Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

JOURNAL OF ALGEBRA 176, 1001-1012 (1995)

Homotopy, the Codimension 2 Correspondence and
Sections of Rank 2 Vector Bundles

Raja Sridharan*

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road,
Bombay 400 005, India

Communicated by Richard G. Swan

Received June 1, 1994

INTRODUCTION

Let A be a commutative neotherian ring with dim 4 = n. Let P be a
projective A-module of rank »n having trivial determinant. In [RS], assum-
ing that n > 3, we proved certain results about the existence of unimodu-
lar elements in P. In this paper, we prove the dimension 2 analogues of
these results. We note that in this case, due to Serre’s codimension 2
correspondence, the question of existence of unimodular elements is
equivalent to that of efficient generation of ideals. We therefore prove
results on efficient generation of ideals. We now briefly outline the main
results of this paper.

The results in this paper were motivated by the following theorem

proved by Mohan Kumar [MK].

THEOREM. Let A be an affine algebra over an algebraically closed field
with dim A = n. Let I and J be two comaximal ideals of A which are local
complete intersections of height n. Then

(a) If I and J are generated by n elements then so is I N J.
(b) If I and I N J are generated by n elements then so is J.
In [RS], we establish the validity of (a) if A is a noetherian ring with

dim.4 > 3. In this paper we consider the 2-dimensional case. We prove the
following addition principles (cf. Theorems 2.3 and 2.7).

THEOREM (Addition Principle). Let A be a noetherian ring with dim
A =2 Let I, and I, be two comaximal ideals of height 2 in A, which are
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both intersections of finitely many maximal ideals. Suppose that both 1, and I,
are generated by 2 elements. Then so is I, N I,.

THEOREM (Addition Principle). Let A be an affine algebra over a field F
with dim A = 2. Let J be an ideal of A which is the intersection of finitely
many maximal ideals each of which is two generated. Assume further that the
residue field of any of the maximal ideals containing J is isomorphic to either F
or F. Then, any projective A-module of rank 2 and having trivial determinant
that maps onto J is free.

We also prove the following subtraction principles (cf. Theorems 2.6 and
2.10).

THEOREM (Subtraction Principle). Let A be an affine algebra over a field
F such that dim A = 2. Let J, and J, be two comaximal ideals of height 2 in
A which are both intersections of finitely many distinct maximal ideals.
Suppose that A/J, and A/J, are products of algebraically closed fields and
that J, and J, N J, are generated by 2 elements. Then so is J,.

THEOREM (Subtraction Principle). Let A be an affine algebra over a field
F with dim A = 2. Let m| and m, be two distinct maximal ideals in A, which
correspond to F-rational points of Spec A. Suppose that both m, and
m, N m, are generated by 2 elements. Then so is m,.

The question whether the subtraction principle is true in general is still
open.

The idea of the proofs of these theorems is taken from [RS]. We use the
codimension 2 correspondence and Quillen’s localisation theorem instead
of Mandal’s theorem as in [RS].

If A4 is a finitely generated algebra over either an algebraically closed
field or over Z, the theorems of this paper were proved by Mohan Kumar
[MK] in all dimensions. However, the proofs given here work when A is an
affine algebra over a field that is not necessarily algebraically closed. For
the higher dimensional analogues of the theorems of this paper, we refer
to [RS].

In Section 1 we recall some known results used in the sequel. For
instance we discuss the codimension 2 correspondence due to Serre which
is crucial for the proof the main resuits.

In this paper, all rings considered are commutative, noetherian, and
have identity elements. All modules considered are assumed to be finitely
generated.

A word about the notation: the symbol = means isomorphism, M - M

Au
or M — M denotes homothesy by u, and 4* denotes units of A. We say
that a maximal ideal m of a ring A is regular if the localization A4,, of A4
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at m is a regular local ring. For all other unexplained notation and
definitions used in this paper we refer to [Bal.

I thank Professors Murthy, Nori, Parimala, Bhatwadekar, and Ravi Rao
for constant encouragement. I thank Mr. M. K. Priyan for his help with
LaTex.

1. SOME KNOWN LEMMAS AND RESULTS

In this section, we state some lemmas and results which will be used to
prove the main theorems.

LeMMA 1.  Let A be a commutative noetherian ring. Let I C A be an ideal
which is generated by 2 elements a|, a,. Let P,, P,,..., P. be a finite set of
prime ideals of Spec A. Suppose I ¢ P, for every i. Then we can find an
element A in A, such that a, + da, € U[_,P.

The lemma follows from a simple prime avoidance argument. We omit

the proof.
Let A be a commutative ring. A row (ag, a,,"*,a,) € A"*! is said to be
a unimodular row (of length n + 1) if there exist by, b,,..., b, in A such

that a by + a,b, + -+ +a,b, = 1.

For any commutative ring A, let U, , ,(A) denote the set of unimodular
rows of length n + 1 in A.

We state a theorem due to Swan and Towber and independently due to
Suslin.

THEOREM. Let (a, b, c) € U,(A). Then there exists a matrix C € SL,[ A]
having (a?, b, ¢) as its first row.

For a proof of this theorem, we refer to [ST].
We state a theorem which is due to Quillen [Q]. We will use this
theorem often in Section 2.

THEOREM (Quillen). Let A be a noetherian ring. Let P be a finitely
generated projective Alt]-module. Then P is extended from A if and only if P,
is extended from A, for every maximal ideal m of A.

The following results are due to Serre [Se]. We state them without
proofs. We state these results only in the generality that we need them.

Let A be a noetherian ring with dim 4 = 2. Let J be an ideal of height
2 in A which is a product of regular maximal ideals. Then we see easily,
using regularity, that J is locally generated by a regular sequence of length
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2 and that J/J? is a free A /J module of rank 2. With the above notation,
we have the following

THEOREM A. (1) We have an isomorphism ¢ : Ext)
(J, A) > Hom  , (A*] /1%, A /).

(2) If i is an isomorphism from A*1/J* to A/J then ¢ '(i) is an

extension 0 > A — Q — J — 0 where Q is a projective A-module of rank 2.

For a proof of the above theorem, we refer to [Mu, Lemmas 1.1, 1.3].
Suppose we choose any isomorphism i : A% J/J? — A /J. Then, any map
A

j€Hom, ,,(A2J/J% A/T)is given by j: A2 J/12 5 A0 — A /T where
A; denotes homothesy by u € A4 //J.

By (1) of Theorem A, ¢ '(j) is an extension of J by A and it is
obtained by the following usual pushout diagram (see [Mac, p. 66] for
details). We choose any lift u € A of u and consider the diagram

e H):0>Ad > 0 57 -0
you J l1d
e ():0—A4 —(QeA/—t()u) -] -0

An easy local checking shows that (Q & A)/(—1(1),u) is a projective
A-module if and only if & € (A /))*.
In particular, we have the following:

THEOREM B. (1) Letj: A* J/J? - A /] be a homomorphism.
Let ¢~ '(j) be the extension 0 > A > M — J — 0.
Then M is a projective A-module of rank 2 if and only if j is an
isomorphism. .
(2) Ifj° = A0, then ¢~ '(j') is given by the pushout diagram (where
u € Ais any lift of )

e ()04 S M 57 S0
1w l 1 d
e '(j):0->A4 ->MaA)/ (), —u)>J -0

This theorem follows easily from Theorem A.

Let, as above, A be a noetherian ring with dim A = 2. Let I C A{¢] be
an ideal such that dim A[¢]/I = 1. Suppose that I/I* is a free Alt]/I
module of rank 2, and that I is locally generated by a regular sequence of
length 2. Then with the above notation, we have the following Theorems
A’ and B’, whose proofs are similar to those of Theorems A and B. We
again refer to [Mu, Lemmas 1.1, 1.3]).
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THEOREM A’. (1) There exists an isomorphism
@le]:Extl, (1, A[t]) = Hom ., (A*1/1%, A[t]/1).

Q) Ifilt): A 1/1? - Alt)/I is an isomorphism, then ¢[t]7'(i[t]) is
an extension 0 — A[t] - Q — I — 0, where Q is a projective Alt}-module of
rank 2.

THEOREM B'. (1) Let jlt]: A* 1/I? - Altl/I be a homomorphism.
Let

ele]7'(ile]) :0 > A[] » M~ 1 - 0.

Then M is a projective Alt]l-module of rank 2 if and only if jlt] is an
isomorphism. L

() If jlt] = Age jlt), where u[t])€ Alt]/I. Then elt171G[eD is
obtained from ¢[t]”'(jlt]) as in Theorem B.

We also have the following theorem whose proof follows that of [A-K,
Theorem 4.5, p. 13].

THEOREM C' (Functoriality). Let I C A[t] be an ideal as in Theorem A'.
Let p: A[t] > A be the homomorphism which takes any polynomial to its
constant coefficient. Assume that p(1) = J, where J is as in Theorem A. Then
the following diagram is commutative:

Ext'(I, A[1]) >  Hom(A21/I% A[1]/I)
lt=0 lt=0
Ext!(J, A) 5 Hom(A2/0%, A1)

2. THE MAIN THEOREMS

In this section, we prove the main theorems. We follow the notation of
Section 1. We first make a simple remark that we will use in the rest of
section.

Remark 2.1. Let A be a noetherian ring with dim A4 = 2. Let [ be an
ideal of height 2 in A which is a product of distinct maximal ideals m; of
A. Suppose that I is generated by 2 elements. Then all the m, are regular
maximal ideals of A.

Using this remark, it is easy to verify that all the maximal ideals that are
considered in this section are regular maximal ideals. Thus, one may apply
the results of Section 1.
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We now prove a lemma, which is essentially a restatement of Schanuel’s
lemma.

LEMMA 2.2.  Let B be a commutative ring. Let [ be an ideal of B and P a
projective B-module of rank 2. Let

0-858 3150

t,/ ’
0-B5PLI 50

be two exact sequences. Let s(1,0) =a and s(0,1) =b. Then P =
B?/(u, b, —a), where u € B is a unit modulo (b, —a).

Proof. We choose ¢: B?* > P such that s'¢ = s. Then ¢ induces a
map ¢ from Kers =B to Kers’' = B, which is multiplication by an
element u of B. Schanuel’s Lemma [Go, p. 12] yields an exact sequence

0->B—->B®B*->P-0,

where the map from B @ B? to P is given by —¢’ ® ¢ and the map from
B to B @ B? sends 1 to (u, b, —a). Thus P is isomorphic to B*/(u, b, —a).
One easily checks that u is a unit modulo (b, —a).

We prove the next theorem in some detail. In the proofs of the other
theorems, we will use without further comment the reductions obtained in
the proof this theorem.

THEOREM 2.3 (Addition Principle). Let A be a noetherian ring with
dim A = 2. Let I, and I, be two comaximal ideals of height 2 in A which are
both intersections of maximal ideals. Suppose that both I, and I, are gener-
ated by 2 elements. Then so is I, N 1,.

Proof. Llet I, = N;m; and I, = N;m|. Since I, and I, are generated
by 2 elements, we may apply the preliminary remark to conclude that the
m; and m; are regular maximal ideals for every i and j.

We claim that not every element of /, is a zero divisor of A. Suppose on
the contrary, that I, € U p;, p; € Ass A. If this were so, I; would be
contained in p; for some p; € Ass A, hence, m; would be contained in p;,
for some m jo which is minimal over [,. Therefore, m ; would be associated
to A and this would contradict the fact that m; is a regular maximal ideal
of A.

Since I, + I, = A, I, ¢ m|, for any j. Therefore, I, ¢ U p; U m/, where
p; € Ass A. Let I, =(f|,f,). Using Lemma 1 of Section 1, we may
assume, by replacing f, by f; + Af,, that f, is not a zero divisor of 4 and
that (f|) + 1, = A.
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Let I} = (f,,t — 1) C Alt] and let I; = I, A[t). Since f, is not a zero
d1v1sor of A, we see that f,, t —1 is a regular sequence and hence
= (A[t]/]l)2 Since all the m; are regular maximal ideals of 4, we

see that Ly = (Altl/ )%

Let /=1 nI;. We now check that the hypotheses needed to apply
Theorem A’ (Section 1) are satisfied.

Since (f|) and [, are comaximal, /] + I} = 4. Applying the Chinese
Remainder Theorem, we see that I/1% = (A[t]/)%

We now check that I is locally generated by a regular sequence of
length 2. Since I| and /] are comaximal, any maximal ideal m of A[¢]
contains either /] or I;, but not both. We check that after localising at a
maximal ideal containing Ij, 7 is generated by a regular sequence of
length 2. The case of a maximal ideal containing /; is similar. If m
contains Ij, we have /,, = I; , which is generated by the regular sequence
St — L
Therefore the hypotheses needed to apply Theorem A’ are satisfied. Let
j'lt]: A% 1/1? - A[t]/I be any isomorphism. Since I, is generated by 2
elements, we have a Koszul resolution

E:0>A—>A>1,-0.

Let ¢(E) =j: A’ I,/17 — A /I, be the isomorphism associated to E. We
show that we can alter j'{t] by a unit ufr] of A[t]/] to an isomorphism
jlel: A2 I/17 - A[t]/1, which satisfies the property that j(0) = j (where
j(0) is obtained from j[t] by setting ¢ = 0).

We note that j'(0) and j differ by a unit u of 4/I,. We consider the
homomorphism A[¢]/I — A /I, which sends ¢ to 0. We show that we can
lift « via this map to a unit u[¢] of A[t]/I. This u[t] will clearly satisfy the
required property. By the Chinese Remainder Theorem, A[t]/1 = Alt]1/1]
x Altl/I;. One checks easily that uf[¢t]= (1,u) satisfies the required
property. By altering j’[¢] by the unit ul¢] to j[¢], we may assume that we
have an isomorphism j[z]: A% 1/I? — Alt]/I such that j[0] = j.

Let @[¢]7'(jlt] = E[t]:0 - A[¢t] - P - [ — 0. We claim that P’ is
extended from A. We grant the claim and proceed to prove the theorem.
Since j(0) =j = ¢(E), by Theorem C,

E(0):0->A—->P'/tPP >,-0=E:0>4—->A4*>1,-0

(where E(0) is obtained from E[¢] by setting ¢ = 0). Comparing extensions
we have P’ /tP' = A% and since P’ is extended, P’ = A[t]*. Now specialis-
ing E[t]at t =1 + f,, we see that I, N I, is generated by 2 elements.
We now check that P’ is extended from A. In order to check this, it is
enough to check by Quillen’s theorem (Section 1), that P, is extended
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from A, for every maximal ideal m of A. Suppose m # m/; for all j, then
P, maps onto I , which is generated by the regular sequence f,, 1 — 1.
An easy application of Lemma 2.2 shows that P, = A, [tP/(v(t), fi,t — 1),
which is free by [RR, Proposition 2.1], since ¢t — 1 is a monic polynomial.
Similarly we can check that P, is free for every mj.
This concludes the proof of the theorem.

COROLLARY 2.4. Let A be an affine algebra over the field of real numbers
with dim A = 2. If m;, 1 <i <n, are maximal ideals of A which are
2-generated, then N, m; is 2-generated.

THEOREM 2.5. Let A be an affine algebra over a field F such that
dim A = 2. Let J be an ideal of height 2 in A which is the intersection of
finitely many maximal ideals m,, -+, m, of A, where the m; satisfy the property
that A /m; is algebraically closed for every i. Assume that J is generated by 2
elements. Let P be a projective A-module of rank 2 with trivial determinant.
Assume that there exists a surjection s from P to J. Then P is free.

Proof. Let J be generated by f,, f,. We will be through as in (2.2), if
we show that (u, f, f,) is completable to a matrix in SL;(A), for any
u €A such that u is a unit mod(f,, f,). Since A/J is a product of
algebraically closed fields, we see that u is a square mod(f,, f,). Thus, by
the Swan—Towber—Suslin Theorem, (u, f,, f,) is completable. Hence P is
free.

As a consequence of the above theorem, we deduce the following

THEOREM 2.6 (Subtraction Principle). Let A be an affine algebra over a
field F such that dim A = 2. Let J| and J, be two comaximal ideals of height
2 in A, which are both intersections of finitely many distinct maximal ideals.
Suppose that A/J, and A/J], are products of algebraically closed fields.
Assume further that J, and J, N J, are generated by 2 elements. Then so is J,.

Proof. We may assume as in the proof of (2.3), that J, = (f,, f,), with
fi anon-zero divisor in A4 and (f|) +J, = A. Let I, = (f,,t — f,) C Alt],
I, =J,Alt), and I =1, N L. Let jlt]1:= A*(1/I?) — Alt]/I be any iso-
morphism and E[t]:0 — A[t] — P[t] » I — 0 be the corresponding ex-
tension. Specialising E[f] at r = 0 and using (2.5), we see that P is free.
Now, specialising E[¢] at t = 1 + f, we see that J, is 2-generated.

THEOREM 2.7. Let A be an affine algebra over a field F with dim A = 2.
Let J be an ideal of A which is the intersection of finitely many maximal ideals
each of which is two generated. Assume further that the residue field of any of
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the maximal ideals containing J is isomorphic to either F or F. Then, any
projective A-module of rank 2 and having trivial determinant that maps onto J

is free.
Proof.

Step 1. Let J = (N{m) N (Nin;) be such that A/m, = F and A/n;
= F. By (2.3), J is two generated. If r = 0, then the theorem follows from
(2.5). (If s = 0 and r = 1, a proof similar to (2.5) can be given.) We assume
therefore that r = 1. Let J, = (N)m, N (Nin,). Let m, = (f}, f,). We
may assume as in the proof of (2.3), that (f|) +J, =A4 and that f, is a
non-zero divisor in A. Let I, = (f,t — f,) CAlt] and let I, = J, Alt]
If I=1 N1, we see, as in (2.3), that I/1°5 (Alt]/D?*. Let jl¢]:
A*1/1° = A[t]/I be any isomorphism and let ¢[f]7'(jl:]D) = E[¢]:0 —
Alt] - Plt] > I — 0. If we specialise E[¢] at ¢ =f, + 1, we obtain a
surjection from P to J,. By induction on r, we see that P is free, therefore
so is Plr].

Step 2. Let s: P’ — J be any surjection with P’ a projective 4-mod-
ule of rank 2 having trivial determinant. We want to show that P’ is free.
We consider the Koszul resolution

E'=0->A—-P 510

Let j' = @(E"): A? (J/J*) —> A/J be the isomorphism associated to E’.
Let u be the unit in A/J which is the difference between j' and j[0]
(where j[0] is obtained from j[¢] be setting at ¢ = 0 and j[¢] is as in Step
1). We have, by the Chinese Remainder Theorem, A/J = I1{A/m; X
TI;A/n;. Let u = (uy, v, u,,u,, 4, U,, ). We first show, that there exists
an unit uft] in A[¢]/1, such that u[0] = (up,e-yu,, Ayyoee, A,) for some
Aj € A/n;. We note that Altl/1 = Ale}/I x TT5A/mife] X I—I‘]"A/nj[t]
and that the homomorphism A[t]/] - A/J sending ¢ to 0 maps Alr]/I,
onto A/m;, A/m]t]onto A/m,, and A/n[t]onto A/n,. Since 4/m; =
F for 1 <i <r, clearly a unit u[t] exists with the required property. Let
j'lt) = uleljle]: A2 (U/1%) — Altl/I and E‘[t] = @lt]7"'(j’[¢D. If we spe-
cialise E'[t] at ¢ = 0, we obtain using Step 1, a surjection from A? to J,
which sends the two coordinate functions to a and b, respectively. Now
using (2.2), we see that P’ = A3/(u’,a,b) where J =(a,b) and u' =
(1,---, 1, A,+-, X,). Since A/n; = F, we see that u' is square modulo J.
Arguing as in (2.5), we see that P’ is free. This completes the proof of the
theorem.
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COROLLARY 2.8. Let A be an affine algebra over the field of real numbers
with dim A = 2. Let J be is the intersection of finitely many maximal ideals of
A each of which is two generated. Then any projective A-module of rank 2
having trivial determinant that maps onto I is free.

COROLLARY 2.9. Let A be a regular affine algebra over the field of real
numbers with dim A = 2. Assume that Pic A = 0. Then the following are
equivalent:

(i) Every projective A-module is free.

(il Al maximal ideals of A are two generated.

The proof of the above corollary follows easily from (2.7) and the
codimension 2 correspondence.

THEOREM 2.10 (Subtraction Principle). Let A be an affine algebra over a
field F with dim A = 2. Let m| and m, be two distinct maximal ideals in A,
which correspond to F-rational points of Spec A. Suppose that both m, and
m, N m, are generated by 2 elements. Then 50 is m,.

Proof. We may assume as in (2.3), that m, = (f|, f,) with f, a nonzero
divisorin A and (f,) + m, = A. Let I, = (f|,t = f,) C Alt], I, = m, Al¢],
and I =1 n1, Let jlt]:= A*I/I* - Alt]/I be any isomorphism and
E':0>A— A* > J — 0 be a Koszul resolution, where J = m, N m,.
Let @lE'l=j:A*J/J* > A/J. By altering j[t] by a unit uft]e
(Alt}l/D*, we may assume as in (2.3), that we have an isomorphism
j'lt]: A2 1/I* S5 Alt]/1, such that, when we specialise at ¢ = 0, j(0) =
AR T/ > A/ Let ot] (e = E'[£]:0 - Alt] - P[t] - 1 - 0.
Then by Theorem C', ¢ !'(j)=E'(0):0 > A4 - P —J - 0. But
¢ '(j") = E'. Comparing extensions, we have P’ > A% which implies
P'[t] > A[t]*. Specializing E'[t]at 1 = 1 + f,, we see that m, is generated
by 2 elements.

The results of this paper lead one to the following question: Let 4 be a
regular noetherian ring with dim 4 = 2. Let § be the set of pairs (m, 1),
where m is a maximal ideal of 4 and i: A? (m/m?) — A/m an isomor-
phism. Let G be the free abelian group generated by S. Let I be an ideal
of A[t] which is locally generated by regular sequence of length 2 and such
that dim A[¢]/I = 1. Suppose that I|,-y = N{m, and I|,-; = N im. Then
any isomorphism j[t]: AZ (I/1%) — Alt]/I, gives rise, when we specialise
at t =0 and 1, to elements g,, g, € G. Let H be the subgroup of G
generated by g, — g, where g, and g, are obtained as above. Let P be a
projective A-module of rank 2 having trivial determinant. We fix an
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isomorphism 6: A* P — A, and let s: P — J a generic section with J =
N {m; Then, by Serre’s codimension 2 correspondence, we obtain an
isomorphism A®J/J% — A /J associated to 6 and s. That is, we obtain an
element s, + --- +s, of G with s, € §. Suppose there exist s},...,5; € S
such that T¥s, — ©!s; € H. Then, does there exist a surjection s': P —
N m’;, such that Ls; is the element of G associated to 6 and s'?

Remark. After this paper was sent for publication we realised that the
same proofs work to yield the following theorems.

THEOREM 1. Let A be a noetherian ring with dim A = 2. Let I, and 1,
be two comaximal ideals of height 2 in A, both of which are intersections of
finitely many maximal ideals. Suppose that I, is generated by 2 elements. Let
P be a projective A-module with rank P = 2 and having trivial determinant.
Suppose that there exists a surjective map from P to I,. Then, there also exists
a surjective map from Pto I, N I,.

THEOREM 2. Let A be a noetherian ring with dim A = 2. Let I, and I,
be two comaximal ideals of height 2 in A, both of which are intersections of
finitely many maximal ideals. Suppose that 1, is generated by 2 elements. Let
P be a projective A-module with rank P = 2 and having trivial determinant.
Suppose that there exists a surjective map from P to I, N I,. Then, there exists
surjective map from P to I, in the following cases:

(a) A is an affine algebra over a field F and I, is a maximal ideal which
corresponds to an F-rational point of Spec A.

(b) A is an affine algebra over a field F and A/I, is a product of
algebraically closed fields.

We note that the main results of this paper and in fact stronger ones can
be deduced from Theorems 1 and 2.

The higher dimensional analogues of Theorems 1 and 2 are also valid
and will appear in a joint work with Satya Mandal.
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