A New Measure of Irregularity of Distribution

Ilya M. Sobol' and Oleg V. Nuzhdin
Institute of Applied Mathematics, USSR Academy of Sciences, 4, Miusskaya Square, Moscow 125047, USSR
Communicated by E. Hlawka
Received May 15, 1990

Abstract

We introduce a new measure of irregularity of distribution-the range, ψ, that is similar to the nonuniformity $\varphi_{r r}$, but much easier to compute. It is shown that for P_{τ}-nets and for initial segments of $L P_{\tau}$-sequences $\psi \leqslant 2^{\tau}$ and as the number of points increases this is the lowest possible order of magnitude $\psi=O(1)$. © 1991 Academic Press, Inc.

1. Definitions

The unit interval $[0,1]$ is denoted by I so that I^{n} is the n-dimensional unit cube. Subintervals $\left[(j-1) 2^{-m}, j 2^{-m}\right)$ are called dyadic intervals; here j and m are integers, $1 \leqslant j \leqslant 2^{m}, m \geqslant 0$. At $j=2^{m}$ the dyadic interval is closed by definition. So a fixed integer m defines a partition of I into a sum of 2^{m} equal dyadic intervals.

A dyadic box (parallelepiped) Π is the Cartesian product of dyadic intervals. A set of integers $M=\left(m_{1}, \ldots, m_{n}\right) \neq(0, \ldots, 0), m=m_{1}+\cdots+m_{n}$, defines a partition of I^{n} into a sum of equal dyadic boxes Π_{α} whose volume is $2^{-m}, 1 \leqslant \alpha \leqslant 2^{m}$.

Given a set of points $x_{1}, \ldots, x_{N} \in I^{n}$ and a subset $G \subset I^{n}$, we introduce the counting function $S_{N}(G)$ as the number of points $x_{i} \in G$ while $1 \leqslant i \leqslant N$.

Now consider a fixed set of points $x_{1}, \ldots, x_{N} \in I^{n}$. For an arbitrary partition M of I^{n} denote

$$
\begin{equation*}
\psi_{M}=\max _{\alpha} S_{N}\left(\Pi_{\alpha}\right)-\min _{\alpha} S_{N}\left(\Pi_{\alpha}\right) \tag{1}
\end{equation*}
$$

and define the range of the set as

$$
\begin{equation*}
\psi=\psi\left(x_{1}, \ldots, x_{N}\right)=\sup _{M} \psi_{M}, \tag{2}
\end{equation*}
$$

where the supremum is extended over all such partitions of I^{n}.

To list all these partitions one has to consider all integer solutions m_{1}, \ldots, m_{n} of the equation

$$
m_{1}+\cdots+m_{n}=m
$$

at $m=1,2,3, \ldots$. In fact, only a finite number of partitions must be taken into consideration.

Indeed, if the projections of x_{1}, \ldots, x_{N} onto each coordinate axis are distinct then for all partitions with sufficiently large m both $\max _{\alpha} S_{N}\left(\Pi_{\alpha}\right)=1$ and $\min _{\alpha} S_{N}\left(\Pi_{\alpha}\right)=0$. Clearly, $\psi \geqslant 1$.

If there are k points having identical groups of Cartesian coordinates one may easily find a partition with $\max _{\alpha} S_{N}\left(\Pi_{\alpha}\right)=k, \min _{\alpha} S_{N}\left(\Pi_{\alpha}\right)=0$. Clearly, $\psi \geqslant k$, and more detailed partitions can be ignored.

In general,

$$
\begin{equation*}
1 \leqslant \psi\left(x_{1}, \ldots, x_{N}\right) \leqslant N \tag{3}
\end{equation*}
$$

Example. For a rectangular lattice containing $N=c^{n}$ points (c an integer) the range is

$$
\psi=c^{n-1}=N^{1-1 / n}
$$

maximal values $\psi_{M}=c^{n-1}$ correspond, e.g., to all partitions $M=(m, 0,0, \ldots, 0)$ with sufficiently large m. In the case where $n=1$ the range is the best possible, but for $n>1$ the ranges of rectangular lattices $\psi \rightarrow \infty$ as $N \rightarrow \infty$.

2. The Range-A Measure of Irregularity of Distribution

Theorem. 1. Let x_{1}, x_{2}, \ldots be an arbitrary infinite sequence of points in I^{n}. The sequence is uniformly distributed (ud) if and only if

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{\psi\left(x_{1}, \ldots, x_{N}\right)}{N}=0 \tag{4}
\end{equation*}
$$

The proof of the theorem follows immediately from the lemmas below:

Lemma 1. For an arbitrary set of points $x_{1}, \ldots, x_{N} \in I^{n}$

$$
\begin{equation*}
\psi \leqslant 2^{n+1} D \tag{5}
\end{equation*}
$$

where D is the discrepancy of the set.

Lemma 2. For an arbitrary set of points $x_{1}, \ldots, x_{N} \in I^{n}$

$$
\begin{equation*}
\varphi_{\infty} \leqslant 2^{n-1} \psi \tag{6}
\end{equation*}
$$

where φ_{x} is the nonuniformity of the set.
Proof of Theorem 1. Each of the relations $D\left(x_{1}, \ldots, x_{N}\right) / N \rightarrow 0$ and $\varphi_{\infty}\left(x_{1}, \ldots, x_{N}\right) / N \rightarrow 0$ as $N \rightarrow \infty$ is a necessary and sufficient condition of ud. So (4) is implied by (5) and (6).

First, we recall the definition of discrepancy. For a given point $y \in I^{n}$ with Cartesian coordinates $\left(y^{1}, \ldots, y^{n}\right)$, a box $G_{y}=\left[0, y^{1}\right) \times \cdots \times\left[0, y^{n}\right)$ with n-dimensional volume $V\left(G_{y}\right)=y^{1} \cdots y^{n}$ is introduced. The discrepancy of the points x_{1}, \ldots, x_{N} is defined by

$$
D=D\left(x_{1}, \ldots, x_{N}\right)=\sup _{y}\left|S_{N}\left(G_{y}\right)-N V\left(G_{y}\right)\right|,
$$

where the supremum is extended over all $y \in I^{n}$.
Proof of Lemma 1. It follows from the definition of D that for all boxes G_{y} the counting functions $S_{N}\left(G_{y}\right)=N V\left(G_{y}\right)+h_{y}$ with $\left|h_{y}\right| \leqslant D$. A box Π is a sum of 2^{n} boxes G_{y}, where all the vertices of Π play the role of y. Therefore $S_{N}(\Pi)=N V(\Pi)+h^{\prime}$ with $\left|h^{\prime}\right| \leqslant 2^{n} D$.

For a fixed partition M of I^{n} the volumes of all dyadic boxes Π_{α} are equal. So,

$$
\max _{\alpha} S_{N}\left(\Pi_{\alpha}\right)-\min _{\alpha} S_{N}\left(\Pi_{\alpha}\right) \leqslant 2 \cdot 2^{n} D=2^{n+1} D
$$

And the range ψ does not exceed $2^{n+1} D$ also.
Second, we recall the definition of nonuniformity $[7,8,4]$. Let Π be an arbitrary dyadic box. If we move the origin of the coordinate system to the center of Π and denote by ξ_{1}, \ldots, ξ_{n} the new coordinates, Π may be split into two parts: Π^{+}, in which the product $\xi_{1} \ldots \xi_{n}>0$, and Π^{-}, in which $\xi_{1} \ldots \xi_{n}<0$. More precisely, each of these parts is the union of 2^{n-1} "hyperquadrants" of Π that are again dyadic boxes.

Let x_{1}, \ldots, x_{N} be N given points in I^{n}. The n-dimensional nonuniformity of these points is defined to be

$$
\begin{equation*}
\sup _{I I}\left|S_{N}\left(\Pi^{+}\right)-S_{N}\left(\Pi^{-}\right)\right| \tag{7}
\end{equation*}
$$

where the supremum is extended over all dyadic boxes Π.
Furthermore, we consider the projections of x_{1}, \ldots, x_{N} onto various s-dimensional faces of I^{n} and calculate the s-dimensional nonuniformities of these projections. The largest value among all $2^{n}-1$ nonuniformities $(1 \leqslant s \leqslant n)$ is called the nonuniformity of x_{1}, \ldots, x_{N} and denoted by $\varphi_{\infty}\left(x_{1}, \ldots, x_{n}\right)$.

Proof of Lemma 2. Consider an arbitrary dyadic box $\Pi=\Pi^{+} \cup \Pi$. All hyperquadrants of Π are members of the same partition of I^{n}. Therefore

$$
2^{n-1} \min _{\alpha} S_{N}\left(\Pi_{\alpha}\right) \leqslant S_{N}\left(\Pi^{+}\right) \leqslant 2^{n} \quad \max _{x} S_{N}\left(\Pi_{\alpha}\right)
$$

and the same inequalities are true for $S_{N}\left(\Pi^{-}\right)$. Hence,

$$
\left|S_{N}\left(\Pi^{+}\right)-S_{N}\left(\Pi^{-}\right)\right| \leqslant 2^{n-1}\left[\max _{\alpha} S_{N}\left(\Pi_{\alpha}\right)-\min _{\alpha} S_{N}\left(\Pi_{\alpha}\right)\right]=2^{n-1} \psi_{M} .
$$

And the n-dimensional nonuniformity (7) does not exceed $2^{n-1} \psi$.
A remarkable point is that the s-dimensional nonuniformities do not exceed $2^{s-1} \psi$: an s-dimensional dyadic hyperquadrant may be replaced by an n-dimensional dyadic box corresponding to a partition (m_{1}, \ldots, m_{n}) containing $n-s$ zero values of m_{k}. So all nonuniformities do not exceed $2^{n-1} \psi$ and (6) is true.

3. P_{τ}-Nets and $L P_{\tau}$-Sequences

Let $0 \leqslant \tau<v$ be integers. A point set of $N=2^{v}$ points in I^{n} is called a P_{τ}-net if every dyadic box Π with $V(\Pi)=2^{\tau} / N$ contains exactly 2^{τ} points of the set.
The smaller τ is the better the uniformity of the P_{τ}-nets. It was shown in $[7,8]$ that P_{0}-nets exist only in I^{1}, I^{2}, and I^{3}. If $\tau(n)$ is the least value of τ having the property that in I^{n}, P_{τ}-nets exist for arbitrarily large N, then

$$
\tau(1)=\tau(2)=\tau(3)=0, \quad \tau(4)=1, \quad \tau(5) \leqslant 3 .
$$

As $n \rightarrow \infty$ the value $\tau(n)<n \log _{2} n+\cdots$.
Theorem 2. For an arbitrary P_{τ}-net in I^{n}

$$
\begin{equation*}
\psi \leqslant 2^{\tau} \tag{8}
\end{equation*}
$$

Proof. Consider a partition M of I^{n} into dyadic boxes Π_{α} with $V\left(\Pi_{\alpha}\right)=2^{\tau} / N$; then every Π_{α} contains 2^{τ} points and $\psi_{M}=0$. The same will be true for all partitions with $V\left(\Pi_{\alpha}\right)>2^{\tau} / N$ since every large Π_{α} is a sum of several boxes with volumes $2^{\tau} / N$. Finaily, for more detailed partitions, $S_{N}\left(\Pi_{\alpha}\right) \leqslant 2^{\tau}$ and $\max _{\alpha} S_{N}\left(\Pi_{\alpha}\right)-\min _{\alpha} S_{N}\left(\Pi_{\alpha}\right) \leqslant 2^{\tau}$,

Corollary. For an arbitrary P_{0}-net, $\psi=1$.
Thus we have proved that whenever P_{0}-nets exist they belong to the most uniform sets of points.

The following is a kind of inverse statement: if $\psi\left(x_{1}, \ldots, x_{N}\right)=1$ and $N=2^{v}, v$ an integer, then x_{1}, \ldots, x_{N} is a P_{0}-net.

Indeed, consider an arbitrary partition of I^{n} into dyadic boxes with $V\left(\Pi_{\alpha}\right)=1 / N$. The requirement $\psi=1$ implies that

$$
\max _{\alpha} S_{N}\left(\Pi_{\alpha}\right)-\min _{\alpha} S_{N}\left(\Pi_{\alpha}\right) \leqslant 1 .
$$

But there are N points and N boxes; if one of the Π_{α} is empty then another must contain at least two points, which contradicts the last inequality. Thus every Π_{α} contains exactly one point.

Now we turn to infinite sequences $x_{0}, x_{1}, \ldots \in I^{n}$.
An initial segment of the sequence is the set of points x_{0}, \ldots, x_{N-1}. A binary segment is the set of points x_{i} with indices satisfying $(k-1) 2^{p} \leqslant i<k 2^{p}$ for some integers $k \geqslant 1, p \geqslant 1$.
The sequence x_{0}, x_{1}, \ldots is called an $L P_{t}$-sequence if every binary segment with $p>\tau$ is a P_{τ}-net $[7,8]$.

Theorem 3. For an arbitrary initial segment of an $L P_{r}$-sequence in I^{n}

$$
\begin{equation*}
\psi\left(x_{0}, \ldots, x_{N-1}\right) \leqslant 2^{\tau} . \tag{9}
\end{equation*}
$$

Proof. Consider an arbitrary partition M of I^{n} into dyadic boxes Π_{α} and denote the volume $V\left(\Pi_{x}\right)=2^{-m}$. Let $p=m+\tau$ and define k_{0} by the condition $\left(k_{0}-1\right) 2^{p} \leqslant N-1<k_{0} 2^{p}$. Then the initial segment $0 \leqslant i \leqslant N-1$ consists of $k_{0}-1$ full binary segments that arc P_{r}-ncts, and may be of onc extra segment $\left(k_{0}-1\right) 2^{p} \leqslant i \leqslant N-1$ that is a part of a P_{τ}-net. Therefore $\left(k_{0}-1\right) 2^{\tau} \leqslant S_{N}\left(\Pi_{\alpha}\right) \leqslant k_{0} 2^{\tau}$. It follows from (1) that $\psi_{M} \leqslant 2^{\tau}$. Hence (9) is true.

From (3) one can easily conclude that the best asymptotic behavior of $\psi\left(x_{0}, \ldots, x_{N-1}\right)$ as $N \rightarrow \infty$ is $O(1)$. Thus all $L P_{\tau}$-sequences can be regarded as asymptotically best ud sequences.

For $L P_{0}$-sequences even the best numerical values $\psi\left(x_{0}, \ldots, x_{N-1}\right)=1$ are attained but such sequences exist only in I^{1} and I^{2}. In I^{3} only $L P_{1}$-sequences exist and Theorem 3 provides the estimate $\psi \leqslant 2$.

From Theorems 2 and 3 and Lemma 2 two known statements [7, 8] follow: in I^{n} for arbitrary P_{τ}-nets and for arbitrary initial segments of $L P_{\tau}$-sequences, $\varphi_{\infty} \leqslant 2^{n-1+\tau}$.

4. Generalizations

Let $r>2$ be an arbitrary integer. If one substitutes r for 2 in Section 1 then, mutatis mutandis, r-adic intervals and r-adic boxes Π_{α} with $V\left(\Pi_{\alpha}\right)=r^{-m}$ may be defined. The r-adic range may be introduced similarly, and Theorem 1 remains true.

Turning from 2 to r in Section 3 leads to definitions of r-adic P_{τ}-nets, r-adic segments of a sequence, and r-adic $L P_{\tau}$-sequences. Here Theorems 2 and 3 can be easily generalized: in I^{n} for arbitrary r-adic P_{r}-nets and for arbitrary initial segments of r-adic $L P_{\mathrm{r}}$-sequences the r-adic ranges do not exceed r^{τ}.
H. Faure [2] was the first to introduce r-adic P_{τ}-nets and $L P_{t}$-sequences with $\tau=0$ (in [2] they are called $P_{r, n}^{v}$-reseau and $P_{r, n}$-suite) that exist in I^{n} for sufficiently large r (in fact, for $r \geqslant n$). H. Niederreiter [5, 6] investigated the general case and, among such nets and sequences (in [5,6] they are called (τ, v, n)-nets and (τ, n)-sequences in base r), found those having the smallest discrepancy estimates that are currently known.

Computational experiments with dyadic and r-adic $L P_{\tau}$-sequences are presented in $[1,3]$. Various applications of these sequences are discussed in [10].

5. Numerical Examples

A program has been written for computing ψ for a given set of N points in I^{n}. We assume that a maximum value m^{*} is prescribed and only partitions with $m \leqslant m^{*}$ are considered in (2). For the following examples we put $m^{*}=\left[\log _{2} N\right]+1$.

Let x_{0}, x_{1}, \ldots be the $L P_{\tau}$-sequence in I^{n} defined in [9] that has additional uniformity properties. Programs for generating these sequences are available in $[11,1]$. We have computed values $\psi=\psi\left(x_{0}, \ldots, x_{N-1}\right)$ for various n and N.

For the case of $n=3$ where $\tau=1$ we have obtained $\psi=2$ for all $3 \leqslant N \leqslant 50$.

TABLE I
Values of $\psi\left(x_{0}, \ldots, x_{N-1}\right)$ in I^{4}

$N:$	4	$5-6$	$7-9$	$10-11$	$12-16$	$17-20$	$21-32$	$33-40$
ψ	2	3	4	3	2	3	4	5
$N:$	$41-48$	$49-56$	$57-71$	$72-79$	$80-87$	$88-95$	$96-160$	$161-168$
ψ	6	7	8	7	6	5	4	5
$N:$	$169-176$	$177-184$	$185-199$	$200-207$	$208-215$	$216-223$	$224-257$	
ψ	6	7	8	7	6	5	4	

TABLE II

Values of $\psi\left(z_{1}, \ldots, z_{N}\right)$ in I^{4}

$N:$	4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	64
ψ	2	4	8	12	14	14	12	12	14	14	12	14	14	16	16	14
$N:$	68	72	76	80	84	88	92	96	100	104	108	112	116	120	124	128
ψ	14	16	16	16	14	16	14	18	16	18	18	18	17	16	18	20

For the case of $n=4$ where $\tau=3$ the values of ψ for $4 \leqslant N \leqslant 257$ are listed in Table I.

We have generated a sequence z_{1}, z_{2}, \ldots of independent random points uniformly distributed in I^{4} and computed values of $\psi\left(z_{1}, \ldots, z_{N}\right)$ that are listed in Table II for $N=4(4) 128$.

We have carried out several computations for random sequences and we think that at large N the rate of growth of $\psi\left(z_{1}, \ldots, z_{N}\right)$ is about \sqrt{N}.

References

1. P. Bratley and B. L. Fox, Implementing Sobol's quasirandom sequence generator, $A C M$ Trans. Math. Software 14 (1988), 88-100.
2. H. Faure, Discrépance de suites associées à un système de numération (en dimension s), Acta Arith. 41 (1982), 337-351.
3. Yu. L. Levitan, N. I. Markovich, S. G. Rozin, and I. M. Sobol', On quasi-random sequences for numerical computations, Zh. Vychisl. Mat. i Mat. Fiz. 28 (1988), 755-759; USSR Comput. Math. and Math. Phys. 28 (1988), 88-92.
4. H. Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Amer. Math. Soc. 84 (1978), 957-1041.
5. H. Niederretter, Point sets and sequences with small discrepancy. Monatsh. Math. 104 (1987), 273-337.
6. H. Niederreiter, Low-discrepancy and low-dispersion sequences, J. Number Theory $\mathbf{3 0}$ (1988), 51-70.
7. I. M. Sobol', The distribution of points in a cube and the approximate evaluation of integrals, Zh. Vychisl. Mat. i Mat. Fiz. 7 (1967), 784-802; USSR Comput. Math. and Math. Phys. 7 (1967), 86-112.
8. I. M. Sobol', "Multidimensional Quadrature Formulas and Haar Functions," Nauka, Moscow, 1969. [In Russian]
9. I. M. Sobol', Uniformly distributed sequences with an additional uniformity property, Zh. Vychisl. Mat. i. Mat. Fiz. 16 (1976), 1332-1337; USSR Comput. Math. and Math. Phys. 16 (1976), 236-242.
10. I. M. Sobol', Points which uniformly fill a multidimensional cube, "Mathematics, Cybernetics" Vol. 2, Znanie, Moscow, 1985. [In Russian]
11. I. M. Sobol' and R. B. Statnikov, "Selection of Optimal Parameters in Problems with Several Criteria," Nauka, Moscow, 1981. [In Russian]
