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We introduce a new measure of irregularity of distribution-the range, $, that is 
similar to the nonuniformity (P= but much easier to compute. It is shown that for 
P,-nets and for initial segments of UT-sequences tj 42’ and as the number of 
points increases this is the lowest possible order of magnitude + = O(1). P 1991 

Academic Press, Inc. 

1. DEFINITIONS 

The unit interval [0, l] is denoted by Z so that I” is the n-dimensional 
unit cube. Subintervals [(j- 1) 2 -“‘, jZ -“) are called dyadic intervals; 
here j and m are integers, 16 j 6 2”, m > 0. At j = 2” the dyadic interval is 
closed by definition. So a fixed integer m defines a partition of Z into a sum 
of 2” equal dyadic intervals. 

A dyadic box (parallelepiped) Z7 is the Cartesian product of dyadic inter- 
vals. A set of integers M= (m,, . . . . m,) # (0, . . . . 0), m = m, + ... + m,, 
defines a partition of I” into a sum of equal dyadic boxes ZZ, whose volume 
is 2-“, 1 <cr<2”. 

Given a set of points x,, . . . . xN E I” and a subset G c I”, we introduce the 
counting function S,(G) as the number of points xi E G while 1 < i < N. 

Now consider a fixed set of points x, , . . . . xN E I”. For an arbitrary parti- 
tion M of I” denote 

tiM = max s,(ZZ,) - min s,(ZZ,) 
a z (1) 

and define the range of the set as 

II/ = $(x1, ..‘, XIV) = SUP rc/M, (2) 
M 

where the supremum is extended over all such partitions of I”. 
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To list all these partitions one has to consider all integer solutions 
m 1, ..‘, m,, of the equation 

m, + ... +m,,=m 

at m = 1, 2, 3, . . . . In fact, only a finite number of partitions must be taken 
into consideration. 

Indeed, if the projections of .x1, . . . . x,+, onto each coordinate axis are dis- 
tinct then for all partitions with sufficiently large m both max, S,(n,) = 1 
and min, S,(A’,) = 0. Clearly, $3 1. 

If there are k points having identical groups of Cartesian coordinates one 
may easily find a partition with max, S,(Lf’,) = k, min, S,(n,) =O. 
Clearly, $2 k, and more detailed partitions can be ignored. 

In general, 

1 d ‘i+, , . . . . xN) 6 N. (3) 

EXAMPLE. For a rectangular lattice containing N = c” points (c an 
integer) the range is 

maximal values $M = cnP i correspond, e.g., to all partitions 
M= (m, 0, 0, . . . . 0) with sufficiently large m. In the case where n = 1 the 
range is the best possible, but for n > 1 the ranges of rectangular lattices 
t,G-+ccasN-+co. 

2. THE RANGE-A MEASURE OF IRREGULARITY OF DISTRIBUTION 

THEOREM. 1. Let xl, x2, . . . be an arbitrary infinite sequence of points 
in I”. The sequence is uniformly distributed (ud) if and only if 

The proof of the theorem follows immediately from the lemmas below: 

LEMMA 1. For an arbitrary set of points x1, . . . . xN E I” 

$,2-+‘D, 

where D is the discrepancy of the set. 

(5) 
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LEMMA 2. For an arbitrary set of points x1, . . . . X~E I” 

(pee <2”-‘*, (6) 

where cpx is the nonuniformity of the set. 

Proof of Theorem 1. Each of the relations D(x,, . ..) xN)/N + 0 and 
(P%J(-‘c,, ‘..? x,)/N + 0 as N -+ 00 is a necessary and sufficient condition of 
ud. So (4) is implied by (5) and (6). 

First, we recall the definition of discrepancy. For a given point YEI” 
with Cartesian coordinates (y’, . . . . y”), a box G1. = [0, y’) x ... x [0, y”) 
with n-dimensional volume V(Gl.) = y1 ... y” is introduced. The dis- 
crepancy of the points xi, . . . . x,,, is defined by 

D = D(x, , . . . . X,)=SUP I&&)-NVG,.)l, 

where the supremum is extended over all y E I”. 

Proof of Lemma 1. It follows from the definition of D that for all boxes 
G, the counting functions S,(G,,) = NV(G,,) + h,, with lh,,l GD. A box ZZ is 
a sum of 2” boxes G,, where all the vertices of 17 play the role of y. There- 
fore S,(D) = NV(D) + h’ with lh’l d 2”D. 

For a fixed partition M of I” the volumes of all dyadic boxes Dd, are 
equal. So, 

maxS,(Z7,)-minS,(D,),(2.2”0=2”+‘D. 
a 1 

And the range $ does not exceed 2”+ ‘D also. 
Second, we recall the definition of nonuniformity [7, 8,4]. Let D be an 

arbitrary dyadic box. If we move the origin of the coordinate system to the 
center of I7 and denote by ti, . . . . 5, the new coordinates, 17 may be split 
into two parts: Z7+, in which the product 5, . . .<,, > 0, and D-, in which 
5, . . .t,, < 0. More precisely, each of these parts is the union of 2”- ’ 
“hyperquadrants” of 17 that are again dyadic boxes. 

Let x,, . . . . xN be N given points in I”. The n-dimensional nonuniformity 
of these points is defined to be 

SUP Isdn+ I- S,(~- )I, 
II 

(7) 

where the supremum is extended over all dyadic boxes 17. 
Furthermore, we consider the projections of xi, . . . . xN onto various 

s-dimensional faces of I” and calculate the s-dimensional nonuniformities 
of these projections. The largest value among all 2” - 1 nonuniformities 
(1 <s < n) is called the nonuniformity of xi, . . . . xN and denoted by 
(Pr;(Xl, “., xn). 
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Proof of Lemma 2. Consider an arbitrary dyadic box ZZ= ZZ+ u ZZ . 
All hyperquadrants of 17 are members of the same partition of I”. Therefore 

2” ml min s,(ZZ,) d s,(ZZ+ ) 6 2” ’ max s,(ZZ,) 
3L 1 

and the same inequalities are true for s,,,(ZZ). Hence, 

IS,(zz’) - S,(zr )I d 2” l [max s,(ZZ,) -min s,(ZZ,)] = 2” ‘ijM. 
a 1 

And the n-dimensional nonuniformity (7) does not exceed 2”- ‘rj. 
A remarkable point is that the s-dimensional nonuniformities do not 

exceed 2’- ‘$: an s-dimensional dyadic hyperquadrant may be replaced by 
an n-dimensional dyadic box corresponding to a partition (m,, . . . . m,) 
containing n - s zero values of mk. So all nonuniformities do not exceed 
2”- ‘tj and (6) is true. 

3. P,-NETS AND LP,-SEQUENCES 

Let 0 < r < v be integers. A point set of N = 2’ points in I” is called a 
P,-net if every dyadic box ZZ with V(ZZ) = 2’jN contains exactly 2’ points 
of the set. 

The smaller r is the better the uniformity of the P,-nets. It was shown in 
[7, 81 that P,-nets exist only in I’, Z2, and Z3. If r(n) is the least value of 
r having the property that in I”, P,-nets exist for arbitrarily large N, then 

t(l)=r(2)=~(3)=0, r(4)= 1, T(5) d 3. 

As n + cc the value s(n) < n log, n + . 

THEOREM 2. For an arbitrary P,-net in I” 

I// d 2’. (8) 

Proof. Consider a partition M of I” into dyadic boxes ZZ, with 
V(ZZ,) = 2’/N; then every 17, contains 2’ points and rj,+, = 0. The same will 
be true for all partitions with V(ZZ,) > 2’/N since every large 17, is a sum 
of several boxes with volumes 2’/N. Finally, for more detailed partitions, 
s,(ZZ,) < 2’ and max, S,(ZZ,) - min, S,(ZZ,) < 2’, 

COROLLARY. For an arbitrary PO-net, $ = 1. 

Thus we have proved that whenever PO-nets exist they belong to the 
most uniform sets of points. 
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The following is a kind of inverse statement: if $(x,, . . . . xN) = 1 and 
N = 2’, v an integer, then x1, . . . . xN is a PO-net. 

Indeed, consider an arbitrary partition of I” into dyadic boxes with 
V(ZZ,) = l/N. The requirement $ = 1 implies that 

max s,(ZZ,) - min s,(ZZ,) < 1. 
x 3( 

But there are N points and N boxes; if one of the Z7, is empty then another 
must contain at least two points, which contradicts the last inequality. 
Thus every ZZ, contains exactly one point. 

Now we turn to infinite sequences x0, x1, . . . E I”. 
An initial segment of the sequence is the set of points x0, . . . . xN- ,. 

A binary segment is the set of points xi with indices satisfying 
(k- 1)2P<i<k2P for some integers k? 1, pb 1. 

The sequence x,,, x1, . . . is called an LP,-sequence if every binary segment 
with p > z is a P,-net [7, 81. 

THEOREM 3. For an arbitrary initial segment of an LP,-sequence in I” 

ti(-x 0, . . . . x,-,)<2’. (9) 

Proof: Consider an arbitrary partition M of I” into dyadic boxes ZZ, 
and denote the volume V(Z7,) = 2-“. Let p = m + 7 and define k, by the 
condition (k, - 1) 2p < N - 1 < k02P. Then the initial segment 0 < id N - 1 
consists of k,, - 1 full binary segments that are P,-nets, and may be of one 
extra segment (kO - 1) 2 p 6 i 6 N - 1 that is a part of a P,-net. Therefore 
(k,- 1)2’6s,(ZZ,)<k,2’. It follows from (1) that $M<27. Hence (9) is 
true. 

From (3) one can easily conclude that the best asymptotic behavior of 
be 0, . . . . xN- 1) as N-r cc is O(1). Thus all LP,-sequences can be regarded 
as asymptotically best ud sequences. 

For LP,-sequences even the best numerical values J/(x,, . . . . xN- ,) = 1 are 
attained but such sequences exist only in I’ and I’. In Z3 only LP,-sequences 
exist and Theorem 3 provides the estimate $ < 2. 

From Theorems 2 and 3 and Lemma 2 two known statements 17, S] 
follow: in I” for arbitrary P,-nets and for arbitrary initial segments of 
LP,-sequences, cp o3 6 2” - ’ + 7. 

4. GENERALIZATIONS 

Let r > 2 be an arbitrary integer. If one substitutes r for 2 in Section 1 
then, mutatis mutandis, r-adic intervals and r-adic boxes ZZ, with 
V(ZI,) = rem may be defined. The r-adic range may be introduced 
similarly, and Theorem 1 remains true. 
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Turning from 2 to r in Section 3 leads to definitions of r-adic P,-nets, 
r-adic segments of a sequence, and r-adic LP,-sequences. Here Theorems 2 
and 3 can be easily generalized: in I” for arbitrary r-adic P,-nets and for 
arbitrary initial segments of r-adic LP,-sequences the r-adic ranges do not 
exceed r’. 

H. Faure [2] was the first to introduce r-adic P,-nets and LP,-sequences 
with r = 0 (in [2] they are called P;,,-reseau and P,,.-suite) that exist in I” 
for sufficiently large r (in fact, for r > n). H. Niederreiter [S, 61 investigated 
the general case and, among such nets and sequences (in [S, 61 they are 
called (t, v, n)-nets and (t, n)-sequences in base r), found those having the 
smallest discrepancy estimates that are currently known. 

Computational experiments with dyadic and r-adic LP,-sequences are 
presented in [ 1, 31. Various applications of these sequences are discussed 
in [lo]. 

5. NUMERICAL EXAMPLES 

A program has been written for computing # for a given set of N points 
in I”. We assume that a maximum value m* is prescribed and only parti- 
tions with m < m* are considered in (2). For the following examples we put 
m* = [log, N] + 1. 

Let x0, x1, . . . be the LP,-sequence in I” defined in [9] that has addi- 
tional uniformity properties. Programs for generating these sequences are 
available in [ll, 11. We have computed values Ic/ = $(x0, . . . . x,~ r) for 
various n and N. 

For the case of n = 3 where t = 1 we have obtained Ic/ = 2 for all 
3dN<50. 

TABLE I 

Values of $(.x0, . . . . xN-,) in I4 

N: 4 5-6 7-9 lo-1 1 12-16 17-20 21-32 33-40 

CL 2 3 4 3 2 3 4 5 

N: 4148 49-56 51-I 1 72-79 8CL87 88-95 96-160 161-168 

IL 6 7 8 7 6 5 4 5 

N: 169-176 177-184 185-199 200-207 208-215 216-223 224-257 

* 6 I 8 7 6 5 4 
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TABLE II 

Values of I&L,, . . . . zN) in I4 

N: 4 8 12 I6 20 24 28 32 36 40 44 48 52 56 60 64 

3/ 2 4 8 12 14 14 12 12 14 14 12 14 14 16 16 14 

N: 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 

i+b 14 16 16 16 14 16 14 18 16 18 18 18 17 16 18 20 

For the case of n = 4 where T = 3 the values of @ for 4 d N < 257 are 
listed in Table I. 

We have generated a sequence z,, z2, . . . of independent random points 
uniformly distributed in I4 and computed values of +(z,, . . . . zN) that are 
listed in Table II for N = 4(4) 128. 

We have carried out several computations for random sequences and we 
think that at large N the rate of growth of $(z,, . . . . z,) is about fi. 
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