2 1-35,

where K and B are defined by (3.3) and (3.4), respectively. Thus, by Theorem 3.1, the following corollary is immediate.

Corollary 4.1. Suppose that f' satisfies (4.2) in the ball B(xo, 28), and that rank f’(x) < rank f’(xo) for each x € B(xo, 28). If

1
s1=L| f x| fxo)| < 3

and

p

81 ( 1+«/§2+6K+951><1
\25

T 201 =28y 2 1-35, 2

then Newton'’s sequence {x,} defined by (3.1) converges to a point & € Z, and (3.11) and (3.12) hold, where Z is defined by (3.2).

We can use a sufficient condition of p < % to simplify the conditions of Corollary 4.1. Let

14++/58+9d
() = +/58+ )

1
2(1—2d)(+ 2 1-3d

We can prove that g(d) is increasing on [0, %). Since the root of g(d) — % =0 in [0, %) is dp := 0.0519926..., we have

g(d) < 3 whenever 0 < d <do.

Corollary 4.2. Suppose that f’ satisfies (4.2) in the ball B(xo, 28), and that rank f’(x) < rank f’(xo) for each x € B(xo, 28). If

K81 =L|[ f o)t |* | £/ xo) || f (x0) | < do = 0.0519926 ...,

then Newton'’s sequence {x,} defined by (3.1) converges to a point & € Z, and (3.11) and (3.12) hold, where Z is defined by (3.2).

Proof. Suppose that K81 < dg. Since K > 1, it follows that §; < % and

14 /5 8K81 + 9(K571)?

1
R —
PS 20 =2ke) ( 2 1—-3Ké

1
Ké1 + )=g(1<51)<g(do)=5-

Thus the conditions in Corollary 4.1 are satisfied. Hence the conclusion holds by Corollary 4.1 and we complete the proof. O

Next, taking L to be the function defined by (4.1), then the center Lipschitz condition in the inscribed sphere with

L-average (2.6) becomes
1 1

If' &) [ £/ = fF o] < (

T—ylx—xoll —¥ly—xD? (1 —ylx—xol)?

(4.3)

for each x € B(xop, %) and y € B(x, % — |Ix — xo|). We adopt the traditional notation used in Smale’s point estimate theory,

i.e., @ = By. Assume that o < % Then we have from (3.5)-(3.8) and (3.9) that

(2 —5a) Ko —5Ka) . 1
5 = < if K < —,
(1=20)2(1 —=3a)2 = (1 —-2Ka)>(1 — 3Ka)? 5
4o(1 — 4Ka(1—K 1
5= 2od o) AKed —Ke) op 1
(1—2w)2 (1-2Ka)? 2
K 1
Ay = pa < pKa if Kot < =,
(1-=20)2(1 =3a) ~ (1—-2Ka)2(1 —3Kw) 3
4 48K 1
Ay = i < pKo if Ko < —,
(1=200)2(1 —4a) = (1 —2Ka)2(1 — 4Ka) 4
and
_ o 1+4/5 3Ka (2 — 5a)
P= 0300 = 8a + 8a2) 2 (1—8a+8ad)( — 120 + 18a2)
1+45 a2 —50)(1 — 2« — 4a?)

2 (1-3a)1—40)(1 — 20)2(1 — 8 + 8a2)(1 — 12a + 18a2)

Noting that 28 < % if 2 < 1, we obtain the following corollary from Theorem 3.1.

(4.8)
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Corollary 4.3. Suppose that f’ satisfies (4.3) for any x € B(xo, 28) and y € B(x,28 — ||x — Xo||), and that rank f’(x) < rank f’(xo)
for any x € B(xg, 28). Assume 2 < 1. If

1
§1+8 <1 and pgi,

where 81, 8, and p are expressed in (4.4), (4.5) and (4.8), respectively, then Newton’s sequence {x,} defined in (3.1) converges to a
point & € Z, and (3.11) and (3.12) hold, where Z is defined by (3.2).

The conditions in the above corollary can be simplified. Let the function h be defined by

hed) — d 1++5 3d(2 — 5d)
@= (1—=3d)(1 — 8d + 8d?) 2 (1—8d+8d?)(1—12d + 18d2)
1+4/5 d(2 —5d)(1 — 2d — 4d?)

2 (1=3d)(1 —4d)(1 — 2d)2(1 — 8d + 8d%)(1 — 12d + 18d2)
for each d € [0, %E). Since h’ is positive on (0, %), h(d) is increasing on [0, %). Let do be the root of h(d) — 1 =0
in [0, 25¢2). Then do = 0.0223063....., and h(d) <  whenever 0 <d < do.

Corollary 4.4. Suppose that f’ satisfies (4.3) for any x € B(xo,28) and y € B(x, 28 — ||x — Xo||), and that rank f’(x) < rank f’(xo)
forany x € B(xg, 28). If

Ka < dy=0.0223063..., (4.9)
then Newton's sequence {x,} defined in (3.1) converges to a point & € Z, and (3.11) and (3.12) hold, where Z is defined by (3.2).

Proof. Suppose that (4.9) holds. Then Ko < % Hence the inequalities (4.4)-(4.7) hold and

Ko@—50)  _ Ko —5Ka)

hk= (1=2)2(1 =3)2 = (1 =2Ka)?>(1 —3Ka)?" (4.10)
By (3.9),
b Ay 14 /5 681(8+ B82 +3BK + A1 + Ap)
S B(1=8y) 2 B(1=38)(1 =381 —62)

It follows from (4.4)-(4.7) and (4.10) that p < h(K). Consequently, when Ko < dg, we have p < % and 81 + 82 < 1 (actually,
81482 < 1 holds if @ < 0.09). Thus the conditions in the previous corollary are satisfied, and the current corollary holds. O

Remark 4.1. Suppose that f is analytic at xg, and let

F® (x0)
k!

1
k=T
y= sup(” fxo)| H ) < 00. (4.11)
k>2

In [2, Theorem 7], Dedieu and Kim proved the conclusion of the above corollary under the condition Ko < % ~0.0208333.
In this case, similar arguments to that in [17, p. 178], we can show that f’ satisfies (4.3) on B(xo, %) with y defined
by (4.11). Therefore Corollary 4.4 is an improvement of [2, Theorem 7].

We end this paper with two examples to illustrate our theoretical results.

Example 4.1. Let R? be endowed with the I;-norm and define

T
1
f(x):= (t —s, E(t —s)2> . x=(,s5) eR%
Then f is a continuously Fréchet differentiable function from R? to R?, and

f/(x):< - ) x=(t,s)T eR%.
s—t

t—

Hence, rank f’(x) =1 for each x € R2, and its Moore-Penrose inverse is

font 1 <1 t—s) B T 5
PO = a5 ¢) ¥ <R
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Let xo = (25, )T. Then || f'(xo)'|| = 2. Furthermore, since for any x = (t1,51)7, y = (t2,52)T € R?,
’ T /
< t1 —t —
If'xo)" [ f'@ = fF] < 626(| 1= bl +Is1 —520) < o2 >y — xll,

one sees that f’ satisfies (4.2) in R? with L = 225 Note that

* 1250 ~ 783752

625 2 51 31875
s1=L|f'x)'| | Fxo) | = (@)

and
26 325
_ T = =X = 315
=[f el 5 el =555 * 55 = 353
It follows that

325 31875 10359375
Ké 1= —= x = ~0.042229 < dp.
313 783752 245314376

Hence the assumptions in Corollary 4.2 are satisfied and Newton’s sequence {x,} defined in (3.1) with xy = (%, %)T con-

verges to a point & € Z satisfying (3.11) and (3.12).

Example 4.2. Let R? be endowed with the I;-norm, xo = (0,0)7 and 0 < a < do, where do = 0.0223063... as given in
Corollary 4.4. Define

f=(a+t—sa+nd+t—s)", x=t 5" €Bx,1).
Then f is analytic on B(xg, 1), and
’ 1 -1 T
ffm={ 4 1 ], x=(ts) €Bxp,1).
T+t—s = T+t—s

Hence, rank f’(x) =1 for each x € B(xg, 1). In particular, f'(xg) = (1 :]]) and its Moore-Penrose inverse is

o= (1]
f(Xo)—4 4 1)

Moreover, by mathematical induction, we can easily get that, for each x= (t,s)T € B(xg, 1),

k

0
f“<><x>u1uz-~-uk=(—1)"“(k—1>!l_[(u3—u?)< i )
i=1 (14t—s)"
where u; = (u},u?)T € R? for each i =1,2,..., k. Consequently,

[F G0l =2 and | £900)] = k=1
2

) —1,

By Remark 4.1, f’ satisfies (4.3) on B(xo, %) with y = 1. Note that

This implies that

” H f( )(XO)

y = sup(n f o)t
k>2

a=py = x)'[fx)]=a and K=]f x| f x0)]=1.
It follows that

Ka=a<(_10.

Hence the assumptions in Corollary 4.4 are satisfied and Newton’s sequence {x,} defined in (3.1) with xog = (0, 0)T converges
to a point £ € Z satisfying (3.11) and (3.12).
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