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In this paper we determine the minimal number of yes-no queries needed to find 
an unknown integer between 1 and 1OOOOOO if at most three of the answers may be 
erroneous. :e 1992 Academic Press, Inc. 

S. M. Ulam [6] raised the following question: 

Someone thinks of a number between one and one million (which is just less than 
2’O). Another person is allowed to ask up to twenty questions, to each of which the 
first person is supposed to answer only yes or no. Obviously the number can be 
guessed by asking first: Is the number in the first half-million? and then again 
reduce the reservoir of numbers in the next question by one-half, and so on. Finally 
the number is obtained in less than log,(1000000). Now suppose one were allowed 
to lie once, or twice, then how many questions would one need to get the right 
answer? 

We prove that Ulam’s problem has the following solution: 

THEOREM. Thirty-three is the least number of yes-no questions sufficient 
to find an element e E { 1, 2, . . . . lOOOOOO}, if up to three lies are allowed. 

* This work is supported in part by the “Minister0 dell’Universita e della Ricerca Scien- 
titica” 40% funds “Analisi di Algoritmi.” 
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The problem with at most one lie was solved in [4], with at most two 
lies was solved in [2, 31. For our analysis we use the same terminology 
used in [2, 31. A game is considered between two players: the Questioner 
and the Responder. The Responder chooses an element e E { 1,2, . . . . 1OOOOOO) 
unknown to the Questioner who has to find it with queries of form “eE Q?” 
for Q c ( 1,2, . . . . lOOOOOO}. The Responder may lie at most three times. Our 
interest is focused on the minimal number q of queries the Questioner 
needs to find the unknown element. Every question modifies the state of 
the Questioner knowledge. Suppose the n-tuple Q = Q,, Q2, . . ..Q of 
yes-no questions has already been answered. The state of the Questioner 
knowledge can be summarized by the unique quadruple (A, B, C, D) of 
subsets of { 1, 2, . . . . lOOOOOO} with the following properties: 

-- e E A iff none of the answers is a lie; 
~- e E B iff exactly one of the answers is a lie; 
~- e E C iff exactly two of the answers are lies; 
-- eE D iff exactly three of the answers are lies. 

Now assume that one more yes-no question is asked. This question has 
the form “eE Q?” where Q=XuYuZuK, and XEA, YcB, ZGC, 
Kc D. A positive answer to Q transforms (A, B, C, D) into the quadruple: 

(A, B, C, D) eyes= (A n Q, (Bn Q) u (A n Q), (Cn Q) 

u (Bn oh (Dn Q)u (Cn @I. 

A negative answer to Q has the same effect as a positive answer to Q. 
The sets in the initial quadruple ({ 1, 2, . . . . lOOOOOO}, 0, 0, @), where 0 

is the empty set, are pairwise disjoint; furthermore, if the sets (A, B, C, D) 
are pairwise disjoint, then so are the sets in (A, B, C, D) Qyes and 
(A, B, C, D) Q”“. 

DEFINITION 1. An Ulam set (with at most three lies) is a quadruple 
U= (A, B, C, D) of pairwise disjoint finite subsets of JV. A yes-no question 
is a subset Q of JV. The Ulam sets ZJQyes and UQ”“ are defined as 

UQ’““=(AnQ,(BnQ)u(An~),(CnQ)u(Bna),(DnQ)u(CnQ)), 

UQ”“=(An~,(Bnn)u(AnQ),(Cn~)u(BnQ),(Dng)u(CnQ)), 

where Q = JV\Q, 

For the sake of clearness sometimes we use cardinalities instead of sets. 
In particular, we denote an Ulam set as 

u= (a, 6, c, 4, 
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where u= jA(, h= IBl, (‘= ICI, and a’= IDI. Moreover. if Q=Xu 1’~ 
Z u A’ is the set involved in the yes-no question we can say 

Q = (.Y. J’, I, k ) 

and 

UQyes = (x, a - .Y + y, h - y + r. c - I + k), 

UQ”“=(a-s,x+b-y,y+c-z,z+d-k). 

DEFINITION 2. An n-soloable Ulam set U is inductively defined as 
follows: 

- Ii is O-solvable iff A u B u C u D contains at most one element; 
- U is (n + l)-solvable iff there is a yes-no question such that both 

UQyes and UQ”” are n-solvable. 

Following Berlekamp’s idea [ 11 we define the weight of each state 
U = (A, B, C, D) as follows: 

DEFINITION 3. Let U = (A, B, C, D) be the Ulam set when q questions 
remains to be asked. The weight of U is 

w,(U) = IAl ((I)) + I4 ((;,I + ICI ((7) 

where ((:)I =X0 (7). 

) + IDI ((X)), 

PROPOSITION 1. Let S # 0, S c .,t‘, and n E 
statements are equivalent: 

.4 ‘. Then the following 

1. n yes-no questions are sufficient to find e E S, (f up to three lies are 
all0 wed, 

2. the Ulam set (S, 0, 0, 0) is n-solvable. 

Proof: By induction on n. 1 

PROPOSITION 2. Let U = (A, B, C, D) be an Ulam set and n E JV-. Zf U is 
n-solvable then: 

1. U is (n + 1 )-solvable; 

2. 2” 3 w,(U); 

3. if U’ = (A’, B’, C’, D’) is another Ulam set, and A’ c A, B’c B, 
c’ c C, D’ c D then U’ is solvable too. 

Proof. (1) By induction on n. If n = 0, then by definition 
\A v B v C u DI < 1. If we choose the question Q = JV then UQyes = 
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(A, B, C, D), and UQ”” = (121, A, B, C) which are both O-solvable. For the 
induction step we can use the same technique. 

(2) By induction on n. The case n = 0 is trivial. Assume that U is 
(n + l)-solvable, and let Q c JV be a yes-no question such that both 
UQYes and UQ”” are n-solvable. By the inductive hypothesis we have 
2” > MJ,(UQ~~~) and 2” > wJUQ”“). Since the Ulam sets are disjoint, and 
using ((“z’))=((;))+((,“,)) we have 2”+‘>w,+,(U). 

(3) The proof can be found in [2]. 1 

PROPOSITION 3. Let U= (A, B, C, D) be an Ulam set with A = 4, 
IBI = 1, 1 Cl = yz, ID( = (‘f) with m > 3. Then U is ch-solvable, where 
ch=min,{i: wi(U)62’}. 

Proof: This proof can be found in [S] substituting the triplet of subsets 
(B, C, D) with the quadruplet (0, B, C, D). 1 

PROPOSITION 4. Let U, = (A,, , B,, C,, D,) be an Ulam set, with 
A,,, B,,, C,, D, pairwise disjoint, where A,, = 4, [B,l = 2”, IC,I = (8 -n) 2”, 
ID,1 = (*;“)2” with n>O. Then U, is (7+n)-solvable. 

Proof By induction on n. For n = 0 U, = (0, (b}, {cl, . . . . c,}, 

p=y (,) 
d s }) this is 7-solvable by Proposition 3, because ch = 7 with 

Induction step. Let n+1,<8, s=2”+‘, t=(8-(n+1))2”+‘, and v= 
(8-(;+‘))2”+1 then Un+l=(q$ (6, ,..., b,}, {cl ,..., b,}, (A ,,..., d,}). 

If Q = {b,, . . . . bsj2,c1, . . . . c,~~, 4, . . . . d,,,} then Un+lQyes =(0, 
{b ,r . . . . h/z), {c,, . . . . c,/,, bs,z+l, . . . . b,}, (4, . . . . d,,z, c,/2+1, . . . . c,}, = 
(A,, B,, C,, D,) and A,=& JB,( =s/2, JC,I =(8-n)2”, lD,l=(8;“)2”. 

Symmetrically we can write U,, , Q”“= (AL, BL, CH, Di), where Al, = 
A,=@. l&,1 = IB,I, ICn( = IC,I, IDhI = (D,,I. U,,+,Q”“ is then (7+n)- 
solvable. Therefore, U, + , is (7 + (n + 1 ))-solvable, as required. 1 

PROPOSITION 5. Let U, = (A,,, B,, C,, D,) be an Ulam set, with 
A,, B,, C,, D, pairwise disjoint, where A = 4, I BI = 2”, ICI = (14 -n) 2”, 
IDI = ( 14; “) 2” with n 3 0. Then U, is (8 + n)-soluable. 

Proof: The proof is the same as in Proposition 4. In this case II, = 
(0, {b}, {c,, . . . . c,,}, {d,, . . . . c(y)}) that is 8-solvable by Proposition 3 
because ch = 8 with m = 14. 1 

PROPOSITION 6. Let U,, = (A,,, B,, C,, D,) be an Ulam set, with 
A,,‘, B,, C,, D, pairwise disjoint, where A = 0, I B( = 2”, IC( = (11 -n) 2”, 
I DJ = ( 22; “) 2” with n 3 0. Then U, is (9 + n)-solvable. 
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Proof The proof is the same as in Propositions 4 and 5. In this cast 
c!“= (0, {h). ) [c,, . . . . c**), { d , , . ..) (’ 

c 
7: 
2) 

)) that is 9-solvable by Proposi- 
tion 3 because ch = 9 with m = 22. 

PROPOSITION 7. Let U = (A, B, c’, D) be where A, B, C, D ure puir,rQse 
disjoint subsets qf .4,” sf cardinalities 1, 20, ( y), ( y), respectivel>,. II is 
13-solvable. 

Proof. The complete analysis of a Questioner’s strategy is 

(1,20, (*fL (2,“)) (0,8, 152, 1191) 
Q,=(O,7, 139, 114O)A 12-solvable by Prop. 6 (n = 3 ) 

I 
no and Prop. 2 (case 3) 

(1, 13, 58, 139) (0, 8, 64, 139) 
Q2 = (0,7,58, 139) --=-+ 1 l-solvable by Prop. 5 (n = 3) 

I 
no and Prop. 2 (case 3 ) 

(1, 6, 7, 58) (094, 10, 58) 
Q3 = t&3,7,58) Yes lo-solvable by Prop. 5 (n = 2) 

no and ,Prop. 2 (case 3) 

t1,3:3, 7) (094, 3, 7) 
Qz,= (0, 3, 3,7) yes 9-solvable by Prop. 4 (n = 2) 

I 
no and Prop. 2 (case 3) 

(LO, 3, 3) (0, 1,3,3) 
Qs=(O,O,3,3) ye’ + 6-solvable by Prop. 3 (if m = 3 then ch = 6) 

I 
no by Prop. 2 (case 1) is g-solvable 

Cl,% 0, 3) (0, 230, 3) 
Q6 = ((4% 093) Yes 6-solvable by Prop. 3 (m = 3) 

“0 by Prop. 2 (case 1) is g-solvable, too 
1 

(LO, CO) 
O-solvable by definition of Ulam set 

by Prop. 2 (case 1) is 7-solvable, too. 1 

Proof of theorem. By Proposition 3 (case 2) and Proposition 1, q < 33 
questions are not sufficient to find an integer in { 1 . ~1000000) when up to 
three answers may be erroneous. The theorem can be proved using a 
stronger result. In fact, we will show that 33 questions are sufficient to find 
a number e E { 0, 1, . . . . 2” - 1). 



154 NOTE 

Suppose that U = (220, 0, 0,O). The first 20 questions can be asked in 
such a way that the Ulam set after the i< 20 question Q = (22o-‘, 
(j- 1) 220-i, (i; 1) 220-i, (i; 1) 220-i) will be uj= (220-i, j220pi, (i) 220-i, 

(i) 220-‘). (Note that in this phase of the algorithm Ui- 1 Qy’” = Ui_ 1 Qy). 
After 20 questions the state U= (1, 20, (‘,“), (‘p)), 13-solvable by Proposi- 
tion 7, is reached. i 
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