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Abstract

This paper presents a general approach to construct analytical smoothing functions for the meshfree, La-
grangian and particle method of smoothed particle hydrodynamics. The approach uses integral form of function
representation and applies Taylor series expansion to the SPH function and derivative approximations. The
constructing conditions are derived systematically, which not only interpret the consistency condition of the
method, but also describe the compact supportness requirement of the smoothing function. Examples of SPH
smoothing function are constructed including some existing ones. With this approach, a new quartic smoothing
function with some advantages is constructed, and is applied to the one dimensional shock problem and a
one dimensional TNT detonation problem. The good agreement between the SPH results and those from other
sources shows the e=ectiveness of the approach and the newly constructed smoothing function in numerical
simulations.
c© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The smoothed particle hydrodynamics (SPH) method, as a truly meshfree, free Lagrangian, particle
method, o=ers substantial potential in many classes of problems especially those characterized by
large deformations and moving discontinuities. Since its invention to solve astrophysical problems
in three dimensional open space [11,3], SPH has been extensively studied and extended to dynamic
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response with material strength [7,6], free surface Gows [13,23], explosion phenomena [10], heat
transfer and mass Gow [2] and many other applications. Di=erent parallel computing techniques
have been employed to enhance the performance of the SPH method [4,18,1].
One of the central issues for the meshfree methods is how to e=ectively construct a proper shape

function using only nodes scattered in an arbitrary manner without using a predeIned mesh that
provides the connectivity of the nodes. For smoothed particle hydrodynamics (SPH) method, the
smoothing function (also called smoothing kernel, smoothing kernel function or simply kernel in
many SPH literatures) is of utmost importance since it not only determines the pattern to interpo-
late, but also deInes the width of the inGuencing area of a particle. Di=erent smoothing functions
have been used in the SPH method as shown in published literatures and informal papers. Various
requirements or properties for the smoothing function are applied in di=erent literatures. Summarized
below are the most general ones:

1. The smoothing function must be normalized,∫
W (x− x′; h) dx′ = 1; (1)

where W (x− x′; h) is the smoothing function, x is the position vector. h is the smoothing length
that determines the supporting area of the smoothing function.

2. The smoothing function should have compact supportness. In general, the compact supportness is
deIned by the smoothing length h and a scale factor � that determines the spread of the speciIed
smoothing function. So the compact supportness means

W (x− x′) = 0 for |x− x′|¿�h; (2)

3. W (x− x′)¿ 0 in the compact supportness area of |x− x′|6 �h.
4. The smoothing function should be monotonically decreasing.
5. The smoothing function should satisfy the Dirac delta function condition as h → 0.

lim
h→0

W (x− x′; h) = �(x− x′): (3)

6. The smoothing function should be an even (symmetric) function.
7. The smoothing function should be suLciently smooth.
8. The smoothing function should be of the form W (x−x′; h)=�dK(S), where �d is the dimension-
dependent normalization constant for particular smoothing kernel functions, S = |x− x′|=h.
Any function having the above properties can be employed as an SPH smoothing kernel function.

Although Monaghan [12] stated that to Ind a physical interpretation of an SPH equation, it is
always best to assume the smoothing function to be a Gaussian, many researchers and practitioners
ever tried di=erent kinds of smoothing functions. This paper gives a general approach to construct
smoothing function. The constructing conditions are systematically derived, which, on the one hand,
interpret the consistency conditions of the SPH method, on the other hand, determine the compact
supportness of the smoothing function. The e=ectiveness of this approach is demonstrated by a series
of constructed smoothing functions, which include some existent ones and a new quartic smoothing
function. The new quartic smoothing function is applied to simulate the one dimensional shock tube
problem and a one dimensional TNT detonation problem with fairly good results.
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2. Constructing conditions

Any numerical approximation should represent the corresponding physical equations. In the tradi-
tional Inite di=erence methods (FDM), the concept of consistency deInes how well the numerical
equations model the physical equations. A numerical interpolation scheme (in FDM) is consistent if
it has the ability to exactly represent the di=erential equations in the limit as the number of the grid
point approaches inInity and the maximal mesh size approaches zero. On the one hand, consistency
is the basic requirement to construct a Inite di=erence scheme, on the other hand, consistency is
a prerequisite for convergence, since according to the Lax–Richtmyer equivalence theorem, and a
consistent Inite di=erence scheme for a well-posed partial di=erential equation is convergent if and
only if it is stable. Similarly, by using the Taylor series expansion, analysis can be carried out on
how well the SPH approximation models the physical equations in the limit as the number of the
particles approaches inInite and the smoothing length approaches zero. This analysis is carried out
in the stage of SPH kernel approximation for a function and its derivatives. The analysis shows that
to exactly approximate a function and its derivatives, certain conditions need to be satisIed, which
can be used to construct smoothing functions.

2.1. Approximating the function

In the SPH method, for a function f, multiplying f with the smoothing kernel function W , and
then integrating over the computational domain can approximate its function value at a certain point.

f(x) =
∫

f(x′)W (x− x′; h) dx′: (4)

Suppose f(x) is suLciently smooth, applying Taylor series expansion to f(x′) in the integration
in Eq. (4) around x yields

f(x′) =f(x) + f′(x)(x′ − x) + 1
2
f′′(x)(x′ − x)2 + · · ·

=
n∑

k=0

(−1)khkf(k)(x)
k!

(
x− x′
h

)k
+ rn

(
x− x′
h

)
; (5)

where rn((x − x′)=h) is the remainder of the Taylor series expansion. Substituting Eq. (5) into Eq.
(4) yields

f(x) =
n∑

k=0

Akf(k)(x) + rn

(
x− x′
h

)
; (6)

Ak =
(−1)khk

k!

∫ (
x− x′
h

)k
W (x− x′; h) dx′: (7)

Comparing the LHS with the RHS of Eq. (6), in order for f(x) to be approximated to nth order,
the coeLcients Ak must be equal to the counterparts for f(k)(x) in the LHS of Eq. (6), and therefore
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result in the following conditions:

A0 =
∫

W (x− x′; h) dx′ = 1;

A1 = h
∫ (

x− x′
h

)
W (x− x′; h) dx′ = 0

...

An =
(−1)nhn

n!

∫ (
x− x′
h

)n
W (x− x′; h) dx′ = 0 (8)

or the following simpliIed expressions in terms of the moments Mk :

M0 =
∫

W (x− x′; h) dx′ = 1;

M1 =
∫
(x− x′)W (x− x′; h) dx′ = 0

...

Mn =
∫
(x− x′)nW (x− x′; h) dx′ = 0: (9)

2.2. Approximating the derivatives

In the computational Guid dynamics (CFD), since the highest derivative is second order, in the
following discussions, only the Irst and second order derivatives are concerned. This is because, on
the one hand, the procedure can be easily extended to approximate higher derivatives and obtain
similar results, on the other hand, one can regard a higher derivative as the derivative of a lower
derivative (e.g., second derivative is the derivative of the Irst derivative, and so on).
The approximation of the Irst derivative in SPH can be obtained by replacing the function f(x)

in (4) with the derivative f′(x),

f′(x) =
∫

f′(x′)W (x− x′; h) dx′: (10)

By using integration by parts, the above equation can be rewritten as

f′(x) =
∫
s
f(x′)W (x− x′; h) · *n ds−

∫
f(x′)W ′(x− x′; h) dx′; (11)

where
*
n is the unit vector normal to the surface. The Irst integral is over the surface s of the

computational domain. Substituting (5) into the second integral on the RHS of Eq. (11) yields

f′(x) =
∫
s
f(x′)W (x− x′; h) · *n ds+

n∑
k=0

A′
kf

(k)(x) + rn

(
x− x′
h

)
; (12)

A′
k =

(−1)k+1hk
k!

∫ (
x− x′
h

)k
W ′(x− x′; h) dx′: (13)
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Similarly, if the following equations are satisIed, f′(x) can be approximated to nth order,

M ′
0 =

∫
W ′(x− x′; h) dx′ = 0;

M ′
1 =

∫
(x− x′)W ′(x− x′; h) dx′ = 1

...

M ′
n =

∫
(x− x′)nW ′(x− x′; h) dx′ = 0; (14)

Ws(x− x′; h) = 0: (15)

Eq. (15) deInes the smoothing function value on the surface to be zero, which determines the
surface integration

∫
s f(x

′)W (x − x′; h) · *n ds to vanish for arbitrarily selected function f(x). The
Irst expression in Eq. (14) is actually another representation of Eq. (15) as we can see from the
following expression:∫

W ′(x− x′; h) dx′=
∫
1 ·W (x− x′; h) · *n ds−

∫
(1)′ ·W (x− x′; h) dx′

=
∫ s

s
W (x− x′; h) · *n ds= 0: (16)

The approximation of the second derivative can be obtained similarly by directly substituting
the function f(x) in (4) with the derivative f′′(x). After using integration by parts, the following
expressions can be derived in order to approximate f′′(x) to nth order:

M ′′
0 =

∫
W ′′(x− x′; h) dx′ = 0;

M ′′
1 =

∫
(x− x′)W ′′(x− x′; h) dx′ = 0;

M ′′
2 =

∫
(x− x′)2W ′′(x− x′; h) dx′ = 2

...

M ′′
n =

∫
(x− x′)nW ′′(x− x′; h) dx′ = 0; (17)

Ws(x− x′; h) = 0; (18)

W ′
s (x− x′; h) = 0: (19)

Again, Eqs. (18) and (19) determine the surface term to vanish for arbitrarily selected function
f(x) and its Irst derivative f′(x). The Irst expression in Eq. (17) is actually another representation
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of Eq. (19) as we can see from the following expression:∫
W ′′(x− x′; h) dx′=

∫
s
1 ·W ′(x− x′; h) · *n ds−

∫
(1)′ ·W ′(x− x′; h) dx′

=
∫ s

s
W ′(x− x′; h) · *n ds= 0: (20)

If Eqs. (18) and (19) are satisIed, Eq. (14) and (17) can be derived from Eq. (9) (except the
Irst one expression in (14) and Irst two expressions in (17)) by using the integration by parts with
some trivial transformations∫

(x− x′)kW (x− x′; h) dx′= 1
(k + 1)

∫
(x− x′)k+1W ′(x− x′; h) dx′

=
1

(k + 1)(k + 2)

∫
(x− x′)k+2W ′′(x− x′; h) dx′: (21)

In sum, if a function and its Irst two derivatives are to be reproduced to nth order accuracy, then
the smoothing function should satisfy

M0 =
∫

W (x− x′; h) dx′ = 1;

M1 =
∫
(x− x′)W (x− x′; h) dx′ = 0

...

Mn =
∫
(x− x′)nW (x− x′; h) dx′ = 0; (22)

Ws(x− x′; h) = 0;
W ′

s (x− x′; h) = 0: (23)

It can be seen that the constructing conditions can be classiIed into two groups. The Irst group
shows the ability of the smoothing function to reproduce polynomials and thus is the representation
of the consistency concept that will be further discussed later. With the Irst group, the function can
be exactly approximated to nth order. The second group deInes the surface value of the smoothing
function as well as its Irst derivative, and is the representation of the property of compact support
for the smoothing function and its Irst derivative. With these constructing conditions, the function as
well as its Irst two derivatives can be exactly approximated to nth order. The constructing conditions
for higher order derivatives of a function can be obtained in the same procedure, and can also be clas-
siIed into two similar groups. Except from the constructing conditions expressed in Eq. (22), (23),
the higher order derivatives of smoothing function should have also compact support like Eq. (23).
Revisiting the previously listed properties of the smoothing function, the normalization property

expressed in Eq. (1) is actually a constituent of Eq. (22). The compact supportness property of
the smoothing function is also a constituent of the surface Eqs. (23). It is clear that the previously
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discussed requirements on the smoothing function are actually the representations of SPH approxi-
mation for a function and its derivatives.

2.3. Consistency

The constructing conditions shown in Eqs. (22) and (23) are derived by using Taylor series
expansion. With such constructing conditions satisIed, the SPH approximations for a function and
its derivative can be consistent to a given order. This Taylor series expansion based approach is
somewhat similar to the consistency concept for the traditional Inite di=erence method in treating
partial di=erential equations (PDE) in strong form.
Similarly, the consistency concept for the traditional Inite element methods (FEM) also applies to

the meshfree particle methods. In general, in FEM, if an approximation can reproduce a polynomial
of up to kth order exactly, the approximation is said to have kth order consistency or Ck consistency.
Borrowing the consistency concept from FEM, we may say that for an SPH approximation to exactly
reproduce a function, the smoothing function should have certain degree of consistency, which again
can be represented by its ability to reproduce the polynomials. For a constant Ield f(x) = c to be
reproduced, according to the SPH kernel approximation, we obtain

f(x) =
∫

cW (x− x′; h) dx′ = c; (24)

or ∫
W (x− x′; h) dx′ = 1: (25)

It is clear that the normalization condition or the Irst expression in (22) is actually the represen-
tation of the zeroth order consistency.
It is easy to show that other constructing conditions shown in Eq. (22) can also be regarded as

the high order consistency condition. Let’s consider a single term of the polynomial k (k¿ 1) or
simply assume f(x) = ckxk , approximating the function value at the origin x = 0 yields

f(0) =
∫

cx′kW (0− x′; h) dx′ = 0: (26)

The general expression can be obtained by moving the origin to a certain point to get the approx-
imation of the function at the origin in the new coordinate system, so∫

(x− x′)kW (x− x′; h) dx′ = 0: (27)

It is clear that Eq. (27) is the same as Eq. (22). Therefore the constructing conditions shown in
Eq. (22) can also be regarded as the consistency conditions.

2.4. Further discussions

The above discussed consistency expressions are derived from the continuous form (integral with
the kernel or kernel approximation). They do not assure consistency for the discrete form (particle
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Fig. 1. Illustration of particle inconsistency of SPH for one dimensional case with regular particle distribution. (a) For an
interior point; (b), (c) and (d) for a point near the boundary or on the boundaries.

approximation). In meshfree particle methods this phenomenon is called particle inconsistency. The
discrete counterpart of the constant and linear consistency conditions are

N∑
j

W (x− xj; h)Oxj = 1; (28)

N∑
j

(x− xj)W (x− xj; h)Oxj = 0; (29)

where N is the total number of neighbour particles for the given particle locating at x. These
discretized consistency conditions are not always satisIed. One direct and simple case is for the
particles at or near the boundaries, as clearly shown on Fig. 1, even for regular node (particle)
distribution, due to the ineLcient particles contributing to the discretized summation, the LHS
of Eq. (28) is less than 1 and the LHS of Eq. (29) will not vanish to be zero. It can also
be easily shown that for irregular particle distribution, even for the interior particles, the con-
stant and linear consistency condition in the discretized form will not be exactly satisIed. Simi-
larly the discrete counterparts of higher order consistency conditions are also not always exactly
satisIed.
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There are di=erent means to restore the consistency condition for the discrete form. One possible
approach is given here. For a particle approximation to obtain kth order consistency in discrete form,
we may take the smoothing function as

W (x− xj; h) = b0(x; h) + b1(x; h)
(
x− xj
h

)
+ b2(x; h)

(
x− xj
h

)2
+ · · ·

=
k∑

I=0

bI (x; h)
(
x− xj
h

)I
: (30)

The discretized form for Eq. (22) can be rewritten as

k∑
I=0

bI (x; h)
N∑
j

(
x− xj
h

)I
Oxj = 1

...
k∑

I=0

bI (x; h)
N∑
j

(
x− xj
h

)I+k
Oxj = 0: (31)

Assuming

mk(x; h) =
N∑
j

(
x− xj
h

)k
Oxj;

the k + 1 coeLcients bI (x; h) can be determined by solving the following matrix equation:


m0(x; h) m1(x; h) · · · mk(x; h)

m1(x; h) m2(x; h) · · · m1+k(x; h)

...
...

. . .
...

mk(x; h) mk+1(x; h) · · · mk+k(x; h)







b0(x; h)

b1(x; h)

...

bk(x; h)



=




1

0

...

0



: (32)

After determining the coeLcients bI (x; h), the smoothing function expressed in Eq. (30) can be
numerically calculated, which assures the discretized consistency to kth order. Therefore this particle
consistency restoring process actually gives a new approach to construct some kind of numerical
smoothing function for meshfree particle methods, and thus to provide a new way to solve the
meshfree particle problem. This approach mathematically is very useful. The famous reproducing
kernel particle method (RKPM) [8,9] is somewhat similar to this approach. In the RKPM, the
reproducing kernel function PW was developed by multiplying the function expressed in Eq. (30)
with another window function Ww(x − xj; h) that is usually a traditional SPH smoothing function
such as the cubic spline

PW (x− xj; h) =W (x− xj; h)Ww(x− xj; h): (33)
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The k + 1 coeLcients bI (x; h) can be determined by solving the same Eq. (32) except that

mk(x; h) =
N∑
j

(
x− xj
h

)k
Ww(x− xj; h)Oxj:

Comparing with the traditional smoothing function, which is only dependent on the particle dis-
tance, the resultant smoothing function is pointwise, and therefore depends on both the distance and
position of the interacting particles. The cost-e=ectiveness for this approach in constructing pointwise
smoothing function needs to be considered since it will require additional CPU time to solve the
pointwise equation (32). Moreover since all particles are moving, the particle connectivity is chang-
ing as well. Another problem is that solving Eq. (32) implies the computation of the inverse of the
coeLcient matrix. It is clear that a non-zero value is required for the determinant of the coeLcient
matrix. To obtain non-zero determinant, the particle distribution must satisfy some kind of condition
rather than the random distribution in the original SPH method.
As far as the interpolation is concerned, the restoring of particle consistency is a big improve-

ment and will greatly enhance the simulation accuracy. However, it should be noted that restoring
the consistency in discrete form leads to some special questions. Firstly, the resultant smoothing
function is negative in some parts of the region; secondly, the resultant smoothing function may not
be monotonically decreasing with the increase of the particle (node) distance; thirdly the function
may not be symmetric. These violate the previously discussed properties of a traditional smoothing
function and may result in some serious consequence. For example, negative smoothing function
may yield unphysical value such as negative density, and again breakdown the entire computation.

3. Constructing the smoothing function

3.1. Constructing the smoothing function

As discussed earlier, the approach of restoring particle inconsistency actually gives a new way
to construct numerical smoothing function. However, some questions may occur for the resultant
pointwise smoothing function especially when simulating hydrodynamic problems. In our work, rather
than using the discrete form of constructing conditions, we employ the continuous equations (22)
and (23) to construct smoothing function, which is only dependent on the inter-particle distance,
and can have analytical expression rather than numerical value based on the distribution of the
neighbor particles. The constructed analytical smoothing function has special advantages especially
for problems with randomly distributed particles and with statistical features where the determinant
approach of constructing smoothing function through restoring particle consistency is diLcult to
apply.
If the smoothing function is assumed to be a polynomial dependent only on the relative distance

of the concerned particles, it can be assumed to take the following form with an inGuencing width
of �h,

W (x− x′; h) =W (S) = a0 + a1S + a2S2 + · · ·+ anSn (34)

where S = |x− x′|=h. So the smoothing function is an even function since it depends on the relative
distance rather than the positions of the particles.
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For Eq. (34), if W (i)(x− x′; h) exists,

W (i)(0) =



i!ai;

x− x′
h

→ 0+;

(−1)ii!ai; x− x′
h

→ 0−:
(35)

So W (i+1)(x− x′; h) exists only if the following expressions are satisIed:
a1→i = 0; i = 2k + 1; k = 0; 1; 2 : : : ;

a1→i−1 = 0; i = 2(k + 1); k = 0; 1; 2 : : : : (36)

In Eqs. (22)–(23), the Irst and second derivative of the smoothing function are involved. There-
fore, for the second derivative of the smoothing function to exist, the term related to a1 should
vanish in Eq. (34)

W (x− x′; h) =W (S) = a0 + a2S2 + · · ·+ anSn: (37)

Substituting W into the constructing conditions (22), (23), the parameters a0; a2; : : : ; an can be
calculated from the coupled linear equations, and then the smoothing function can be analytically
determined. It can be seen that the resultant expression for the smoothing function can be used for
general purpose, and does not need to resort to time consuming matrix inversion for each simulation
case at each step.

3.2. Some special aspects

3.2.1. Non-negative smoothing function
As mentioned above the conditions expressed in Eqs. (22) and (23) provide a general approach

to interpolate and to construct the smoothing functions. Similar to the particle consistency restoring
approach, the smoothing function derived from the continuous kernel form, however, will not nec-
essarily be positive especially when high order accuracy approximation is required. As far as the
interpolation schemes are concerned, negative smoothing function can produce approximations with
required accuracy. For these cases, the approximation may be called a somewhat smoothed point
method rather than smoothing particle hydrodynamics.
However, the distinct advantage of the smoothed particle hydrodynamics over ordinary interpo-

lation method lies in the Lagrangian nature, which moves the particles in response to the internal
interactions and external forces. As far as the terminology hydrodynamics is concerned, the Guid
is divided into and represented by a Inite number of particles. The terminology particle is more
suitable than terminology point since besides the volume, particles possess physical variables such
as mass, density and so on. Under such hydrodynamic circumstances, negative smoothing function
may result in unphysical solutions such as negative density (mass) and negative energy. For this
purpose, the smoothing functions in the emerged literatures are generally non-negative. In sum, for
the purpose of hydrodynamic simulations, the constructed smoothing functions for smoothed particle
hydrodynamics should be non-negative. While according to Eq. (22), for even order (k = 2; 4; 6 : : :)
accuracy to be obtained, the smoothing function has to be negative in parts of the region. It seems
one cannot have everything at the same time.
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3.2.2. Center peak value
The center peak value of the smoothing function is very important since it determines how much

the particle itself will contribute to the approximation. Since the smoothing function for smoothed
particle hydrodynamics needs to be non-negative for hydrodynamic simulations, it is impossible to
satisfy all the constructing conditions expressed in Eq. (22). It is observed that for a non-negative
smoothing function, the constructing conditions of

∫
W (x−x′; h) dx′=1; ∫ (x−x′)W (x−x′; h) dx′=0

and Eq. (23) can be satisIed, but
∫
(x−x′)2W (x−x′; h) dx′ will not be satisIed if W is not always

zero. So no matter if the later constructing conditions are satisIed or not, the highest order of
accuracy for the function approximation is second order. Under such circumstances, the integration∫
(x−x′)2W (x−x′; h) dx′ can be used a mark to measure the accuracy of the function approximation.
The lower the integration is, the more accurate the function approximation is. The center peak value
of the smoothing function is closely related to

∫
(x− x′)2W (x− x′; h) dx. Larger center peak value

of the smoothing function means smaller value of the integration. Therefore as far as the SPH kernel
approximation process is concerned, larger center peak value of the smoothing function means better
accuracy. In constructing the smoothing function, the center peak value is a factor that needs to be
considered, and can be designated in the constructing process.

3.2.3. Piecewise smoothing function
In some circumstances, the piecewise smoothing function is preferred since the shape of the

piecewise smoothing function is easier to be controlled by changing the number of the pieces and
the locations of the separation point. For example, consider a smoothing function with two pieces,

W (S) =



W1(S); 06 S ¡S1;

W2(S); S16 S ¡S2;

0; S26 S;

(38)

the function itself and the derivatives at the separation points should be continuous, so

W1(S1) =W2(S1); W ′
1(S1) =W ′

2(S1); W ′′
1 (S1) =W ′′

2 (S1): (39)

Considering the requirements at the separation points as well as the compact supportness, one
possible form of the smoothing function is

W (S) =



b1(S1 − S)n + b2(S2 − S)n; 06 S ¡S1;

b2(S2 − S)n; S16 S ¡S2;

0; S26 S:

(40)

For more pieces, similar expressions can be used to construct the smoothing functions.

3.3. Some examples of constructed smoothing functions

3.3.1. Dome-shaped quadratic smoothing function
If the smoothing function is a quadratic expression of S, and the scale factor � = 1, in one

dimensional space, the resultant smoothing kernel is W (S; h) = 3=4h(1 − S2) (Fig. 2), which was
used for the grid free Inite interpolation method (FIM) by Hicks and Liebrock [5].
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Fig. 2. Dome-shaped quadratic kernel and its Irst derivative.

3.3.2. Piecewise cubic smoothing function
If the smoothing function is a piecewise cubic function with the separation point at S = 1 and

� = 2, the smoothing function can also take the form expressed in Eq. (40). By using the Irst
expression in Eq. (22) and considering the existence of the second derivative of the smoothing
function, the resultant parameters b1=1

6 ; b2=− 2
3 . The constructed piecewise cubic smoothing function

is exactly the most commonly used cubic spline smoothing function in SPH literatures [12,15]
(Fig. 3),

W (S; h) = �d ×




2
3
− S2 +

1
2
S3; 06 S ¡ 1;

1
6
(2− S)2; 16 S ¡ 2;

0; S¿ 2:

(41)

In one, two or three dimensional space, �d = 1=h; 15=7�h2; 3=2�h3 respectively.

3.3.3. Piecewise quintic smoothing function
If the smoothing function is a piecewise quintic function with the separation point at S1 = 1 and

S2 = 2, the scale factor � = 3, the smoothing function can also take the similar form expressed in
Eq. (40). By using the Irst expression in Eq. (22), considering the existence of the second derivative
of the smoothing function, and deIning the center peak value, the resultant parameters b1=1; b2=−6,
and b3 = 15. �d is 1=120h; 7=478�h2 and 3=359�h3 in one, two and three dimensions, respectively.
The constructed smoothing function (Fig. 4) is the one employed by Morris [17] in simulating low
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Fig. 4. Quintic kernel and its Irst derivative.

Reynolds number incompressible Gow.

W (S; h) = �d ×




(3− S)5 − 6(2− S)5 + 15(1− S)5; 06 S ¡ 1;

(3− S)5 − 6(2− S)5; 16 S ¡ 2;

(3− S)5; 26 S ¡ 3;

0; S ¿ 3:

(42)
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Fig. 5. The new quartic smoothing function and its Irst two derivatives.

3.3.4. A new quartic smoothing function
By using the same idea, a new quartic smoothing function is constructed as follows

W (S; h) =



�d

(
2
3
− 9
8
S2 +

19
24

S3 − 5
32

S4
)
; 06 S6 2;

0; S ¿ 2;

(43)

where �d is 1=h; 15=7�h2 and 315=208�h3 in one, two and three dimensions, respectively. The quartic
smoothing function and its Irst two derivatives are shown in Fig. 5. The presented quartic function
satisIes the normalization condition, the function itself and Irst derivative have compact support.
The presented quartic function is very close to the most commonly used cubic spline (Eq. (41)) with
the same center peak value of 2

3 , and monotonically decreases with the increase of the distance. The
new quartic function has several advantages over the cubic function. Considering the integration of∫
(x − x′)2W (x − x′; h) dx′, the presented quartic function yields smaller values than that from the
cubic smoothing function, and therefore as far as the kernel approximation is concerned, the quartic
function produces better results. Since the stability properties of SPH depend strongly on the second
derivative of the smoothing function [21,16], a smoother smoothing function generally results in
more stable SPH formulations. The presented quartic function has smoother second derivative than
the piecewise linear second derivative of the cubic function, and therefore the stability properties
should be superior to those of the cubic function.

4. Numerical examples

The e=ectiveness of the approach in constructing smoothing functions has been shown in the above
di=erent smoothing functions. The eLciency and accuracy of the constructed smoothing functions
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have also been veriIed in various literatures. Presented here are two numerical tests for the newly
constructed quartic function.

4.1. Shock tube problem

The shock tube problem is a good numerical benchmark and was comprehensively investigated by
many SPH researchers when studying SPH [4,14], in which the cubic spline function is employed as
the smoothing function. The shock-tube is a tube Illed with gas, which is separated by a membrane
into two parts of di=erent pressures and densities. The gas in each part is initially in an equilibrium
state. When taking away the membrane suddenly, a shock wave is produced and moves into the
lower density gas, a rarefaction wave travels into the higher density gas, a contact discontinuity
forms near the center and travels into the low-density region behind the shock.
In this work, the newly constructed quartic function is used as the smoothing function to simulate

this shock tube problem. The initial conditions are similar to what Hernquist [4] used, which was
introduced by Monaghan [14] from [20].

x6 0;  = 1; v= 0; u= 2:5; p= 1; Ox = 0:001875;

x¿ 0;  = 0:25; v= 0; u= 1:795; p= 0:1795; Ox = 0:0075;

where  ; p; u and v are the density, pressure, internal energy, and velocity of the gas respectively.
Ox is the inter-particle distances.
There are 400 particles used in the simulation. All particles have the same mass of mi=0:001875.

320 particles are evenly distributed in the high-density region [ − 0:6; 0:0], and 80 particles in the
low-density region [0.0, 0.6]. The purpose of this initial particle distribution is to obtain required
discontinuous density proIle in the computing area. The equation of state for the ideal gas p=(#−1)
 u is accepted in the simulation with #= 1:4. The time step is 0.005 and the simulation ran for 30
time steps. In resolving the shock, the Monaghan type artiIcial viscosity [12] is used, which also
solves to prevent unphysical penetration. Figs. 6–9 show the density, pressure, velocity and internal
energy proIles. It can be seen the obtained results from the new approach agree well with the exact
solution in the region [ − 0:4; 0:4]. The shock is observed from x = 0:2 to 0.25; and is resolved
within several smoothing lengths. The rarefaction wave is located between x = −0:2 and 0. The
contact discontinuity is around x=0:1. The boundary is not specially treated since for the instant at
t=0:15 s, the boundary e=ect has not propagated to the shock area, and therefore the shock physics
is not a=ected by the boundary e=ect.

4.2. One dimensional high explosive detonation

The HE detonation process involves in a violent chemical reaction which converts the original
high energy explosive charge into gas at very high temperature and pressure, occurring with extreme
rapidity and releasing a great deal of heat. One important benchmark in HE detonation simulation
is a one dimensional TNT slab detonation [10,19], in which a 0:1 m long TNT slab detonates at
one end of the TNT slab. The newly constructed quartic smoothing function is used to simulate
this one dimensional TNT detonation problem. In the simulation, the JWL equation of state for the
detonation produced high explosive gas is used. The detonation velocity D of TNT is 6930 m/s.
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If the solid wall boundary condition is used to forbid material transport from everywhere, a
symmetric setup can be employed to deploy the particles, and thus makes the detonation of the
0:1 m long slab from one end to the other end equivalent to the detonation of a 0:2 m long slab
from the middle point to both ends. Before detonation, particles are evenly distributed along the
slab. The initial smoothing length is one and a half times the particle separation. After detonation,
a plane detonation wave is produced. According to the detonation velocity, it takes around 14:4 �s
to complete the detonation to the end of the slab. Fig. 10 shows the pressure proIle along the slab
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at 1 �s interval from 1 to 14 �s by using 4000 particles. The dashed line in Fig. 10 represents
the experimentally determined C–J detonation pressure, which is, according to the Chapman and
Jouguet’s hypothesis, the pressure at the tangential point of the Hugoniot curve and the Rayleigh
line, and represents the pressure at the equilibrium plane at the trailing edge of the very thin
chemical reaction zone. For this one dimensional TNT slab detonation problem, the experimental
C–J pressure is 2:1×1010 N=m2. It can be seen from Fig. 10 that, with the process of the detonation,
the detonation pressure converges to the C–J pressure. If the free boundary applies, the explosive
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Fig. 11. Pressure transients at 1 and 2 �s.

gas behind the C–J plane disperses outwards with the forward propagating detonation wave. Figs.
11–13 show the comparisons of pressure, density and velocity proIles between theoretical values
[22] and the presented SPH results at 1 and 2 �s. The close agreement between the SPH results and
the theoretical solutions veriIes the validity of the newly constructed smoothing function.
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Fig. 12. Density transients at 1 and 2 �s.

Fig. 13. Velocity transients at 1 and 2 �s.

5. Concluding remarks

The smoothing function is signiIcant in smoothed particle hydrodynamics since it determines the
pattern of the interpolation and the e=ective inGuencing area of a certain particle. In this paper, based
on the Taylor series expansion to the SPH formulations for function and derivative approximation,
an approach of constructing smoothing functions is generalized. The constructing conditions are
systematically derived, which make clear that the former requirements on the smoothing function are
actually representation of SPH approximations for the function and its derivatives. The constructing
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conditions interpret the consistency conditions and the compact supportness. The particle consistency
can be restored through constructing a pointwise numerical smoothing function.
The constructing conditions in continuous kernel form provide a general approach to devise ana-

lytical smoothing function. The constructed analytical smoothing function is not location dependent,
and may be used in other meshless particle method. Though there is no requirement on the sign of
the smoothing function mathematically, it should be noted that negative values should be avoided
to prevent from obtaining unphysical results when the method is applied to simulate hydrodynamic
problems. The center peak value of the smoothing function also should be considered since the
value is related to the accuracy to the SPH kernel approximation. Piecewisely constructing the
smoothing function is also feasible if proper considerations on the separation points can be appro-
priately considered. With this more general approach, some examples of smoothing functions are
constructed including some existing ones. A quartic smoothing function with some advantages is
also constructed and applied to simulate the one dimensional shock tube problem and a one dimen-
sional high explosive detonation problem with a good agreement with the solution from the other
sources.
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