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Abstract

We consider a family of polynomial systems which arises in the analysis of the stationary solutions
of a standard discretization of certain semi-linear second-order parabolic partial differential equations.
We prove that this family is well-conditioned from the numeric point of view, and ill-conditioned from
the symbolic point of view. We exhibit a polynomial-time numeric algorithm solving any member of
this family, which significantly contrasts the exponential behavior of all known symbolic algorithms
solving a generic instance of this family of systems.
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1. Introduction

Several scientific and technical problems require the solution of polynomial systems
over the real or complex numbers (see e.g.[43,48]). In order to solve these problems, one
is usually led to consider the following questions:

• Do there exist solutions in a given subsetSof Rn orCn?
• How many solutions are there in the setS?
• Approximate some or all the solutions in the setS.

Numeric and symbolic methods for computing all solutions of a given zero-dimensional
polynomial system usually rely on deformation techniques, based on a perturbation of the
original system and a subsequent (numeric or symbolic) path-following method (see e.g.
[1,3,5,13,22,30,38,39,44,58]). More precisely, letVbe aQ-definable zero-dimensional sub-
variety of an affinen-dimensional spaceCn, and suppose that we are given an algebraic
curveW ⊂ Cn+1 such that the standard projection� : W → C onto the first coordi-
nate is dominant with generically finite fibers of degreeD, �−1(1) = {1} × V holds and
�−1(0) is an unramified fiber which can be “easily” described. Then, following theD paths
of W along the parameter interval[0,1], we obtain a complete description of the input
varietyV.
There are several variants of homotopy algorithms which profit from special features of

the input system, suchassparsity patternsor theexistenceof suitable low-degreeprojections.
Homotopy algorithms for sparse systems are based on so-called polyhedral homotopies
(see e.g.[35,38,59,60]). Polyhedral homotopies preserve the Newton polytope (the convex
hull of the set of exponents of nonzero monomials) of the input polynomials and rely on
an effective version of Bernstein’s theorem (see e.g.[35,36]). Another family of symbolic
homotopy algorithms is based on a flat deformation of a certainmorphismof affine varieties,
originally due to the papers[21,23], which was isolated and refined in[7,29,30,51,56]in
order to efficiently solve particular instances of a parametric systemwith a finite generically
unramified linear projection of “low” degree.
The complexity of symbolic homotopy methods is roughlyLnO(1)D� arithmetic opera-

tions, wheren is the number of variables,L is the complexity of the evaluation of the input
polynomials,� is the degree of the varietyW introduced by the deformation andD is the
number of branches to be followed (see e.g.[7,29,56]). On the other hand, the complexity of
numeric homotopy continuation methods isLnO(1)D�2 floating point operations, where�
is highest condition number arising from the application of the Implicit Function Theorem
to the points of the paths ofW ∩ �−1[0,1] followed (cf. [5]).
Let us observe that the parametersL, n andD are somehow determined by the input

varietyV. In fact,D usually arises as a certain Bézout number associated to the structure of
the problem (see e.g.[29,45,53]). Therefore, the complexity of an homotopy algorithm is
essentially determined by the parameters� or � . Taking into account that the degree ofV
is a lower bound for�, we shall call a given zero-dimensional systemf1 = · · · = fn = 0
ill-conditioned from the symbolic point of viewif the degree ofV is close to the worst-
case estimate

∏n
i=1 deg(fi). Furthermore, taking into account that symbolic algorithms

may profit from factorization patterns (see e.g.[7,30,51]), we shall further require an ill-
conditioned varietyV to beQ-irreducible. On the other hand, following[5] we shall call
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the input varietyV ill-conditioned from the numeric point of viewif the parameter� is of
kind

∏n
i=1 deg(fi)

�(1).
Our main purpose is to compare complexity and conditioning of symbolic and numeric

methods on significant classes of polynomial systems. For this purpose, in this article
we consider a class of polynomial systems which arise from a discretization of certain
second-order parabolic semi-linear equations. More precisely, for given univariate rational
polynomialsf, g, h, we consider the following initial boundary value problem:

ut = f (u)xx − g(u) in (0,1) × [0, T ),

f (u)x(1, t) = h(u(1, t)) in [0, T ),

f (u)x(0, t) = 0 in [0, T ),

u(x,0) = u0(x)�0 in [0,1].

This kind of problems models many physical, biological and engineering phenomena, such
as heat conduction, gas filtration and liquids in porous media, growth and migration of
populations, etc. (cf.[34,49]). In particular, the long-time behavior of its solutions has been
intensively analyzed (see e.g.[12,37,54]). The usual numerical approach to this problem
consists of considering a second-order finite difference discretization in the variablex, with
a uniform mesh, keeping the variablet continuous (see[2,9]). This semi-discretization in
space leads to the following initial value problem:


u′
1 = 2(n − 1)2

(
f (u2) − f (u1)

)− g(u1),

u′
k = (n − 1)2

(
f (uk+1) − 2f (uk) + f (uk−1)

)− g(uk), (2�k�n−1)
u′

n = 2(n − 1)2
(
f (un−1) − f (un)

)− g(un) + 2(n − 1)h(un),

uk(0) = u0(xk), (1�k�n),

(1)

wherex1, . . . , xn define a uniform partition of the interval [0,1].
In order to describe the dynamic behavior of the solutions of (1) it is usually necessary

to analyze the behavior of the correspondingstationary solutions(see e.g.[8,17]), i.e., the
positivesolutions of the polynomial system:


0 = 2(n − 1)2

(
f (X2) − f (X1)

)− g(X1),

0 = (n − 1)2
(
f (Xk+1) − 2f (Xk) + f (Xk−1)

)− g(Xk), (2�k�n − 1),
0 = 2(n − 1)2

(
f (Xn−1) − f (Xn)

)− g(Xn) + 2(n − 1)h(Xn).

(2)

A typical case study is that of the heat equation, i.e.,f (X) := X, with nonlinear reaction
and absorption terms of typeg(X) := Xd andh(X) := Xe (see e.g.[8,12,26]). In this
article we shall mainly consider the casee = 0, i.e., the initial boundary value problem:

ut = uxx − ud in (0,1) × [0, T ),

ux(1, t) = � > 0 in [0, T ),

ux(0, t) = 0 in [0, T ),

u(x,0) = u0(x)�0 in[0,1]
(3)



M. De Leo et al. / Journal of Complexity 21 (2005) 502–531 505

and the corresponding set of stationary solutions of its semi-discretization in space, i.e., the
positive solutions of the following system:

0 = 2(n − 1)2(X2 − X1) − Xd
1,

0 = (n − 1)2(Xk+1 − 2Xk + Xk−1) − Xd
k , (2�k�n − 1),

0 = 2(n − 1)2(Xn−1 − Xn) − Xd
n + 2(n − 1)�.

(4)

In Section3 we prove that the solutions of the semi-discrete version of (3) converge
to the corresponding solutions of (3) in any interval where the latter are defined, showing
thus the consistence of our semi-discretization. We further show that any solution of the
semi-discrete version of (3) which is globally bounded converges to a stationary solution
of (3).
Then we analyze systems (2) and (4) from the symbolic and numeric point of view. In

Section4 we show that a generic instance of (2) or (4) is likely to be ill-conditioned from
the symbolic point of view. Therefore, anyuniversal(in the sense of[11]) symbolic method
solving such instances has a complexity which is exponential in the numbern of variables
(see[11,31]). Since universality is a very mild condition satisfied by all known symbolic
elimination procedures, and taking into account thatnmay grow large in the discretization
problems we are considering, we conclude that all known symbolic elimination methods
are very unsuitable for this kind of problems. Let us also remark that numeric homotopy
continuation methods computingall isolated complex solutions of the input system are also
universal in the above sense, and therefore exponential inn (cf. [50]).
In Section5we exhibit a smoothreal homotopywhich allows us to determine the number

of positive solutions of certain instances of (2), including all instances of (4), without
considering the underlying set of complex solutions. More precisely, letV1 ⊂ (R�0)n be
the set of positive solutions of the instance of (2) under consideration. We exhibit a real
algebraic curveW1 ⊂ (R�0)n+1 such that, if�|W1 : W1 → R denotes the restriction of the
standard projection onto the first coordinate, then�|−1W1

(1) = {1}×V1 holds,V0 := �|−1W1
(0)

is easy to solve, everyt ∈ [0,1] is regular value of�|W1 andW1 ∩ ([0,1] × (R�0)n
) =

W1∩ ([0,1]× (R>0)
n
)
. Under these conditions, we conclude thatV1 andV0 have the same

cardinality, which allows us to prove thatV1 consists of one point.
Finally, in Section6 we prove that the homotopy above iswell-conditionedfrom the

numeric point of view. This allows us to exhibit an algorithm approximating the only
positive solutionx∗ of (4) by an homotopy continuation method. This algorithm com-
putes anε-approximation ofx∗ with nO(1)M logd floating point operations, whereM :=
log | log(εn3�d)|. The starting point for our numeric algorithm is the only positive solution
of setV0 above, and hence it does not depend on random or generic choices.
As a consequence, we see the significant contrast between theexponentialcomplexity

behavior of all symbolicmethods solving any instance of (4) and thepolynomialcomplexity
behavior of our numeric method.

2. Notions and notations

We use standard notions and notations of commutative algebra and algebraic and semi-
algebraic geometry, as can be found in e.g.[6,16,41,57].
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2.1. Algebraic geometry, geometric solutions

For a givenn ∈ N, we shall denote byAn then-dimensional affine spaceCn endowed
with its Zariski topology overQ. Let X1, . . . , Xn be indeterminates overQ and let be
given polynomialsF1, . . . , Fm ∈ Q[X1, . . . , Xn]. We denote byW := V (F1, . . . , Fm)

the affine subvariety ofAn defined by the set of common zeros ofF1, . . . , Fm in An. If
W is equidimensional of dimension dimW , we define its degree as the number of points
arising when we intersectWwith dimW generic affine linear hyperplanes ofAn. For an
arbitrary affine varietyWwith irreducible componentsC1, . . . , Cs we define its degree as
degW := degC1 + · · · + degCs . With this definition, the intersection of two subvarieties
W1 andW2 of An satisfies the following Bézout inequality (cf.[18,28]):

deg(W1 ∩ W2)� degW1 degW2. (5)

LetW be an affine equidimensional subvariety ofAn of dimensionr �0 and letI (W) ⊂
Q[X1, . . . , Xn]be its defining ideal. Thecoordinate ringQ[W ]and the ringof total fractions
Q(W) are defined as the quotient ringQ[X1, . . . , Xn]/I (W) and its total ring of fractions,
respectively.
Suppose that there exist polynomialsF1, . . . , Fn−r ∈ Q[X1, . . . , Xn] which form a reg-

ular sequence ofQ[X1, . . . , Xn] and generate the idealI (W). Let � : W → Ar be the
morphism defined by�(x1, . . . , xn) = (x1, . . . , xr ). LetW = C1 ∪ · · · ∪ Cs be the decom-
position ofW into irreducible components, and suppose that�|Ci

is dominant for 1� i�s.
We define the degree of� as the numberD := ∑s

i=1[Q(Ci ) : Q(X1, . . . , Xr)], where
[Q(Ci ) : Q(X1, . . . , Xr)] denotes the degree of the finite field extensionQ(X1, . . . , Xr)

↪→ Q(Ci ) for 1� i�s. We say that� is generically unramifiedif �−1(x1, . . . , xr ) consists
of exactlyD points for a generic value(x1, . . . , xr ) ∈ Ar . This implies that the Jacobian
determinant det(�Fi/�Xr+j )1� i,j �n−r is not a zero divisor inQ[W ].
Suppose further that� is finite and generically unramified. Then the corresponding in-

tegral ring extensionQ[X1, . . . , Xr ] ↪→ Q[W ] induces inQ[W ] a structure of freeR :=
Q[X1, . . . , Xr ]-module, whose rank rankRQ[W ] equals the cardinalityD of the generic
fiber of� and is upper bounded by degW (see e.g.[24]). Following [21], ageometric so-
lution of the systemF1 = 0, . . . , Fn−r = 0 (or of the varietyW) with respect to� consists
of the following items:

• A linear form U ∈ Q[X] which induces a primitive element of the ring extension
Q[X1, . . . , Xr ] ↪→ Q[W ], i.e., an elementu ∈ Q[W ] whose minimal polynomialQ ∈
R[Y ] overRsatisfies degY Q = D.

• The polynomialQ.
• Ageneric “parametrization”ofWby thezerosofQ, givenbypolynomialsVr+1, . . . , Vn ∈

R[Y ]. We require the conditions degY Vi < D and (�Q/�Y )(X1, . . . , Xr, U)Xi −
Vi(X1, . . . , Xr, U) ∈ I (W) for r + 1� i�n.

In particular, for any(x1, . . . , xr ) ∈ Qr such thatq := Q(x1, . . . , xr , Y ) ∈ Q[Y ] is
square-free, thepolynomialsU, q, vi := Vi(x1, . . . , xr , Y ) (r+1� i�n)defineageometric
solution of the zero-dimensional variety�−1(x1, . . . , xr ).
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2.2. Semi-algebraic geometry

A subset ofRn is a (Q-definable) semi-algebraicset if it can be defined by a Boolean
combination of equalities and inequalities involving polynomials ofQ[X1, . . . , Xn].
In what follows, we shall considerRn endowed with its standard Euclidean topology,

unless otherwise stated. A real semi-algebraic setV ⊂ Rn is calledsemi-algebraically
connectedif for any pair of disjoint real semi-algebraic setsC1, C2 ⊂ Rn, which are closed
in V and satisfyC1 ∪ C2 = V , we haveV = C1 or V = C2. Every real semi-algebraic
setV ⊂ Rn can be uniquely decomposed (up to reordering) as a disjoint union of a finite
number of real semi-algebraically connected setsC1, . . . , Cs , open and closed inV, which
are called thesemi-algebraically connected componentsof V (see e.g.[6]).

2.3. Computational model and complexity measures

Our computational model is based on the concept ofarithmetic-boolean circuits(also
calledarithmetic networks) andcomputation trees(see e.g.[10,19]). An arithmetic-boolean
circuit overQ[X1, . . . , Xn] is a directed acyclic graph (dag for short) whose nodes are
labeled either by an element ofQ ∪ {X1, . . . , Xn}, or by an arithmetic operation or a
selection (pointing to other nodes) subject to a previous equal-to-zero decision. On thedag
associated to a given arithmetic-boolean circuit� we may play a pebble game (see[55]). A
pebble game is a strategy of evaluation of� which converts� into a sequential algorithm
(called computation tree) and associates to� natural time and space measures. Space is
defined as the maximum number arithmetic registers used at any moment of the game, and
time is defined as the total number of arithmetic operations and selections performed during
the game. A computation tree without selections is called astraight-line program(cf. [10]).
In the sequel, we shall assume that our arithmetic-boolean circuits and computation trees
in Q[X1, . . . , Xn] contain only divisions by nonzero elements ofQ.
In what follows we shall use the notationM(m) := m log2(m) log log(m). Let us remark

that the asymptotic estimateO
(M(m)

)
represents the number of arithmetic operations

in a given domainR necessary to compute a multiplication, division, resultant, gcd and
interpolation with univariate polynomials ofR[Y ] of degree at mostm (cf. [4,20]).
Inorder todetermine thenumberof real rootsof agivenunivariatepolynomialwith integer

or rational coefficients, we shall use algorithmsbasedon the computation of suitableCauchy
indices. For given polynomialsp, q ∈ Z[Y ], theCauchy indexI (q/p) of the rational
functionq/p is defined as the number of jumps ofq/p from−∞ to+∞minus the number
of jumps ofq/p from +∞ to −∞ (see e.g.[27,40]). Let be givenp, q1, . . . , qs ∈ Z[Y ]
and a set of sign conditions�1, . . . , �s (i.e.,�i belongs to{+, −,0} for 1� i�s). Let

c[�1,...,�s ](p; q1, . . . , qs) := #{x ∈ R : p(x) = 0, sign(qi(x)) = �i (1� i�s)}.
Wehave the identityI (p′q/p) = c[+](p; q)−c[−](p; q) [27,Proposition2.2].Weconclude
thatI (p′/p) = c(p) := c[+](p;1) holds, which relates Cauchy index computations with
univariate real root counting issues (see[27]).
In [40] it is shown that computing theCauchy indexofa rational functionwhosenumerator

and denominator are integer polynomials of degree atmostmrequiresO
(M(m)

)
arithmetic

operations inQ. This algorithm can be obviously extended to a rational function defined
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by polynomialsp, q ∈ Q[X], applying the algorithm to suitable integer multiples�p, �q

of p, q.

3. The initial boundary value problem under consideration

As mentioned in the introduction, we shall consider the initial boundary value problem
(3) for an initial datau0(x) satisfying the “compatibility condition”u′

0(1) = �, u′
0(0) = 0.

In order to solve (3), we consider the following (semi)discrete version of (3):

u′
1(t) = 2

h2

(
u2(t) − u1(t)

)− u1(t)
d ,

u′
k(t) = 1

h2

(
uk+1(t) − 2uk(t) + uk−1(t)

)− uk(t)
d , (2�k�n − 1),

u′
n(t) = 2

h2

(
un−1(t) − un(t)

)+ 2
h
� − un(t)d ,

uk(0) = u0(xk), (1�k�n),

(6)

wherex1, . . . , xn define a uniform partition of[0,1] andh := (n − 1)−1.
We are going to show that the solutions of (6) converge to the corresponding solutions

of (3), and we shall discuss the role of the stationary solutions of (6) in the description of
the asymptotic behavior of the solutions of (6). We start with the convergence result:

Theorem 1. Let 0 < ��T be a value for which there exist a positive solutionu(x, t) ∈
C4,1([0,1] × [0, �]) of (3) and a solutionU(t) := (

u1(t), . . . , un(t)
)

of (6) in [0, �]. Then
there existsC > 0, depending only on the(infinite) C4,1([0,1] × [0, �])-norm of u, such
that for h small enough we have:

max
t∈[0,�] max

1�k �n
|u(xk, t) − uk(t)|�Ch1/2. (7)

Proof. Letvk(t) := u(xk, t)andek(t) := vk(t)−uk(t) for 1�k�n. LetC0 := max{|vk(t)|:
1�k�n, 0� t ��} andt0 := max{t ∈ [0, �] : |ek(s)|�C0/2 for all s ∈ [0, t]}. We shall
prove that (7) is valid in the interval[0, t0], from which we shall conclude thatt0 = � holds
for h small enough.
Let k �= 1, n. Then there exists a constantC1 > 0 independent ofh such that

e′
k(t) � 1

h2

(
ek+1(t) − 2ek(t) + ek−1(t)

)− (
vk(t)

d − uk(t)
d
)+ C1h

2

� 1
h2

(
ek+1(t) − 2ek(t) + ek−1(t)

)+ d|	k(t)|d−1|vk(t) − uk(t)| + C1h
2

holds, where	k(t) in an intermediate value betweenvk(t) anduk(t). From the definition of
t0 we see that there exists a constantC2 > 0 independent ofh such thatd|	k(t)|d−1�C2
holds for any 1�k�n and anyt ∈ [0, t0]. Furthermore, arguing in a similar way for
k = 1, n, we obtain:

e′
1(t)/2 � 1

h2

(
e2(t) − e1(t)

)+ C2|e1(t)|/2+ C1h
2/2,

e′
k(t) � 1

h2

(
ek+1(t) − 2ek(t) + ek−1(t)

)+ C2|ek(t)| + C1h
2, (2�k�n−1),

e′
n(t)/2 � 1

h2

(
en−1(t) − en(t)

)+ C2|en(t)|/2+ C1h
2/2.

(8)
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Let E(t):= (e1(t), . . . , en(t)) andN(t):= e21(t)/2+
∑n−1

k=2 e2k(t)+e2n(t)/2. Multiplying
thekth inequality of (8) by ek(t) for 1�k�n and adding up we have

N ′(t)�2h−2E(t)tAE(t) + 2C2N(t) + 2C1h
2

(
e1(t)/2+

n−1∑
k=2

ek(t) + en(t)/2

)
,

whereA ∈ Zn×n is a suitable negative semi-definite symmetricn × nmatrix (the opposite
of the stiffness matrix). Therefore, taking into account the inequalitiesE(t)tAE(t)�0 and
ek(t)�(e2k(t) + 1)/2 (1�k�n), we obtainN ′(t)�(2C2+ C1h

2)N(t) + C1h. Integrating
both members of this inequality we have

N(t)�(2C2 + C1h
2)

t∫
0

N(s) ds + C1th�(2C2 + C1h
2)

t∫
0

N(s) ds + C1T h

for anyt ∈ [0, t0]. Therefore, Gronwall’s Lemma (see e.g.[34, §1.2.1]) yields:
N(t)�C1T he2T C2+C1T h2�C1T e2T C2+T C1h

for any t ∈ [0, t0]. Hence, from the definition ofN(t) we easily deduce the estimate
e2k(t)�2C1T e2T C2+T C1h for anyt ∈ [0, t0] and any 1�k�n.
LettingC := (2C1T )1/2eT C2+T C1/2 we conclude that|u(xk, t) − uk(t)|�Ch1/2 holds

for any 1�k�n and anyt ∈ [0, t0]. Combining this estimate with the definition oft0
shows thatt0 = � holds forh small enough, because otherwise the maximality oft0 would
be contradicted. This finishes the proof.�

Let us remark that, using more technical arguments, based on a suitable comparison
principle along the lines of[17, Theorem 2.1], we may improve the right-hand side of (7)
toCh2. Nevertheless, since we are not concerned with such convergence speed results, we
shall not pursue the subject any further.
Now we analyze the asymptotic behavior of the solutions of (6). For this purpose, we are

going to analyze the role of thestationary solutionsof (6), i.e. the positive solutions of the
polynomial system (4). We start with the following discrete maximum principle:

Lemma 2. Let U be a solution of(6) with initial conditionU(0) = U0 ∈ (R�0)n, and let
� ∈ (R>0 ∪ {∞}) be the supremum of the set oft ∈ R>0 for which U is well-defined in
[0, t). ThenU(t) ∈ (R�0)n for anyt ∈ [0, �).

Proof. By a standard approximation argument we may assume without loss of gener-
ality that U0 ∈ (R>0)

n holds. LetU := (u1, . . . , un) and letA := {t ∈ [0, �) :
uk(s)�0 for anys ∈ [0, t] and 1�k�n}. By continuity we have that there existsε > 0
such that[0, ε) ⊂ A holds. We have to prove that the supremum ofA is equal to�.
Let t0 denote the supremum ofA, and suppose thatt0 < � holds. Ifuk(t0) > 0 holds for

1�k�n, then by continuity there existsε0 > 0 such thatuk(t)�0 for anyt ∈ [t0, t0+ ε0]
and anyk = 1, . . . , n, contradicting thus the definition oft0. Hence, there existsk0 ∈
{1, . . . , n} such thatuk0(t0) = 0. Furthermore, a similar argument shows that there exist
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k0 ∈ {1, . . . , n} and a sequence(tn)n∈N ⊂ (t0, �), converging tot0, such thatuk0(tn) < 0
holds for anyn ∈ N. From this we easily conclude thatu′

k0
(t0)�0 holds.

If k0 = n, then 0�u′
n(t0) = 2h−2un−1(t0) + 2h−1��2h−1� > 0, which is a contradic-

tion.
If 1 < k0 < n holds, then we have 0�u′

k0
(t0) = h−2(uk0+1(t0) + uk0−1(t0)

)
�0, which

implies uk0+1(t0) = uk0−1(t0) = 0. Furthermore, sinceuk0+1(t)�0 holds for anyt ∈
[0, t0], we see thatu′

k0+1(t0)�0 holds. Therefore, by an inductive argument we conclude
that uk(t0) = 0 andu′

k(t0)�0 hold for anyk0�k�n. In particular,un(t0) = 0 and
u′

n(t0)�0 hold, which leads to a contradiction.
Finally, if k0 = 1, then 0�u′

1(t0) = 2h−2u2(t0)�0, which impliesu2(t0) = 0 and
u′
2(t0)�0. Hence, by the case 1< k0 < n we have a contradiction.�

Combining Lemma2with e.g.[52, Theorem 7]we conclude that the set of solutions of
(6) with positive initial condition is (topologically equivalent to) a dynamical system over
(R�0)n. Following[8], let�h : (R�0)n → R be the following function:

�h(U(0)) := −(U(0))tMU(0) + 1

(d + 1)
(V (0))t (U(0))d − 2�

h
U(0)

n ,

where

M := 1

h2


−1 2

−2 2
. . .

. . .

−2 2
−1

 , V (0) :=


U

(0)
1

2U(0)
2
...

2U(0)
n−1

U
(0)
n

 .

It is easy to see that�h is a Liapunov functional for the dynamical system over(R�0)n

definedby (6), i.e.,�′
h(u(0)) := lim t→0+(1/t)

(
�h

(

t (u

(0))
)−�h(u(0))

)
�0 for anyu(0) ∈

(R�0)n, where
t is the solution of (6) passing throughu
(0) when t = 0. Furthermore,

we have that�′
h(u(0)) = 0 holds if and only ifu(0) represents a stationary solution of (6).

Hence, definingE := {
u(0) ∈ (R�0)n : �′

h(u(0)) = 0
}
, we have thatE is invariant under

the action of the dynamical system over(R�0)n defined by (6). Therefore, from e.g.[34,
Theorem 4.3.4]we conclude that every solution of (6), with positive initial condition and
bounded image, converges to a stationary solution of (6). As a consequence, we see the
relevance of the consideration of the set of stationary solutions in order to describe the
dynamics of the set of solutions of (6).

4. Symbolic conditioning and complexity of our systems

Let us fixn ∈ N, letX1, . . . , Xn be indeterminates overQ and letX := (X1, . . . , Xn).
In this section we are going to analyze the polynomial system (2) from the symbolic point
of view, for arbitrary polynomialsf, g, h of Q[T ] with d := degg > max{degf,degh}.
The positive solutions of this kind of systems represent the stationary solutions of the
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semi-discrete version of several reaction–diffusion phenomena (see e.g.[8,17]). Further-
more, such kind of systems constitutes a wide generalization of the family of systems (4),
the central object of study of this paper.
As mentioned in the introduction, we are going to prove that a generic instance of either

(2) or (4) is likely to be ill-conditioned from the symbolic point of view, i.e., its solution set is
aQ-irreducible variety of degree close todn. Then, as an illustration of this ill-conditioning,
we are going to exhibit a symbolic homotopy algorithm solving any instance of (2) with
polynomial complexity in the Bézout numberdn, and thus exponential complexity with
respect ton. Let us observe that[11] shows that our complexity estimate is nearly optimal
for all known symbolic methods. Combining our algorithm with techniques of[27,40]
we shall obtain an algorithm with time-complexity polynomial in the Bézout numberdn

which determines the number of positive solutions of any instance of (2) and computes an
ε-approximation of them.

4.1. Symbolic conditioning of (2)

Assuming without loss of generality that the polynomialg ∈ Q[T ] of (2) is monic, let
Ad−1, . . . , A0, Bd−1, . . . , B0, Cd−1, . . . , C0 benew indeterminatesoverQ, and letf (A) :=
Ad−1T d−1 + · · · + A0, g(B) := T d + Bd−1T d−1 + · · · + B0, h(C) := Cd−1T d−1 + · · · +
C0 represent the “generic” versions of the polynomialsf, g, h of (2). In our subsequent
arguments we are going to consider the affine varietyW(A,B,C) ⊂ An+3d defined by the
following polynomial system:

0= 2(n−1)2(f (A)(X2) − f (A)(X1)
)− g(B)(X1),

0= (n−1)2(f(A)(Xk+1)−2f(A)(Xk)+f(A)(Xk−1)
)−g(B)(Xk), (2�k�n−1),

0= 2(n−1)2(f (A)(Xn−1) − f (A)(Xn)
)− g(B)(Xn) + 2(n − 1)h(C)(Xn).

(9)

Lemma 3. W(A,B,C) is an equidimensional variety of dimension3d and the projection
mapping� : W(A,B,C) → A3d defined by�(a, b, c, x) := (a, b, c) is a finite morphism of
degreedn.

Proof. The finiteness of� is equivalent to the finiteness ofQ[W(A,B,C)] asQ[A, B, C]-
module (see e.g.[57]). In order to prove the latter, let	1, . . . , 	n be the coordinate functions
of Q[W(A,B,C)] defined byX1, . . . , Xn and let	 := (	1, . . . , 	n). Then thek-th equation
Fk(A, B, C, X) = 0 of (9) induces a relationFk(A, B, C, 	) = 0 in Q[W(A,B,C)] for
1�k�n. ConsideringF1, . . . , Fn as elements of the polynomial ringQ[A, B, C][X], we
observe that the highest degree term (in the variablesX) of Fk is the nonzero monomial
Xd

k for 1�k�n. This shows thatQ[W(A,B,C)] is generated, asQ[A, B, C]-module, by
the set of monomials	j1

1 · · · 	jn
n with jk < d for 1�k�n. Hence,Q[W(A,B,C)] is a finite

Q[A, B, C]-module, which proves the finiteness of�.
We conclude thatW(A,B,C) is an equidimensional variety of dimension 3d. From the

Bézout inequality (5) we deduce that the degree of the morphism� is bounded bydn. On
the other hand, taking into account that the fiber of the point ofA3d defined bya = c = 0,
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b = (0, . . . ,0,1) has cardinalitydn, we conclude that deg� = dn holds. This finishes the
proof of the lemma. �

Combining this lemmawith e.g.[46, Proposition 3.17]we obtain our first ill-conditioning
result concerning the family of systems (2):

Corollary 4. There exists a nonempty Zariski open setU ⊂ A3d such that, for any
(a, b, c) ∈ U , the corresponding instance of(2) hasdn complex solutions.

Now we consider the irreducibility of a given instance of (2). For this purpose, we need
the following preliminary result:

Lemma 5. Let a(0) := (0, . . . ,0,1,0) ∈ Ad , let b be an arbitrary point ofQd and
let W(a(0), b,0∗, C0) denote the algebraic curve defined by�−1({(a(0), b,0)} × A1). Then
W(a(0), b,0∗, C0) is an irreducible curve ofAn+3d of degreedn.

Proof. Let us observe that the varietyW(a(0), b,0∗, C0) of the statement of the lemma is
determined by the following polynomial system:

0 = 2(n − 1)2(X2 − X1) − gb(X1),

0 = (n − 1)2(Xk+1 − 2Xk + Xk−1) − gb(Xk), (2�k�n − 1),
0 = 2(n − 1)2(Xn−1 − Xn) − gb(Xn) + 2(n − 1)C0,

with gb := g(B)(b, T ). Observe thatW(a(0), b,0∗, C0) may also be regarded as a subvariety of
An+1, by considering the polynomials defining the system above as elements ofQ[C0, X].
In this sense, Lemma3 implies that the mapping�(C0) : W(a(0), b,0∗, C0) → A1 defined by
�(C0)(c0, x) := c0 is a finite morphism of degree at mostdn. This shows thatW(a(0), b,0∗, C0)

is an equidimensional variety of dimension 1which, by theBézout inequality (5), has degree
at mostdn.
LetQ1(X1) := X1,Q2(X1) := X1 + (1/2)(n − 1)−2gb(X1) andQk+1(X1) := 2Qk −

Qk−1 + (n − 1)−2gb(Qk) for 2�k�n − 1. Then it is easy to see that the polynomial
Q ∈ Q[C0, X1] defined by

Q(C0, X1) := 2(n − 1)2
(
Qn−1(X1) − Qn(X1)

)− gb

(
Qn(X1)

)+ 2(n − 1)C0

vanishes on the varietyW(a(0), b,0∗, C0). From its definition we easily conclude that degQ =
degX1Q = dn holds. Taking into account thatQ is a monic element ofQ[C0][X1] (up to
nonzero elements ofQ) of degree 1 inC0, from the Gauss Lemma we conclude that is
irreducible inQ[C0, X1] andC[C0, X1].
From the Hilbert Irreducibility Theorem (see e.g.[61]) we deduce that there exists� ∈

Q such thatQ(�, X1) is an irreducible polynomial ofQ[X1]. This implies that the zero-
dimensional varietyW(a(0), b,0∗, C0) ∩ {C0 = �} hasdn points, which in turn shows that
W(a(0), b,0∗, C0) has degreedn.
Finally, let �(C0,X1) : W(a(0), b,0∗, C0) → A2 denote the mapping�(C0,X1)(c0, x) :=

(c0, x1). Thenwehave that the imageof�(C0,X1) is theplanecurveof equationQ(C0, X1) =



M. De Leo et al. / Journal of Complexity 21 (2005) 502–531 513

0. From the irreducibility ofQ(C0, X1) we conclude thatX1 represents a primitive el-
ement of the ring extensionQ[C0] ↪→ Q[W(a(0), b,0∗, C0)] and hence of the (finite) field
extensionQ(C0) ↪→ Q(W(a(0), b,0∗, C0)). This implies that for 2� i�n there exist ele-
ments�i ∈ Q[C0] \ {0}, Vi ∈ Q[C0, X1] such thatXi ≡ �−1

i (C0)Vi(C0, X1) holds in

Q(W(a(0), b,0∗, C0)). This shows that�(C0,X1) represents a birational equivalence between
W(a(0), b,0∗, C0) and the curve of equationQ(C0, X1) = 0, and finishes the proof of the
lemma. �

From Lemma5 we deduce our second ill-conditioning result concerning the family of
systems (2):

Corollary 6. There exists an infinite number of elements� ∈ Q for which (4) defines a
Q-irreducible variety of degreedn.

Proof. LetW(a(0),0,0∗, C0) be the algebraic curve defined by (4) with the value� replaced
by a new indeterminateC0. Then the proof of Lemma5 shows that the minimal equation
of integral dependence satisfied byX1 in the ring extensionQ[C0] ↪→ Q[W(a(0),0,0∗, C0)]
is an irreducible polynomialQ ∈ Q[C0, X1] of degreedn. Hence, Hilbert’s Irreducibility
Theorem shows that there exists an infinite number of values� ∈ Q for whichQ(�, X1) is
an irreducible polynomial ofQ[X1]. For these values of�, the corresponding instances of
(4) define aQ-irreducible variety of degreedn. �

In order to state our main result concerning the irreducibility of a given instance of (2),
we first prove that a generic specialization of the variablesA, B, Cd−1, . . . , C1 yields a
Q-irreducible curve of degreedn:

Proposition 7. There exists a nonempty Zariski open setU ⊂ A3d−1 such that, for any
(a, b, c∗) ∈ U witha, b ∈ Ad , the algebraic curveW(a, b, c∗, C0) defined by�−1({(a, b, c∗)}×
A1) is (absolutely) irreducible of degreedn.

Proof. Let W(A,B,C) ⊂ An+3d denote the equidimensional 3d-dimensional variety of
Lemma3, and let� : W(A,B,C) → A3d be the (finite)morphismdefinedby�(a, b, c, x) :=
(a, b, c). Combining Lemma3and[16, Corollary 18.17]we conclude thatQ[W(A,B,C)] is
a freeQ[A, B, C]-module, of rankdn.
Let U ∈ Q[X] be a primitive element ofQ[A, B, C] ↪→ Q[W(A,B,C)] and letQ ∈

Q[A, B, C][Y ] be its minimal polynomial overQ[A, B, C]. Observe thatQ is a monic
element ofQ[A, B, C][Y ] with degY Q = degQ = dn. We claim thatQ is an irreducible
polynomial ofC[A, B, C, Y ]. Indeed, without loss of generality we may assume thatU
is also a primitive element of the ring extensionQ[C0] ↪→ Q[W(a(0),0,0∗, C0)], where
W(a(0),0,0∗, C0) is the algebraic curve of Corollary6. Specializing the variablesA, B and
C∗ := (Cd−1, . . . , C1) into the valuesa(0), 0 ∈ Ad and 0∈ Ad−1, respectively, from
Corollary6 we deduce thatQ(a(0),0,0, C0, Y ) is an irreducible polynomial ofC[C0, Y ]
withdegY Q(a(0),0,0, C0, Y ) = dn. Therefore, themonicity ofQ inC[A, B, C][Y ] implies
thatQ is an irreducible polynomial ofC[A, B, C, Y ], showing our claim.
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From[57, §I.5.2]we have that there exists a nonempty Zariski open subsetU0 of AN ,
with N := (dn + 2)(dn + 1)/2, such that any polynomialF ∈ C[C0, Y ] of degree at
mostdn, whose coefficient vectorcF ∈ AN (in dense representation) belongs toU0, is
irreducible inC[C0, Y ] of degreedn. Let g1, . . . , gs ∈ C[Z1, . . . , ZN ] be a system of
generators of the vanishing ideal ofAN \ U0. LetQ := ∑

i+j �dn ci,j (A, B, C∗)Ci
0Y

j .

Then we have thatQ(a(0),0,0, C0, Y ) is an irreducible polynomial ofC[C0, Y ] of degree
dn. This shows that there exists 1�k�s such thatgk

(
ci,j (A, B, C∗); i + j �dn

)
is a

nonzero element ofC[C0, Y ]. Furthermore, from the definition ofgk we have that, for
any (a, b, c∗) ∈ A3d−1 not annihilatinggk

(
ci,j (A, B, C∗); i + j �dn

)
, the polynomial

Q(a, b, c∗, C0, Y ) is irreducible of degreedn.
Let U ⊂ A3d−1 be the complement of the zero set ofgk

(
ci,j (A, B, C∗); i + j �dn

)
and let(a, b, c∗) ∈ U . ThenQ(a, b, c∗, C0, Y ) is irreducible of degreedn. Hence, arguing
as in the last paragraph of the proof of Lemma5 we see that the morphism�(C0,X1) :
W(a, b, c∗, C0) → A2 defined by�(C0,X1)(c0, x) := (c0, x1) induces a birational equivalence
between the curveW(a, b, c∗, C0) := �−1({a, b, c∗} × A1) and the plane curve of equation
Q(a, b, c∗, C0, Y ) = 0. The proposition follows from the irreducibility of the latter.�

Combining Proposition7 with Hilbert’s Irreducibility Theorem we obtain our third and
main ill-conditioning result concerning the family of systems (2):

Corollary 8. With notations as in Proposition7, for any(a, b, c∗) ∈ U ∩Q3d−1 there exist
an infinite number of valuesc0 ∈ Q such that the corresponding instance of(2) defines a
Q-irreducible variety of degreedn.

4.2. A symbolic homotopy algorithm solving any instance of (2).

Our results of the previous section show that a given instance of (2) is likely to be ill-
conditioned from the symbolic point of view. In order to illustrate this behavior, and the kind
of symbolic homotopy algorithms we are referring to, in this section we exhibit a symbolic
homotopy algorithm solving any instance of (2) which slightly improves a direct application
of the best (from the worst-case time–space complexity point of view) symbolic algorithm
[25]. Its complexity is exponential in the number of variablesn, but nevertheless nearly
optimal for the family of systems under consideration (cf.[11,31]). It may be worthwhile
to observe that any instance of (2) is a Pham system, which can therefore be (partially)
solved by applying thenonuniversalsymbolic homotopy algorithm of[51]. In such a case,
for certain particular nonirreducible instances of (2) our time–space complexity could be
significantly improved.
Our algorithm is based on the deformation of (2) defined by the polynomials:

F1 := T
(
2(n−1)2(f (X2)−f (X1)

)−g(X1)
)
+(T − 1)(Xd

1−X2),

Fk := T
(
(n−1)2(f (Xk+1)−2f (Xk)+f (Xk−1)

)−g(Xk)
)
+(T−1)(Xd

k −Xk+1),
(2�k�n − 1),

Fn := T
(
2(n−1)2(f (Xn−1)−f (Xn)

)−g(Xn)+2(n−1)h(Xn)
)
+(T−1)(Xd

n −1).

(10)
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This deformation satisfies the following conditions, as shall be seen below:

(i) F1(1, X) = · · · = Fn(1, X) = 0 is the input system;
(ii) F1(0, X) = · · · = Fn(0, X) = 0 is a zero-dimensional system with a geometric

solution easy to compute;
(iii) If W := V (F1, . . . , Fn) and� : W → A1 is the projection mapping onto the first

coordinate, then� is a finite generically-unramified morphism;
(iv) �−1(0) is an unramified fiber of�.

We are going to compute a geometric solution of the variety defined by the system
F1(T , X) = · · · = Fn(T , X) = 0 using a global variant of a symbolic Newton–Hensel iter-
ation originally due to[21,23](seealso[7,25,30,32,56]). Then, specializing thepolynomials
representing this geometric solution into the valueT = 1, and cleaning up multiplicities,
we shall obtain a geometric solution of our input systemF1(1, X) = · · · = Fn(1, X) = 0.
First we show that our deformation satisfies conditions (i)–(iv) above. Condition (i)

follows directly from the expression of (2) and (10). Our next result proves the validity of
conditions (iii) and (iv):

Lemma 9. � is finite and generically unramified, and�−1(0) is unramified.

Proof. Let us observe thatFi is a polynomial of degreed whose highest nonzero degree
term in the variablesX is the monomialXd

i . This shows thatQ[W ] is a finiteQ[T ]-module
and implies the finiteness of the morphism�.
From the Bézout inequality (5) we have that #(�−1(t))�dn holds for anyt ∈ A1. On

the other hand, the fiber�−1(0) consists of the solutions of the systemXk+1 − Xd
k = 0

(1�k�n − 1), 1− Xd
n = 0, which proves that #(�−1(0)) = dn holds. Hence, from e.g.

[28, Proposition 1]or [46, Proposition 3.17]we deduce that there exists a nonempty Zariski
open subsetU of An such that #(�−1(t)) = dn for anyt ∈ U .
Let t ∈ U . ThenC[X]/(F1(t, X), . . . , Fn(t, X)) is aC-vector space of dimension atmost

dn. Hence, applying e.g.[14, Corollary 2.6]we deduce thatF1(t, X), . . . , Fn(t, X) gener-
ates a radical ideal ofC[X]. In particular, the Jacobian matrix ofF1(t, X), . . . , Fn(t, X)

is nonsingular in any point of�−1(t), which shows that the fiber�−1(t) is unramified
for any t ∈ U . Furthermore, applying this argument tot = 0 we conclude that�−1(0) is
unramified. �

Suppose that we are given a linear formU ∈ Q[X] which is “lucky” in the sense of[25,
§5.3]. Observe that such a linear form separates the points of�−1(0), and hence represents
a primitive element of the (integral) ring extensionQ[T ] ↪→ Q[T , X]/(F1, . . . , Fn). Our
next result shows that condition (ii) holds.

Lemma 10. There exists a computation tree which takes as input the polynomials defining
�−1(0) and the linear form U and outputs a geometric solution of�−1(0) using U as
primitive element. This computation tree uses spaceO(ndn) and timeO

(
ndnM(dn)

)
.

Proof. Let us observe that�−1(0) consists of the points ofAn satisfying the equations
Xk+1−Xd

k = 0 (1�k�n−1), Xd
n −1= 0. By successive substitution we see that�−1(0)
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may be described as the set of solutions of the systemXk = Xdk−1
1 (2�k�n), Xdn

1 = 1.
Let �1, . . . , �n be new indeterminates, and letU�(X) := �1X1 + · · · + �nXn. Then,
for q� := ResX1(X

dn

1 − 1, Y − U�(X1, Xd
1, . . . , Xdn−1

1 )), it follows thatq�(Y ) = q(Y ) +∑n
i=1(�i −�i )

(
Xiq

′(Y )−vi(Y )
)
modulo(�1−�1, . . . , �n −�n)2, where the polynomials

q, v1, . . . , vn ∈ Q[Y ] form a geometric solution of�−1(0)withU := �1X1+· · ·+�nXn as
primitive element (see e.g.[25, §3.3]). The computation ofq� modulo(�1−�1, . . . , �n −
�n)2 can be done by interpolation in the variableY. For this purpose, we compute the
evaluated resultantq�(�i ) modulo(�1 − �1, . . . , �n − �n)2 for dn + 1 different values
�0, . . . , �dn+1 ∈ Q, using a fast algorithm for computing resultants over a field based
on the Extended Euclidean Algorithm (cf.[20]). Our “lucky” choice ofU guarantees that
executing this algorithm over the power seriesQ[[� − �]], truncating the power series
arising during the execution up to order 2, will output the right results. Then,q� modulo
(�1−�1, . . . , �n−�n)2 can be recovered by interpolation (see e.g.[4]). Taking into account
the time–space complexity of the algorithms for interpolation and computing resultants the
lemma follows. �

Lemmas9 and 10 show that our deformation satisfies conditions (i)–(iv) above.
Therefore, we may apply the symbolic Newton–Hensel iteration mentioned before. For
this purpose, letU := �1X1+· · ·+�nXn ∈ Q[X] be a “lucky” linear form (in the sense of
[25, §5.3]), which also induces a primitive element of the ring extensionQ ↪→ Q[�−1(1)].
Let us fix ��4. From the Zippel–Schwartz test (cf.[61]) and the estimates for the de-
gree of the denominators arising during the execution of Extended Euclidean Algorithm of
[20, Theorem 6.54], we see that the coefficients ofU can be randomly chosen in the set
{1, . . . ,16�d4n} with probability of success at least 1− 1/��3/4.
Let q, v1, . . . , vn ∈ Q[Y ] be the polynomials obtained after applying the algorithm

underlying Lemma10. These polynomials form a geometric solution of�−1(0) usingU
as primitive element. Then we may apply the Algorithm “Lift Curve” of[25, §4.5], which
outputs polynomialsQ, V1, . . . , Vn ∈ Q[T , Y ] which form a geometric solution ofW :=
V (F1, . . . , Fn), usingU as primitive element. Taking into account the tridiagonal form of
Jacobian matrix ofF1, . . . , Fn with respect to the variablesX, from [7, Theorem 2; 25,
Proposition 9](see also[56, Theorem 2]) we conclude that this algorithm requires space
O(nd2n) and timeO

(
ndM(dn)2

)
.

Then, specializingQ, V1, . . . , Vn into the valueT = 1, we obtain polynomialsQ(1, Y ),

V1(1, Y ), . . . , Vn(1, Y ) ∈ Q[Y ]which represent a complete description of our input system
F1(1, X) = · · · = Fn(1, X) = 0, eventually includingmultiplicities.Suchmultiplicities are
represented bymultiple factors ofQ(1, Y ), which are also factors ofV1(1, Y ), . . . , Vn(1, Y )

(see e.g.[25, §6.5]). Therefore, theymay be removed by computingM(Y) := gcd
(
Q(1, Y ),

(�Q/�Y )(1, Y )
)
, and the polynomialsQ(1, Y )/M(Y ), (�Q/�Y )(1, Y )/M(Y ), Vi(1, Y )/

M(Y ) (1� i�n) which form a geometric solution of our input system, without changing
the asymptotic complexity of our procedure. Summarizing, we have

Theorem 11. There exists a computation tree which takes as input the polynomials
F1, . . . , Fn of (10) and a“lucky” linear formU ∈ Q[X], and outputs a geometric solution
of the given instance of(2). This computation tree requires spaceO(nd2n) and time
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O
(
ndM(dn)2

)
, and can be probabilistically built with a probability of success of at

least3/4.

4.3. Symbolic real root counting and approximation

In this section we briefly sketch an algorithmwhich, having as input a geometric solution
of a given instance of (2), determines the number of positive solutions and computesε-
approximations to all of them.
Let us fix an arbitrary instancef1 = · · · = fn = 0 of (2). Suppose that we are given

a geometric solution of the varietyV ⊂ An defined byf1, . . . , fn, as computed by the
algorithm underlying Theorem11. Such a geometric solution consists of a linear form
U ∈ Z[X] and univariate polynomialŝq, v̂1, . . . , v̂n which, without loss of generality, we
shall assume to belong toZ[Y ]. From theQ-definability of this geometric solution we
easily conclude that the number of real points ofV equals the number of real roots of
q̂. Furthermore, the number of positive solutions off1 = · · · = fn = 0 is the number
of real roots of̂q satisfying the sign conditionŝvi �0 (1� i�n). This quantity can be
determined using the algorithm[27, Recipe SI], which yields the number of real roots of a
given univariate polynomial satisfying all possible sign conditionssign(̂vi) = �i (1� i�n).
Taking into account that this algorithm requires the computation ofO(ndn)Cauchy indices,
and the solution ofO(n) linear systems of sizeO(dn), we obtain the following result:

Proposition 12. There exists a computation tree which takes as input a geometric solution
of our input systemf1 = · · · = fn = 0 and outputs the number of positive solutions of
f1 = · · · = fn = 0.This computation tree requires spaceO(d2n) and timeO(nd3n).

Let us remark that the positive solutions of any instance of (4) can be characterized as
the real solutions with positive first coordinate. In such a case, algorithm[27, Recipe SI]
can be significantly simplified, and requires spaceO(dn) and timeO

(M(dn)
)
.

Now we consider the problem ofε-approximating the positive roots of our input system.
For this purpose, we represent the real solutions of our input system by means ofThom
encodings(seee.g.[27]). Letp ∈ Z[X]beapolynomial of degreeeand letp(i) (1� i�e−1)
denote theith derivative ofp. For a given real rootx0 of p, its Thom encoding is the list
[p; 	e−1, . . . , 	1], where	i is the sign ofp

(i)(x0) for 1� i�e − 1. The Thom encodings
of the real roots ofp also allow their ordering (see e.g.[27, Proposition 5.1]).
Let q̂i ∈ Z[X] denote the minimal equation satisfied byXi modulo our input system

for 1� i�n. By an easy adaptation of[32, Lemma 3]we conclude that there exists a
computation tree with spaceO(ndn+1) and timeO

(
ndnM(dn)

)
which takes as input

the geometric solution computed by the algorithm underlying Theorem11 and outputs
the polynomialŝq1, . . . , q̂n. Then the Thom encodings of each coordinate of the positive
solutions of our input systemmay be obtained applying the algorithm[27, Recipe SI]to the
polynomial̂q and the list̂v1, . . . , v̂n, q̂

(dn−1)
1 ◦v̂1, . . . , q̂1

′◦v̂1, . . . , q̂
(dn−1)
n ◦v̂n, . . . , q̂n

′◦v̂n,

and identifying the sign conditions[�(0)
1 , . . . , �(0)

n , �(1)
dn−1, . . . , �(1)

1 , . . . , �(n)
dn−1, . . . , �(n)

1 ]
such that�(0)

i = + holds for 1� i�n.
Furthermore, let be givenε > 0 and an upper bound > 0 on the absolute value of

the coordinates of the real solutions of our input system. Let us observe that the positive
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solutions of any instance of (4) have coordinates upper bounded by
(
2(n − 1)�

)1/d . Then,
combining the above determination of Thom encodings with a bisection strategy we obtain
an algorithm whichε-approximates all the positive rootsx := (x1, . . . , xn) of our input
system satisfyingxi � for 1� i�n. This algorithm requires determining the number of
real roots of the polynomial̂q satisfying all possible combinations of sign conditions defined
by a list ofO

(
ndnmax{1, �log(ε−1)�}) polynomials of degree at mostdn. Therefore, we

have

Theorem 13. There exists a computation tree which takes as input a geometric solution
of our input systemf1 = · · · = fn = 0 and outputs anε-approximation of all the pos-
itive solutions off1 = · · · = fn = 0 with coordinates upper bounded by, with space
O
(
nd2nmax{1, �log(ε−1)�}) and timeO

(
nd4nmax{1, �log(ε−1)�}).

5. Real root counting

In this section we exhibit a deformation technique which allows us to determine the
number of positive solutions of certain instances of (2), including in particular all the
instances of (4). Such deformation technique consists in finding a smooth real homotopy
which deforms the system under consideration into a system whose number of positive
solutions can be easily determined.
LetX1, . . . , Xn be indeterminates and letX := (X1, . . . , Xn). Let f1, . . . , fn be poly-

nomials ofQ[X] and letVR ⊂ (R�0)n be the semi-algebraic set consisting of the positive
solutions off1 = · · · = fn = 0. LetT be a new indeterminate, and suppose that there exist
polynomialsF1, . . . , Fn ∈ Q[T , X] such that, for

WR := {(t, x) ∈ [0,1] × (R�0)n : F1(t, x) = · · · = Fn(t, x) = 0},
the identityWR ∩ {T = 1} = {1} × VR holds. Let�R : WR → R be the polynomial
mapping defined by�R(t, x) := t . Our deformation technique is based on the following
result:

Proposition 14. Suppose that the following conditions hold:
• �R has no critical values in[0,1],
• #

(
�−1

R (t)
)

< ∞ for anyt ∈ [0,1],
• WR is a compact subset ofRn+1,
• WR ⊂ [0,1] × (R>0)

n.
Then there existss�0 such that#

(
�−1

R (t)
) = s holds for anyt ∈ [0,1].

Proof. From [33, Lemma 7]we deduce that there exists, s′ ∈ N andε ∈ (0,1) such
that the set�−1

R (t) hass semi-algebraically connected components for anyt ∈ [0, ε) and
s′ semi-algebraically connected components for anyt ∈ (1− ε,1]. In particular, we have
#
(
�−1

R (0)
) = s and #

(
�−1

R (1)
) = s′. Applying [33, Proposition 8]in the interval(0,1) we

conclude that #
(
�−1

R (t)
) = #

(
�−1

R (t ′)
)
for any t, t ′ ∈ (0,1). This shows thats = s′ holds

and finishes the proof of the proposition.�
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We are going to apply Proposition14 in order to determine the number of positive
solutions of any instance of the following subfamily of (2):

0 = (n − 1)2
(
f (X2) − f (X1)

)− 1
2g(X1),

0 = (n − 1)2
(
f (Xk+1) − 2f (Xk) + f (Xk−1)

)− g(Xk) (2�k�n − 1),
0 = (n − 1)2

(
f (Xn−1) − f (Xn)

)− 1
2g(Xn) + (n − 1)�,

(11)

where� > 0andf, g areelementsofQ[X],withd := degg > degf andf (0) = g(0) = 0,
which define increasing functions inR�0. These hypotheses are satisfied, for example, if
f, g are positive monomials with degg > degf .
LetVR ⊂ (R�0)n be theset of positive solutionsof (11). In order toapply thedeformation

technique underlyingProposition14, we introduce the following polynomialsF1, . . . , Fn ∈
Q[T , X]:

F1 := (n−1)2(f (X2) − f (X1)
)− 1

2g(X1),

Fk := (n−1)2(f (Xk+1)−(1+T )f (Xk) + Tf (Xk−1)
)−g(Xk) (2�k�n−1),

Fn := (n−1)2T (f (Xn−1) − f (Xn)
)− 1

2g(Xn) + (n − 1)�,

Let WR := {(t, x) ∈ [0,1] × (R�0)n : F1(t, x) = · · · = Fn(t, x) = 0}. Observe that
WR ∩ {T = 1} = {1} × VR holds. Let�R : WR → R be the projection mapping onto
the first coordinate. We are going to show thatF1, . . . , Fn satisfy all the hypotheses of
Proposition14.

Lemma 15. �R has no critical values in[0,1].

Proof. Observe that the Jacobian matrix(�F/�X) of F1, . . . , Fn with respect to the vari-
ablesX is the following tridiagonal matrix:

(�F/�X)i,j :=



−(n − 1)2f ′(X1) − 1
2g

′(X1) for i = j = 1,
−(n − 1)2(1+ T )f ′(Xi) − g′(Xi) for 2� i = j �n − 1,
−(n − 1)2Tf ′(Xn) − 1

2

(
g′(Xn)

)
for i = j = n,

(n − 1)2f ′(Xj ) for 1� i = j − 1�n − 1,
(n − 1)2Tf ′(Xj ) for 2� i = j + 1�n,

0 otherwise.

By the conditions satisfied byf, g we easily conclude thatD(t) · (�F/�X)(t, x) is a strictly
column diagonally dominant square matrix for any(t, x) ∈ (0,1] × (R�0)n, whereD(t)

is the following diagonal matrix

D(t) :=
 tn−1

. . .

1


and(�F/�X)(0, x) is a triangular matrix with positive diagonal for anyx ∈ (R�0)n. Thus
(�F/�X)(t, x) is a nonsingular matrix for any(t, x) ∈ [0,1] × (R�0)n. Therefore, from
e.g.[5, §12.3, Proposition 6]we conclude that�R has no critical points inWR, and hence
no critical values in[0,1]. �



520 M. De Leo et al. / Journal of Complexity 21 (2005) 502–531

Lemma 16. �−1
R (t) is a finite set for anyt ∈ [0,1].

Proof. Let W ⊂ An+1 be the affine variety defined byF1, . . . , Fn. We observe thatFi

is a polynomial of degreed whose highest nonzero degree term in the variablesX is the
monomialXd

i . This shows thatQ[W ] is a finiteQ[T ]-module and hence that the projection
mapping� : W → A1 defined by�(t, x) := t is a finite morphism, which implies
that �−1(t) is a finite set for anyt ∈ A1. In particular,�−1

R (t) is a finite set for any
t ∈ [0,1]. �

The following result, probably well-known, is included here for lack of a suitable refer-
ence.

Lemma 17. �R is a proper morphism, i.e., the preimage of a compact set of[0,1] is a
compact set ofWR.

Proof. LetK ⊂ [0,1] be a compact set and let(ak)k∈N := (t(k), x(k))k∈N be a sequence
contained in�−1

R (K). Then there exists a subsequence of(t(k))k∈N which converges in
K. Therefore, we may assume without loss of generality that the sequence(t(k))k∈N itself
converges tot ∈ K.
Let as beforeW ⊂ An+1 denote the affine variety defined byF1, . . . , Fn and let

� : W → A1 be the projection morphism�(t, x) := t . Since the ring extensionQ[T ]
↪→ Q[T , X]/(F1, . . . , Fn) is integral (see Lemma16), if U is a linear form ofQ[X], the
minimal polynomialQ(T, Y ) of the coordinate function induced byU in this extension
is a monic element ofQ[T ][Y ]. The fact thatQ(T, U(X)) vanishes overW implies that
Q(t(k), U(x(k))) = 0 holds for anyk ∈ N.
Since(t(k))k∈N converges tot ∈ K, we have thatQ(tk, Y ) converges, coefficient by

coefficient, toQ(t, Y ). Taking into account the standard bounds on the absolute value of
the complex roots of a univariate polynomial in terms of its coefficients (see e.g.[42]), we
conclude that fork � 0 there exists a uniform bound on the absolute value of the complex
roots of the polynomialsQ(tk, Y ) andQ(t, Y ). This shows that the sequence(U(x(k)))k∈N

is contained in a compact subset ofR, which implies that(U(x(k)))k∈N has a subsequence
converging to a valueu ∈ R for which Q(t, u) = 0 holds. Let us observe that, for a
generic choice ofU, there existsx ∈ WR such thatU(x) = u holds, becauseQ is the
minimal polynomial ofU in the ring extension induced by� and(t, u) does not annihilate
the discriminant ofQwith respect toY.
Our previous argument is valid for any linear form ofQ[X] which separates the points

of �−1(t). Hence, letY1, . . . , Yn ∈ Q[X] beQ-linearly independent linear forms satisfying
this condition. Then, forU = Y1, we obtain a subsequence(ajk

)k∈N of (ak)k∈N such that(
Y1(x

(jk))
)
k∈N

converges to a valuey1 ∈ R which equals the evaluation ofY1 in a point

of �−1
R (t). Arguing with this subsequence andU = Y2, we obtain a valuey2 which also

corresponds to a certain point of�−1
R (t). Arguing inductively we conclude that there exists

an accumulation point of(ak)k∈N in �−1
R (K), finishing thus the proof of the lemma.�

Lemma17 implies thatWR = �−1
R

([0,1]) is a compact subset ofRn+1.
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Lemma 18. WR ⊂ [0,1] × (R>0)
n.

Proof. Let us recall thatWR is the semi-algebraic set which consists of the points of
(t, x) ∈ [0,1] × (R�0)n satisfying the equations:
0=(n−1)2(f (X2) − f (X1)

)− 1
2g(X1),

0=(n−1)2(f (Xk+1)−(1+T )f (Xk)+Tf (Xk−1)
)−g(Xk) (2�k�n−1),

0=(n−1)2T (f (Xn−1) − f (Xn)
)− 1

2g(Xn) + (n − 1)�.

(12)

Let (t, x) ∈ [0,1] × (R�0)n be an arbitrary point ofWR and suppose thatx1 = 0 holds.
Specializing the right-hand side of the first equation of (12) into the valueX = x we see that
f (x2) = 0 holds. Sincef defines a strictly increasing function inR�0 with f (0) = 0, we
conclude thatx2 = 0 holds. We claim thatxk = 0 holds for 3�k�n. Arguing inductively,
let us fix 3�k�n and assume thatx1 = · · · = xk−1 = 0 holds. Specializing the right-hand
side of the(k − 1)th equation of (12) into the valueX = x we see thatf (xk) = 0 holds,
which impliesxk = 0. This completes our inductive argument and shows thatxn−1 =
xn = 0 holds. Then, the last equation of (12) implies(n − 1)� = 0, which contradicts our
hypotheses. We conclude thatx1 > 0 holds.
Now we claim thatxk > 0 holds for 2�k�n. For this purpose, it suffices to show that

xk+1 > xk holds for 1�k < n. Sincex1 > 0 holds andg defines an increasing function in
R�0, we have that(n − 1)2(f (x2) − f (x1)

) = 1
2g(x1) > 0 holds, which impliesx2 > x1.

Let us fix 1�m < n and suppose thatxk+1 > xk holds for 1�k < m. Specializing
the right-hand side of themth equation of (12) into the valueX = x, we deduce that
(n − 1)2(f (xm+1) − f (xm)

) = (n − 1)2T (f (xm) − f (xm−1)
)+ g(xm) > 0 holds, which

impliesxm+1 > xm. This shows thatxn > · · · > x1 > 0 holds for any(t, x) ∈ WR. �

Now we are able to determine the number of positive solutions of (11).

Theorem 19. Let � > 0 and letf, g be polynomials ofQ[X] with d := degg > degf
andf (0) = g(0) = 0, which define increasing functions inR�0. Then(11) has exactly
one solution in(R�0)n.

Proof. Lemmas15–18show thatWR and�R : WR → R satisfy the hypotheses of Propo-
sition 14. We conclude that #

(
�−1

R (1)
)
= #
(
�−1

R (0)
)
holds. Therefore, in order to finish the

proof of the theorem there remains to prove that #
(
�−1

R (0)
) = 1 holds. We observe that

�−1
R (0) = {0} × ṼR holds, wherẽVR ⊂ (R>0)

n is the semi-algebraic set consisting of the
pointsx := (x1, . . . , xn) ∈ (R>0)

n satisfying following polynomial system:
0 = (n − 1)2

(
f (X2) − f (X1)

)− 1
2g(X1),

0 = (n − 1)2
(
f (Xk+1) − f (Xk)

)− g(Xk) (2�k�n − 1),
0 = (n − 1)� − 1

2g(Xn).

(13)

Sinceg(Xn) defines a strictly increasing function inR�0 which satisfies the conditions
limx→+∞ g(x) = +∞ andg(0) = 0, we see that there exists a unique positive solutionxn

to theequation(n−1)�− 1
2g(Xn) = 0.Nowweshow that for 2�k�n−1, thereexist unique

valuesxk, . . . , xn ∈ R�0 satisfying the lastn−k+1equationsof (13). Arguingby induction
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on n − k, let 1< k < n and assume our statement true fork + 1, i.e., there exist unique
valuesxk+1, . . . , xn ∈ R�0 satisfying the lastn−k equations of (13). Hence, the coordinate
xk ∈ R�0 must be a solution of the equation(n−1)2f (xk+1) = 2(n−1)2f (Xk)+g(Xk).
Sincep(Xk) := 2(n−1)2f (Xk)+g(Xk) defines a strictly increasing polynomial function
in R�0 and satisfiesp(0) = 0, we conclude that there exists a unique solutionxk ∈ R�0
to the equation(n−1)2f (xk+1) = p(Xk). This completes our inductive argument. Finally,
in order to prove the uniqueness ofx1 ∈ R�0, we apply a similar argument as above to the
polynomialp̃(X1) := (n − 1)2f (X1) + 1

2g(X1). �

6. Numerical conditioning and complexity of our systems

In this section we are going to analyze the set of positive solutions of (4) for d �2 and
� ∈ Q>0 from the numeric point of view. Let us recall that the positive solutions of (4)
represent the stationary solutions of the initial value problem (6) of Section3. The main
result of this section asserts that (4) has only one positive solutionx∗ ∈ (R�0)n, which is
well-conditioned from the numeric point of view. Then, following the homotopy of Section
5 we shall be able to exhibit an algorithm which computes anε-approximation ofx∗ with
nO(1)M floating point operations, whereM := log | log(εn3−1/d�d)|. In particular, we see
the difference of behavior between symbolic and numeric conditioning and complexity
regarding the positive solution of (4).
We claim that there exists only one positive solution of (4). Indeed, following the ideas

of Section5, we consider the following deformation of (4):
0 = (n − 1)2

(
X1 − X2

)+ 1
2X

d
1,

0 = −(n − 1)2
(
Xk+1 − Xk − T (Xk − Xk−1)

)+ Xd
k (2�k�n − 1),

0 = (n − 1)2T (Xn − Xn−1) − (n − 1)� + 1
2X

d
n.

(14)

LetWR be the set of positive solutions of (14). From Theorem19and Proposition14we
conclude thatWR ∩ ({t} × (R�0)n

)
, and in particular (4), has only one positive solution

for anyt ∈ [0,1].
6.1. An estimate on the condition number of the positive solution of (14).

LetT , X1, . . . , Xn be indeterminates overQ, letX := (X1, . . . , Xn)and letF : Rn+1 →
Rn denote the polynomial mapping defined by the right-hand side members of (14). Then
F(t, X) = 0 has exactly one positive solution

(
x1(t), . . . , xn(t)

)
for any t ∈ [0,1], which

in fact belongs to(R>0)
n. Thus, we have defined an analytic functiong : [0,1] → Rn by

g(t) := (
x1(t), . . . , xn(t)

)
.

Our intention is to analyze the conditioning of approximating the valueg(1) by a contin-
uation homotopy method. Following, e.g.[5], the condition number of approximatingg(t)

is given by

‖g′(t)‖∞ = ∥∥(�F/�X)
(
t, g(t)

)−1 · (�F/�T )
(
t, g(t)

)t∥∥∞
�
∥∥(�F/�X)

(
t, g(t)

)−1∥∥∞
∥∥(�F/�T )

(
t, g(t)

)∥∥∞,

where‖ · ‖∞ denotes the standard infinite norm and{ }t denotes transposition.
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Let us fix t ∈ [0,1]. In order to estimate
∥∥(�F/�X)

(
t, g(t)

)−1∥∥∞ and∥∥(�F/�T )(t, g(t))
∥∥∞, we are going to find a suitable lower bound forx1(t) and a suit-

able upper bound forxn(t).
From the firstn − 1 equations of (14) we easily see thatx2(t), . . . , xn(t) are uniquely

determined byt and x1(t). Therefore, lettingx1 vary, we may considerX2, . . . , Xn as
functions ofx1, which are indeed recursively defined as follows:

X1(x1) := x1, X2(x1) := x1 + (1/2)(n − 1)−2xd
1 ,

X3(x1) := X2(x1) + t
(
X2(x1) − x1

)+ (n − 1)−2Xd
2(x1),

Xk+1(x1) := Xk(x1) + t (Xk − Xk−1)(x1) + (n − 1)−2Xd
k (x1) for k�3.

(15)

Remark 20. For anyx1 > 0 we have:
(i) (Xk − Xk−1)(x1) > 0 and Xk(x1) > 0 for 2�k�n.

(ii) (X′
k − X′

k−1)(x1) > 0 and X′
k(x1) > 0 for 2�k�n.

Proof. Let k = 2. Then, from (15) we have the identities

X2(x1) − x1 = (1/2)(n − 1)−2xd
1 , X′

2(x1) = 1+ (d/2)(n − 1)−2xd−1
1

fromwhichwe immediately deduce (i) and (ii) fork = 2. Now, arguing inductively, suppose
our statement true for a givenk�2. From (15) we have

(Xk+1 − Xk)(x1) = t (Xk − Xk−1)(x1) + (n − 1)−2Xd
k (x1),

(X′
k+1 − X′

k)(x1) = t (X′
k − X′

k−1)(x1) + d(n − 1)−2Xd−1
k (x1)X

′
k(x1).

Combining these identities with the inductive hypotheses, we easily conclude that (i) and
(ii) hold for k + 1. �

Our next technical result is a critical point in our estimate on the lower bound ofx1(t)

for anyt ∈ [0,1].

Lemma 21. Assume thatd �2 and n�3d/2 + 1 hold, and let� := 1/d. For x1,0 :=
(n − 1)−�(2+�) andt ∈ [0,1], we have the following estimates for2�k�n:

Xk(x1,0) − Xk−1(x1,0)�
(
1/2+ 3(k − 2)

)
(n − 1)−(4+�),

Xk(x1,0)�(n − 1)−�(2+�) +
(

k−1
2 + 3

2(k − 1)(k − 2)
)

(n − 1)−(4+�).

Proof. Let xk,0 := Xk(x1,0) for 2�k�n. By hypothesis, we have

x2,0 = x1,0 + 1
2(n − 1)−2xd

1,0 = (n − 1)−�(2+�) + 1
2(n − 1)−(4+�),

x2,0 − x1,0 = 1
2(n − 1)−(4+�).

Arguing inductively, assume the statement true for a given 1< k < n. From (15) we
have

xk+1,0−xk,0 = t (xk,0−xk−1,0) + (n−1)−2xd
k,0�xk,0−xk−1,0 + (n−1)−2xd

k,0

�
(
1

2
+ 3(k − 2)

)
(n − 1)−(4+�) + (n − 1)−2

(
(n − 1)−�(2+�)
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+
(

k − 1

2
+ 3

2
(k − 1)(k − 2)

)
(n − 1)−(4+�)

)d

.

We first estimate the second term in the right-hand side of the last expression

(n − 1)−2
(

(n − 1)−�(2+�) +
(

k − 1

2
+ 3

2
(k − 1)(k − 2)

)
(n − 1)−(4+�)

)d

�(n − 1)−�d(2+�)−2
(
1+ 3k2

2
(n − 1)−(4+�)+�(2+�)

)d

�(n − 1)−(4+�)

(
1+ 3

2
(n − 1)−(2+�)(1−�)

)d

�(n − 1)−(4+�)

(
1+ 3

2
(n − 1)−1

)d

(for n�3d/2+ 1)

�(n − 1)−(4+�)(1+ 1/d)d �3(n − 1)−(4+�).

Hence, combining this estimate with the previous one we obtain:

xk+1,0 − xk,0 �
(
1/2+ 3(k − 2)

)
(n − 1)−(4+�) + 3(n − 1)−(4+�)

�
(
1/2+ 3(k − 1)

)
(n − 1)−(4+�),

which shows our first assertion fork + 1. In order to prove our second assertion fork + 1,
we have

xk+1,0 � xk,0 +
(
1

2
+ 3(k − 1)

)
(n − 1)−(4+�)

� (n − 1)−�(2+�) +
(

k − 1

2
+ 3

2
(k − 1)(k − 2)

)
(n − 1)−(4+�)

+
(
1

2
+ 3(k − 1)

)
(n − 1)−(4+�)

� (n − 1)−�(2+�) +
(

k

2
+ 3

2
k(k − 1)

)
(n − 1)−(4+�).

This finishes the proof of the lemma.�

From Lemma21we easily deduce the following estimates:

xn,0 − xn−1,0 �
(
1
2 + 3(n − 2)

)
(n − 1)−(4+�) �3(n − 1)−(3+�)

xn,0 � (n − 1)−�(2+�) +
(

n−1
2 + 3

2(n − 1)(n − 2)
)

(n − 1)−(4+�)

� (n − 1)−�(2+�) + 2(n − 1)−(2+�).

(16)

6.1.1. A lower bound forx1(t)
LetQ : [0,1] × R → R be the polynomial mapping defined by

Q(t, x1) := t (n − 1)2
(
Xn(t, x1) − Xn−1(t, x1)

)− (n − 1)� + 1

2
Xd

n(t, x1). (17)

Observe thatQ represents the minimal polynomial of the coordinate function defined by
X1 in the integral ring extensionQ[T ] ↪→ Q[W ], whereW is the affine subvariety ofAn+1
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defined by the polynomial systemF(T , X) = 0 of (14). Therefore, for fixedt ∈ [0,1], the
(only) positive root ofQ(t, X1) is the valuex1(t) we want to estimate.
From Remark20we see thatQ(t, X1) is a strictly increasing function inR�0 for any

t ∈ [0,1]. In particular, taking into account thatQ(t,0) < 0 holds, we obtain a new proof of
the uniqueness of the positive solution of the systemF(t, X) = 0 for anyt ∈ [0,1]. Let us
assume, as in Lemma21, thatd �2 andn�3d/2+ 1 hold, and letx1,0 := (n − 1)−�(2+�),
x2,0 := X2(x1,0), . . . , xn,0 := Xn(x1,0). From (16) we have

t (n − 1)2(xn,0 − xn−1,0) � 3t (n − 1)−(1+�) �3(n − 1)−1
1
2x

d
n,0 � 1

2

(
(n − 1)−�(2+�) + 2(n − 1)−(2+�)

)d
� 1

2(n − 1)−2
(
1+ 2(n − 1)−1

)d � 3
2(n − 1)−2

for n�2d + 1. We conclude that

Q
(
t, (n − 1)−�(2+�)

)
�3(n − 1)−1 − (n − 1)� + 3

2
(n − 1)−2 < 0

holds, provided thatn > 2�−1/2 + 1 holds. Combining this estimate with the fact that
Q(t, X1) is a strictly increasing function inR�0 for anyt ∈ [0,1], we deduce the following
result:

Lemma 22. Assume thatd �2 and n� max{2d + 1,2�−1/2 + 1} hold. Then, for any
t ∈ [0,1] we have the following estimate:

(n − 1)−�(2+�) �x1(t). (18)

6.1.2. An upper bound forxn(t)

We adapt an idea of[8]. LetQ : [0,1] × R → R be the function defined in (17), and

let x1,1(t) ∈ R>0 be the only positive solution of the equationXn(t, X1) = (
2�(n − 1)

)�.
Then we have

Q(t, x1,1(t)) = (n − 1)2t
(
Xn(t, x1,1) − Xn−1(t, x1,1)

)
.

If t = 0, from the above expression we conclude thatxn(0) = (
2�(n − 1)

)� holds. On the
other hand, fort ∈ (0,1]wehaveQ(t, x1,1(t)

)
> 0= Q

(
t, x1(t)

)
, which impliesx1,1(t) >

x1(t). Therefore, taking into account thatXn(t, X1) is a strictly increasing function inR�0
for anyt ∈ [0,1], we have

Lemma 23. For anyt ∈ [0,1] we have the estimatexn(t)�(2(n − 1)�)�.

6.1.3. An estimate on the condition number of approximatingg(t)

Let us fixt ∈ [0,1]. In order to estimate the condition number of approximatingg(t), we
observe that the Jacobian matrix�F(t, X)/�X of F(t, X) is tridiagonal with the following
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expression:

�F(t,X)

�X
:=


(n−1)2+ d

2X
d−1
1 −(n−1)2

−(n−1)2t (n−1)2(1+t)+dXd−1
2

. . .

. . .
. . . −(n − 1)2

−(n−1)2t (n−1)2t+ d
2X

d−1
n

.

Following [47], for a given realn × n matrixA := (aij )1� i,j �n we have the estimate
‖A−1‖∞ � max1� i �n

{|aii |−1(1− �i )
−1}, with �i := |aii |−1∑j �=i |aij | for 1� i�n. In

the case of the matrix(�F(t, X)/�X)
(
g(t)

)
, we have

�1=
(n − 1)2

(n−1)2+ d
2 x1(t)d−1 , �k = (1+ t)(n−1)2

(1+t)(n−1)2 + d xk(t)d−1 (2�k�n − 1),

�n = t (n − 1)2

t (n − 1)2 + d
2 xn(t)d−1 ,

which implies the following estimates:

|a11|−1(1− �1)
−1 = 2d−1x1(t)−d+1,

|akk|−1(1− �k)
−1 = d−1xk(t)

−d+1�2d−1x1(t)−d+1 (2�k�n − 1),
|ann|−1(1− �n)−1 = 2d−1xn(t)−d+1�2d−1x1(t)−d+1

for any solutiong(t) ∈ (R�0)n of the polynomial systemF(t, X) = 0. Combining these
estimates with Lemma22we deduce∥∥(�F(t, X)/�X

)−1(
t, g(t)

)∥∥∞ �2d−1x1(t)−d+1�2d−1(n − 1)2−�. (19)

Nowweestimate
∥∥(�F/�T )(t, g(t))

∥∥∞ for anyt ∈ [0,1]. For this purpose, let us observe
that(�F/�T )

(
t, g(t)

)=(n − 1)2(0, x2(t) − x1(t), . . . , xn(t) − xn−1(t)
)t holds. From (14)

we deduce the following estimate for 2�k�n:

(n − 1)2
(
xk(t) − xk−1(t)

) = 1

2
tk−2x1(t)d + tk−3x2(t)d + · · · + xk−1(t)d

� (k − 1)xn(t)d .

This implies∥∥(�F/�T )(t, g(t))
∥∥∞ �(n − 1)xn(t)d �2(n − 1)2�. (20)

Combining (19) and (20) we obtain the main result of this section:

Theorem 24. The condition number of approximating the only positive solution ofF(t, X)

= 0 satisfies the estimate�� 4
d
(n − 1)4−�� for anyt ∈ [0,1].
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6.2. A numerical algorithm computing the positive solution of (4)

Asan illustration of the numerical well-conditioning of the positive solution of the system
F(t, X) = 0 of (14) for anyt ∈ [0,1], we shall exhibit apolynomialalgorithm which com-
putes the only positive solutiong(1) of (4). This algorithm is a Newton–Euler continuation
method (see e.g.[48]). For this purpose, let us fix 0< ε̂ < � and let us introduce for any
 ∈ R the polynomial mappingF : [0,1] × Rn → Rn defined in the following way:

F(T , X) := F(T , X) − (0, . . . ,0, )t .

With the same arguments as in Section6.1.1we conclude thatF(t, X) = 0 has only one
positive solution for anyt ∈ [0,1] and any ∈ R with ||� ε̂.
Let f (T ) := −2T 3 + 3T 2. Observe thatf (0) = 0, f (1) = 1 andf ([−1/4,5/4]) =

[0,1] hold. Then we have that the semi-algebraic subset ofR × (R�0)n defined by the
following system of equalities and inequalities:

(0, . . . ,0, −̂ε)t �F
(
f (T ), X

)
�(0, . . . ,0, ε̂)t , −1/4�T �5/4,

is a compact neighborhood of the real algebraic curveF(T , X) = 0, 0�T �1. Observe
that this semi-algebraic set may also be defined as the set of points

(
t, g(t, )

)
with t ∈

[−1/4,5/4] and||� ε̂, whereg(, t) := (
x1,(t), . . . , xn,(t)

)
denotes the positive solu-

tion of F(f (T ), X) = 0.
In order to estimate the complexity of the Newton–Euler method which computes the

positive solution of (14), we need an upper bound forxn,(t) and a lower bound forx1,(t),
for any t ∈ [−1/4,5/4] and any ∈ [−̂ε, ε̂]. For this purpose, we follow the approach of
Section6.1.More precisely, analogously to (17), we introduce for any ∈ R the polynomial
mappingQ : [0,1] × R → R defined in the following way:

Q(t, x1) := f (t)(n − 1)2
(
Xn − Xn−1

)(
f (t), x1

)− (n − 1)� −  + 1

2
Xd

n(f (t), x1).

Observe thatQ(t, X1) is a strictly increasing function inR>0 with Q(t,0) < 0 for any
t ∈ [−1/4,5/4]. As in the proof of Lemma23, for any t ∈ [−1/4,5/4] we denote by
x1,1,(t) the only positive solution of the equationXn

(
f (t), X1

) = (
2�(n − 1) + 2

)�.
Then we have

Q(t, x1,1,) = (n − 1)2f (t)(Xn − Xn−1)
(
f (t), x1,1,(t)

)
�0= Q

(
t, x1,(t)

)
.

We conclude thatx1,1,(t)�x1,(t), which implies(
4(n − 1)�

)�
>
(
2(n − 1)� + 2

)�
=Xn

(
f (t), x1,1,(t)

)
>Xn

(
f (t), x1,(t)

)= xn,(t).

On the other hand, assuming thatd �2 andn� max{2d + 1,2�−1/2 + 2} hold, applying
Lemma22mutatis mutandiswe deduce that(n − 1)−�(2+�) �x1,(t) holds for anyt ∈
[−1/4,5/4]. Therefore, using the estimates of Section6.1.3we conclude that the following
estimate holds:∥∥(�F

(
f (T ), X

)
/�X

)−1(
t, g(, t)

)∥∥∞ �2d−1(n − 1)2−� =: �.
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Wealsoneedanupperboundon
∥∥(�2F

(
f (T ), X

)
/�X2

)(
t, g(, t)

)∥∥∞. For thispurpose,
we have to estimate the norm of the Hessian matrix of each coordinate ofF, which is in

turn reduced to estimate the quantity max1�k �n{d(d − 1)Xk

(
f (t), x1,(t)

)d−2} for any
t ∈ [−1/4,5/4] and any ∈ [−̂ε, ε̂]. We have∥∥(�2F

(
f (T ),X

)
/�X2)(t,g(, t)

)∥∥∞ � d(d − 1)xn,(t)
d−2

� 4d(d − 1)(n − 1)� =:�.

Finally, we have‖(�F(f (T ), X)/�T
)(

t, g(, t)
)‖∞ �4(n − 1)2� =: �.

Then, applying e.g. [48, 10.4.3], we see that there existsN �4�2� ��
�28(n − 1)7−2��2 = O(n7) such that the following holds:
If x(0) := g(0) denotes the positive solution ofF(0, X) = 0, and 0= t0 < t1 < · · · <

tN = 1 is a uniform partition of the interval[0,1], then the iteration
x(k+1) = x(k) − (

�F(T , X)/�X
)−1

(tk, x(k))F (tk, x(k)) (0�k�N − 1),

yieldsanattractionpoint of thestandardNewton iterationassociated to thesystemF(1, X) =
0. Let us remark that, taking into account that the Jacobianmatrix(�F(T , X)/�X)(tk, x(k))

is tridiagonal, we conclude that each step of this iteration requiresO(n2 log d) floating
point operations, keepingO(n log d) arithmetic registers.
From[48, 10.4.2–3]we conclude that the vectorx(N+k), obtained from the vectorx(N)

above afterk steps of the iteration

x(k+1) = x(k) −
((

�F(1, X)/�X
)
(x(k))

)−1
F(1, x(k)) (k�N),

satisfies the estimate‖x(N+k) − g(1)‖∞ �2−k(2��)−1. Furthermore, combining this es-
timate with[48, 10.2.2]we see that‖x(N+k) − g(1)‖∞ �2−2k−2

(4��)−1�2−2k−2−5(d −
1)−1�−1(n−1)�−3 holds fork�2. Therefore, in order to obtain anε-approximation ofg(1),
we have to performO(M) steps of the second iteration, withM := log | log(εn3−��d)|.
Summarizing, we have

Theorem 25. There exists a computation tree computing anε-approximation of the posi-
tive solution of(4) with spaceO(n log d) and time O

(
n2 log d(n7 + M)

)
, whereM :=

log | log(εn3−��d)|.
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