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Abstract

We consider a family of polynomial systems which arises in the analysis of the stationary solutions
of a standard discretization of certain semi-linear second-order parabolic partial differential equations.
We prove that this family is well-conditioned from the numeric point of view, and ill-conditioned from
the symbolic point of view. We exhibit a polynomial-time numeric algorithm solving any member of
this family, which significantly contrasts the exponential behavior of all known symbolic algorithms
solving a generic instance of this family of systems.
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1. Introduction

Several scientific and technical problems require the solution of polynomial systems
over the real or complex numbers (see §8.48)). In order to solve these problems, one
is usually led to consider the following questions:

e Do there exist solutions in a given subSaif R" or C"?
e How many solutions are there in the &2t
e Approximate some or all the solutions in the Set

Numeric and symbolic methods for computing all solutions of a given zero-dimensional
polynomial system usually rely on deformation techniques, based on a perturbation of the
original system and a subsequent (numeric or symbolic) path-following method (see e.g.
[1,3,5,13,22,30,38,39,44,58More precisely, eV be aQ-definable zero-dimensional sub-
variety of an affinen-dimensional spac€&”, and suppose that we are given an algebraic
curve W c C"*1 such that the standard projectian: W — C onto the first coordi-
nate is dominant with generically finite fibers of deg®er—1(1) = {1} x V holds and
n~1(0) is an unramified fiber which can be “easily” described. Then, followindXipaths
of W along the parameter intervgd, 1], we obtain a complete description of the input
varietyV.

There are several variants of homotopy algorithms which profit from special features of
the input system, such as sparsity patterns or the existence of suitable low-degree projections.
Homotopy algorithms for sparse systems are based on so-called polyhedral homotopies
(see e.g[35,38,59,60). Polyhedral homotopies preserve the Newton polytope (the convex
hull of the set of exponents of honzero monomials) of the input polynomials and rely on
an effective version of Bernstein’s theorem (see B9,36). Another family of symbolic
homotopy algorithms is based on a flat deformation of a certain morphism of affine varieties,
originally due to the papeii1,23], which was isolated and refined [®,29,30,51,56]n
order to efficiently solve particular instances of a parametric system with a finite generically
unramified linear projection of “low” degree.

The complexity of symbolic homotopy methods is roughly®® D6 arithmetic opera-
tions, wheren is the number of variables,is the complexity of the evaluation of the input
polynomials,é is the degree of the variety/ introduced by the deformation amlis the
number of branches to be followed (see §/¢29,56). On the other hand, the complexity of
numeric homotopy continuation methodd.is®® D2 floating point operations, whege
is highest condition number arising from the application of the Implicit Function Theorem
to the points of the paths 6% N 7=~1[0, 1] followed (cf.[5]).

Let us observe that the parametétsn and D are somehow determined by the input
varietyV. In fact,D usually arises as a certain Bézout number associated to the structure of
the problem (see e.§R9,45,53). Therefore, the complexity of an homotopy algorithm is
essentially determined by the paramet&s u . Taking into account that the degree\of
is a lower bound fob, we shall call a given zero-dimensional systgm=--- = f, =0
ill-conditioned from the symbolic point of vieifvthe degree oV is close to the worst-
case estimat¢[;_; deq f;). Furthermore, taking into account that symbolic algorithms
may profit from factorization patterns (see €.430,51), we shall further require an ill-
conditioned variety/ to be Q-irreducible On the other hand, followinfp] we shall call
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the input varietyV ill-conditioned from the numeric point of viagfthe parametey is of
kind [T/_, deg f;)®®.,

Our main purpose is to compare complexity and conditioning of symbolic and numeric
methods on significant classes of polynomial systems. For this purpose, in this article
we consider a class of polynomial systems which arise from a discretization of certain
second-order parabolic semi-linear equations. More precisely, for given univariate rational
polynomialsf, g, h, we consider the following initial boundary value problem:

up = fu)xx —g) in(0,1) x[0,T),

f)x(©0,1) =0 in[0, 7),
u(x,0) = ug(x) >0 in[O, 1].

This kind of problems models many physical, biological and engineering phenomena, such
as heat conduction, gas filtration and liquids in porous media, growth and migration of
populations, etc. (cf34,49). In particular, the long-time behavior of its solutions has been
intensively analyzed (see e[d2,37,54). The usual numerical approach to this problem
consists of considering a second-order finite difference discretization in the vagiabll

a uniform mesh, keeping the variatileontinuous (seg,9]). This semi-discretization in
space leads to the following initial value problem:

uy = 2(n — D?(fu2) — fuy) — gua),
ul, = (n — D2(f 1) — 2f (up) + fur—1)) — glux), (2<k<n—1)
)y =2(n — D?(f(un—1) — f(un)) — g(un) + 2(n — Dh(uy),

ui(0) = uo(xy), (A<k<n),

1)

wherexy, ..., x, define a uniform partition of the interval [0,1].

In order to describe the dynamic behavior of the solutiondpit (s usually necessary
to analyze the behavior of the correspondstationary solutiongsee e.g[8,17]), i.e., the
positivesolutions of the polynomial system:

0 = 2(n — D?(f(X2) — f(X1) — g(X1),
0=(n~— 1)2gf(Xk+1) —2f(Xp) + f(Xk—1) — g(Xp), 2<k<n — 1), (2
0 = 2(n — D?(f(Xu—1) — f(Xn)) — g(Xn) + 2(n — DA(X,).

A typical case study is that of the heat equation, if€X) := X, with nonlinear reaction
and absorption terms of typg(X) := X? andh(X) := X° (see €.g[8,12,26). In this
article we shall mainly consider the case- 0, i.e., the initial boundary value problem:

U = uyy —ud in(0,1) x [0, 7T),
uy(L,t) =a>0 in[0, T), 3)
1y (0,1) = 0 in[0, T),
u(x,0) = up(x)>0 in[0, 1]



M. De Leo et al. / Journal of Complexity 21 (2005) 502—-531 505

and the corresponding set of stationary solutions of its semi-discretization in space, i.e., the
positive solutions of the following system:

0 = 2(n — D*(X2 — X1) — X{,
0= (n— D2(Xps1 — 2Xx + Xp—1) — X{, (2<k<n - 1), 4
0=20n—-1%X,—1— Xn) — X4 +2(n — Do

In Section3 we prove that the solutions of the semi-discrete versiorBpténverge
to the corresponding solutions &)(in any interval where the latter are defined, showing
thus the consistence of our semi-discretization. We further show that any solution of the
semi-discrete version o8] which is globally bounded converges to a stationary solution
of (3).

Then we analyze system®)(@nd @) from the symbolic and numeric point of view. In
Section4 we show that a generic instance @j 6r (4) is likely to be ill-conditioned from
the symbolic point of view. Therefore, ampiversal(in the sense dfL1]) symbolic method
solving such instances has a complexity which is exponential in the numdfesariables
(see[11,31). Since universality is a very mild condition satisfied by all known symbolic
elimination procedures, and taking into account thatay grow large in the discretization
problems we are considering, we conclude that all known symbolic elimination methods
are very unsuitable for this kind of problems. Let us also remark that numeric homotopy
continuation methods computiadj isolated complex solutions of the input system are also
universal in the above sense, and therefore exponentigldh [50]).

In Sections we exhibit a smootheal homotopywvhich allows us to determine the number
of positive solutions of certain instances @),(including all instances of4], without
considering the underlying set of complex solutions. More preciselyjlet (R>0)" be
the set of positive solutions of the instance B gnder consideration. We exhibit a real
algebraic curvé¥, C ([R2>o)”+l such that, ifr|w, : W1 — R denotes the restriction of the
standard projection onto the first coordinate, thgfi (1) = {1} x V1 holds,Vp := |j;}(0)
is easy to solve, eveny e [0, 1] is regular value oft|w, andWy N ([0, 1] x ([R{>o)") =
W1N ([0, 1] x (R-0)"). Under these conditions, we conclude thaandVp have the same
cardinality, which allows us to prove th&j consists of one point.

Finally, in Section6 we prove that the homotopy abovevigll-conditionedfrom the
numeric point of view. This allows us to exhibit an algorithm approximating the only
positive solutionx* of (4) by an homotopy continuation method. This algorithm com-
putes are-approximation ofc* with n%® M logd floating point operations, wherd :=
log | log(en3ad)|. The starting point for our numeric algorithm is the only positive solution
of setVp above, and hence it does not depend on random or generic choices.

As a consequence, we see the significant contrast betweaxpbaentiakcomplexity
behavior of all symbolic methods solving any instancelpbfid thepolynomialcomplexity
behavior of our numeric method.

2. Notions and notations

We use standard notions and notations of commutative algebra and algebraic and semi-
algebraic geometry, as can be found in §6g16,41,57]
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2.1. Algebraic geometry, geometric solutions

For a giverm € N, we shall denote byA” then-dimensional affine spade” endowed

with its Zariski topology overQ. Let X1, ..., X,, be indeterminates oved and let be
given polynomialsFy, ..., F, € Q[X1,..., X,]. We denote bW = V(F1,..., Fy)
the affine subvariety ofA” defined by the set of common zeros#f, ..., F,, in A", If

W is equidimensional of dimension dii#i, we define its degree as the number of points
arising when we interse®¥ with dim W generic affine linear hyperplanes A&f'. For an
arbitrary affine varietywV with irreducible componentsy, ..., C; we define its degree as
degW := deg(C1 + - - - + degC;. With this definition, the intersection of two subvarieties
Wy andWs of A" satisfies the following Bézout inequality (¢1.8,28)):

deg W1 N Wa) < degW1 degWa. (5)

Let W be an affine equidimensional subvariety®f of dimension- >0 and letl (W) C
Q[X1, ..., X,]beitsdefining ideal. The coordinate rifig W] and the ring of total fractions
Q(W) are defined as the quotient rifi@f X1, . . ., X,,1/1 (W) and its total ring of fractions,
respectively.

Suppose that there exist polynomidis ..., F,_, € Q[Xq, ..., X, ] which form areg-
ular sequence of)[ X1, ..., X, ] and generate the ided(W). Letn : W — A’ be the
morphism defined byt (x1, ..., x;) = (x1,..., x,). LetW =C1 U --- U, be the decom-
position ofWinto irreducible components, and suppose that is dominant for ki <s.
We define the degree of as the numbeD := Y/ _;[Q(C;) : Q(X41,..., X,)], where
[QE) : Q(Xyq, ..., X,)] denotes the degree of the finite field extensidfX, ..., X,)
— Q(C;) for 1<i <s. We say thatr is generically unramifiedf 7=1(x1, ..., x,) consists
of exactlyD points for a generic valuéxy, ..., x,) € A”. This implies that the Jacobian
determinant d€0F; /0X, 1 j)1<i, j <n—r iS NOt @ zero divisor i[W].

Suppose further that is finite and generically unramified. Then the corresponding in-
tegral ring extensio®)[ X1, ..., X,] = Q[W] induces inQ[W] a structure of freR :=
Q[X1, ..., X,]-module, whose rank raid[W] equals the cardinalit{d of the generic
fiber of = and is upper bounded by d& (see e.g[24]). Following[21], ageometric so-
lution of the systemf; =0, ..., F,,—, = 0 (or of the variety\V) with respect tar consists
of the following items:

e A linear form U € Q[X] which induces a primitive element of the ring extension
Q[X1,..., X,] = Q[W], i.e., an elemeni € Q[W] whose minimal polynomiap €
R[Y] overR satisfies degQ = D.

e The polynomialQ.

e Ageneric“parametrization” aVby the zeros of), given by polynomial%/, 1, ..., V, €
R[Y]. We require the conditions de§; < D and (6Q/dY)(X1,...,X,, U)X; —
Vi(X1,...,X,,U) e I(W)forr+1<i<n.

In particular, for any(x1, ..., x,) € Q" such thaty := Q(x1,...,x,,Y) € Q[Y]is
square-free, the polynomidls ¢, v; := V;(x1, ..., x, Y) (r+1<i <n) define ageometric
solution of the zero-dimensional variety 1(x1, .. ., x,.).
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2.2. Semi-algebraic geometry

A subset ofR" is a (Q-definablg¢ semi-algebraicset if it can be defined by a Boolean
combination of equalities and inequalities involving polynomial&dk4, ..., X,].

In what follows, we shall considdR” endowed with its standard Euclidean topology,
unless otherwise stated. A real semi-algebraicVset R" is calledsemi-algebraically
connectedf for any pair of disjoint real semi-algebraic s&ts, C; c R”, which are closed
in V and satisfyC1 U C2 = V, we haveV = C1 or V = Co. Every real semi-algebraic
setV c R" can be uniquely decomposed (up to reordering) as a disjoint union of a finite
number of real semi-algebraically connected g8ts . ., C, open and closed M, which
are called thesemi-algebraically connected componeoity (see e.g[6]).

2.3. Computational model and complexity measures

Our computational model is based on the concemrdghmetic-boolean circuitgalso
calledarithmetic networksandcomputation treegsee e.9[10,19). An arithmetic-boolean
circuit over Q[ X1, ..., X,] is a directed acyclic graptdég for short) whose nodes are
labeled either by an element & U {X1, ..., X,}, or by an arithmetic operation or a
selection (pointing to other nodes) subject to a previous equal-to-zero decision. €agthe
associated to a given arithmetic-boolean cirguite may play a pebble game (Jé&]). A
pebble game is a strategy of evaluationoizhich convertss into a sequential algorithm
(called computation tree) and associate$ teatural time and space measures. Space is
defined as the maximum number arithmetic registers used at any moment of the game, and
time is defined as the total number of arithmetic operations and selections performed during
the game. A computation tree without selections is callgtleaght-line programcf. [10]).

In the sequel, we shall assume that our arithmetic-boolean circuits and computation trees
in Q[X1, ..., X,,] contain only divisions by nonzero elementsf

In what follows we shall use the notatiovi (m) := m log?(m) log log(m). Let us remark
that the asymptotic estimat@(/\/l(m)) represents the number of arithmetic operations
in a given domairR necessary to compute a multiplication, division, resultant, gcd and
interpolation with univariate polynomials &[Y] of degree at mosn (cf. [4,20]).

In order to determine the number of real roots of a given univariate polynomial with integer
or rational coefficients, we shall use algorithms based on the computation of suitable Cauchy
indices. For given polynomialg, g € Z[Y], the Cauchy index/ (q/p) of the rational
functiong/ p is defined as the number of jumpsgfp from —oo to +o0o0 minus the number
of jumps ofg/p from 400 to —oco (see e.g[27,40). Let be givenp, g1, ...,qs € Z[Y]
and a set of sign conditions, ..., J; (i.e.,d; belongs to{+, —, 0} for 1<i <s). Let

C161,..,5,1(P3 q1, - - qs) = #{x € R: p(x) = 0, sign(g; (x)) = ¢; (1<i<s)}

We have theidentity (p'q/p) = ci+1(p; ¢)—ci=1(p; ¢) [27, Proposition 2.2We conclude
thatI(p’/p) = c¢(p) := ci+1(p; 1 holds, which relates Cauchy index computations with
univariate real root counting issues ($2@]).

In[40]itis shown that computing the Cauchy index of a rational function whose numerator
and denominator are integer polynomials of degree at mostjuiresO (M (m)) arithmetic
operations inQ. This algorithm can be obviously extended to a rational function defined
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by polynomialsp, ¢ € Q[X], applying the algorithm to suitable integer multiples, g
ofp,q.

3. The initial boundary value problem under consideration

As mentioned in the introduction, we shall consider the initial boundary value problem
(3) for an initial datauo(x) satisfying the “compatibility conditioniiy(1) = o, uy(0) =
In order to solve§), we consider the following (semi)discrete versmn:ﬁ)f (

wy(0) = 5 (u20) —ur(®)) — ur@)?,
wp (1) = 75 (urpa(0) — 2ux (1) + up—1(0)) — up(@)?, 2<k<n — 1),

w, (1) = 5 (un-1(t) = un(t)) + 2o — u, ()9,
up(0) = uo(xx), (A<k<n),

(6)

wherexy, ..., x, define a uniform partition ofo, 1] andh := (n — 1L

We are going to show that the solutions 6§ ¢onverge to the corresponding solutions
of (3), and we shall discuss the role of the stationary solution§)af(the description of
the asymptotic behavior of the solutions 6§.(We start with the convergence result:

Theorem 1. Let0 < 1< T be a value for which there exist a positive solutiowx, ¢) €
C*1([0, 1] x [0, 1]) of (3) and a solutionU (r) := (u1(?), ..., u,(t)) of (6) in [0, t]. Then
there existsC > 0, depending only on thénfinite) C*1([0, 1] x [0, t])-norm of y such
that for h small enough we have

max max |u(xg,t) — ug(t)| < ChY2. (7)
1el0,1] 1<k<n

Proof. Letvi(¢) := u(xg, t) andeg (1) := v (1) —ui (¢) for 1<k <n.LetCq := max{|vc (1)|:
1<k<n, 0<t <t} andr := max{r € [0, 7] : |ex(s)| < Co/2 for alls € [0, t]}. We shall
prove that 7) is valid in the interval0, #p], from which we shall conclude that = 7 holds
for h small enough.

Letk # 1, n. Then there exists a constatit > 0 independent ofi such that

e (1) < 5 (era(t) — 2ex (1) + ex—1()) — (ve()! — ur()?) + C1h?
< Hlenra(t) = 2e0() + ex—1(0)) + d|E O Mo (1) — ur(1)] + C1h?

holds, where (¢) in an intermediate value betweeg(¢) anduy (t). From the definition of
1o we see that there exists a const@at> 0 independent ofi such thatd|, (7)|¢" 1< C>
holds for any KXk <n and anyr € [0, 7p]. Furthermore, arguing in a similar way for
k = 1, n, we obtain:

e1(/2 < L(eat) — ea(n)) + Calea(t)|/2+ C1h?/2,

e (1) < 5 (exa(t) — 2e(1) + ex—1(1) + Calex(D)| + C1h?, (2<k<n—1),  (8)
e (1)/2 < F(en-1(t) — en(1)) + Calen(1)]/2+ C1h?/2.
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Let E(t):= (e1(t), .. ., e,(t)) and N (1):= e2(1) 2+ Y125 2(1) +€2(r) /2. Multiplying
thekth inequality of ) by e, (z) for 1<k<n and adding up we have

n—1
N @) <2h 2E®)' AE(t) + 2CoN (1) + 2C1h? <e1(t)/2 + Z ex(t) + e, (z)/z) ,
k=2

whereA € 7"*" is a suitable negative semi-definite symmeirie n matrix (the opposite
of the stiffness matrix). Therefore, taking into account the inequalitie¥ AE (1) <0 and
ek (1) < (e2(1) +1)/2 (1< k<n), we obtainN’ (1) < (2C2 + C1h?) N (t) + C1h. Integrating
both members of this inequality we have

t t
N(t)<(2Co + C1h?) / N(s)ds + C1th< (2C2 + C1h?) / N(s)ds + C1Th
0 0

forany: < [0. ro]. Therefore, Gronwall's Lemma (see e{84, §1.2.1] yields:
N (1) < C1The?TCoHCITh 02T CoHTCyy,

for anyt e [0, 7p]. Hence, from the definition oV (z) we easily deduce the estimate
e2(t) <2C1Te? C2tTC1p for anyt € [0, fo] and any Kk <n.

Letting C := (2C1T)Y/2eT€2+TC1/2 e conclude thalu (xg, 1) — ug (1)| < ChY/2 holds
for any 1<k <n and anyr € [0, rp]. Combining this estimate with the definition of
shows thaty = 7 holds forh small enough, because otherwise the maximality @fould
be contradicted. This finishes the proof.]

Let us remark that, using more technical arguments, based on a suitable comparison
principle along the lines dfL7, Theorem 2.1]we may improve the right-hand side @) (
to Ch?. Nevertheless, since we are not concerned with such convergence speed results, we
shall not pursue the subject any further.

Now we analyze the asymptotic behavior of the solution®pfKor this purpose, we are
going to analyze the role of thetationary solution®f (6), i.e. the positive solutions of the
polynomial system4). We start with the following discrete maximum principle:

Lemma 2. Let U be a solution of6) with initial conditionU (0) = Ug € (R>0)", and let
7 € (R.g U {o0}) be the supremum of the setroE R. o for which U is welldefined in
[0,1). ThenU (r) € (R>0)" foranyr € [0, 7).

Proof. By a standard approximation argument we may assume without loss of gener-
ality that Up € (R.o)" holds. LetU := (u1,...,u,) and letA = {r € [0,7) :
ui(s) >0 for anys € [0, t] and 1<k <n}. By continuity we have that there exists> 0
such thaf0, ¢) c A holds. We have to prove that the supremurdat equal tor.
Let 7o denote the supremum gf, and suppose thad < 7 holds. Ifu (19) > 0 holds for
1<k <n, then by continuity there existy > 0 such that: (t) >0 for anyr € [ro, fo + 0]
and anyk = 1,...,n, contradicting thus the definition af. Hence, there existgy €
{1, ..., n} such thatu, (o) = 0. Furthermore, a similar argument shows that there exist
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ko € {1,...,n} and a sequenacg,),cn C (fo0, T), converging tap, such that,(z,) < 0
holds for anyz € N. From this we easily conclude th@;o(to) <0 holds.

If ko = n, then Cu), (o) = 2h~2u,_1(t9) + 2h~Yo.>2h~1o > 0, which is a contradic-
tion.

If 1 < ko < n holds, then we have®u,_(t0) = h™?(uyy+1(to) + ugy—1(t0)) =0, which
implies ugy+1(t0) = uky—1(to) = O. Furt%ermore, sincey,+1(r) >0 holds for anyr e
[0, 10], we see thau,’(0+l(to) <0 holds. Therefore, by an inductive argument we conclude
that ux (o) = 0 anduj (1) <0 hold for anyko<k<n. In particular,u, (o) = 0 and
u,, (t9) <0 hold, which leads to a contradiction.

Finally, if ko = 1, then Gu)(f0) = 2h~2u5(19) >0, which impliesuz(t9) = 0 and
u’(19) <0. Hence, by the case<4 ko < n we have a contradiction.[]

Combining Lemma& with e.g.[52, Theorem 7}ve conclude that the set of solutions of
(6) with positive initial condition is (topologically equivalent to) a dynamical system over
(R>0)". Following[8], let®; : (R>0)" — R be the following function:

0,0 = O MU© 1 L YOOy _ 250

d+1) ot
where

0

-1 2 Ul()

22 2uY

g ©
M = — t. . V =

h2 . . ’ .(O)
-2 2 2Un0—l

-1 U,E )

Itis easy to see thaby, is a Liapunov functional for the dynamical system o¢Er. o)”
defined by 6),i.e..d), u©) = WHm(l/z)(cbh((;),(u(O))) _, (u<°>)) <Oforanyu© e

(R=>0)", whereg, is the solution of §) passing through® whens = 0. Furthermore,

we have thath),(«@) = 0 holds if and only if«© represents a stationary solution 6.
Hence, definingg := {u© € (R>0)" : @, ) = 0}, we have thaE is invariant under

the action of the dynamical system ov@ > )" defined by 6). Therefore, from e.d.34,
Theorem 4.3.4jve conclude that every solution d)( with positive initial condition and
bounded image, converges to a stationary solutiorpfAs a consequence, we see the
relevance of the consideration of the set of stationary solutions in order to describe the
dynamics of the set of solutions @)(

4. Symbolic conditioning and complexity of our systems

Letus fixn € N, let X4, ..., X,, be indeterminates ovéd and letX := (X1, ..., X,).
In this section we are going to analyze the polynomial sys@®rfr¢m the symbolic point
of view, for arbitrary polynomials, g, h of Q[T] with d := degg > max{degf, degh}.
The positive solutions of this kind of systems represent the stationary solutions of the
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semi-discrete version of several reaction—diffusion phenomena (s€f@,&.4)). Further-
more, such kind of systems constitutes a wide generalization of the family of systems (
the central object of study of this paper.

As mentioned in the introduction, we are going to prove that a generic instance of either
(2) or (4) is likely to be ill-conditioned from the symbolic point of view, i.e., its solution setis
aQ-irreducible variety of degree closed®. Then, as an illustration of this ill-conditioning,
we are going to exhibit a symbolic homotopy algorithm solving any instancg)afith
polynomial complexity in the Bézout humbef, and thus exponential complexity with
respect ton. Let us observe thdi1] shows that our complexity estimate is nearly optimal
for all known symbolic methods. Combining our algorithm with technique§@f40]
we shall obtain an algorithm with time-complexity polynomial in the Bézout nurdber
which determines the number of positive solutions of any instanc®) @ind computes an
g-approximation of them.

4.1. Symbolic conditioning of (2)

Assuming without loss of generality that the polynongaé Q[T] of (2) is monic, let
Ag—1,..., Ao, By_1, ..., Bo, Cq_1, ..., Cobenewindeterminates ov@, and letf () .=
AgaT4 4+ Ag, g B =T+ By aT4 1+ 4+ Bo, h© := Cy1 T 14 +
Co represent the “generic” versions of the polynomiglg, 4 of (2). In our subsequent
arguments we are going to consider the affine varigfy:5-©) ¢ A"+ defined by the
following polynomial system:

0=2—D2(fM(X2) — fM(X1) — gB (X,
0= (n—D?(fNXi30) =2/ DX+ A X)) — 8B (Xp), (2<k<n—1), 9)
0=2m—D2(fN(X,—1) — fP (X)) — g B (Xp) +2n — DA (X,,).

Lemma 3. W4.8.C) is an equidimensional variety of dimensi8d and the projection
mapping® : WA-8-) . A3 defined byb(a, b, ¢, x) := (a, b, ¢) is a finite morphism of
degreed”.

Proof. The finiteness o is equivalent to the finiteness @f{W 4-2:©)] asQ[A, B, C]-
module (see e.57]). In order to prove the latter, Iét, .. ., &, be the coordinate functions
of Q[W“-8.01 defined byX1, ..., X, and leté := (&4, ..., &,). Then thek-th equation
Fy(A, B, C, X) = 0 of (9) induces a relatiorFy (A, B, C, &) = 0 in Q[WA-B.O for
1<k <n. ConsideringFy, ..., F, as elements of the polynomial rifig[A, B, C][X], we
observe that the highest degree term (in the variajesf F; is the nonzero monomial
X¢ for 1<k <n. This shows thaQ[W“-8:O)] is generated, a®[A, B, C]-module, by
the set of monomialg;! - - - & with ji < d for 1<k <n. HenceQ[W“4-F-O7 s a finite
QI[A, B, C]-module, which proves the finiteness®f

We conclude thav 4-8:©) is an equidimensional variety of dimensiod.From the
Bézout inequality %) we deduce that the degree of the morphibris bounded by/”". On
the other hand, taking into account that the fiber of the poirit ¥fdefined byu = ¢ = 0,
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b=(0,...,0,1) has cardinality!”, we conclude that def§ = 4" holds. This finishes the
proof of the lemma. O

Combining this lemma with e.§46, Proposition 3.1Ajve obtain our firstill-conditioning
result concerning the family of systenfy(

Corollary 4. There exists a nonempty Zariski open &etcC A% such that for any
(a, b, ¢) € U, the corresponding instance () hasd" complex solutions.

Now we consider the irreducibility of a given instance B¥. (For this purpose, we need
the following preliminary result:

Lemma5. Leta© := (0,...,0,1,0) € A’ let b be an arbitrary point of@? and
let w@©.5.0:Co) denote the algebraic curve defined ®y({(a©, b, 0)} x AL). Then
W (@®.£.0:C0) is an irreducible curve of\" 3 of degreed”.

Proof. Let us observe that the variety @ #:0:C0) of the statement of the lemma is
determined by the following polynomial system:

0 = 2(n — D?(X2 — X1) — g»(X1),
0= (n—1D%(Xps1— 2Xg + Xi—1) — gp(Xp), <k<n - 1),
0=20n—12%(Xy-1— Xn) — 85(Xn) + 2(n — 1)Co,

with g, := ¢® (b, T). Observe thaw @ 2. 0% €0 may also be regarded as a subvariety of
A" by considering the polynomials defining the system above as elemedf&of X .
In this sense, Lemmaimplies that the mappin@©€® : w@®.2.0:co _, Al defined by
(€0 (co, x) := cpis afinite morphism of degree at ma#t This shows thaw @ ¢ 05 Co)
is an equidimensional variety of dimension 1 which, by the Bézout inequ8)ithds degree
at mostd”.

Let 01(X1) := X1, Q2(X1) := X1+ (1/2)(n — 1)72g,(X1) and Qy41(X1) := 20 —
Qi—1+ (n — 1)2g,(0x) for 2<k<n — 1. Then it is easy to see that the polynomial
Q € Q[Co, X1] defined by

Q(Co, X1) :=2(n — D*(Qu-1(X1) — Qn(X1)) — g5(Qn(X1)) + 2(n — 1)Co

vanishes on the variety @ ¢-0: o) _From its definition we easily conclude that deg=
degy, 0 = d" holds. Taking into account th is a monic element of)[Col[X1] (up to
nonzero elements di) of degree 1 inCop, from the Gauss Lemma we conclude that is
irreducible inQ[Co, X1] andC[Cp, X1].

From the Hilbert Irreducibility Theorem (see e[§1]) we deduce that there existse
Q such thatQ(«, X1) is an irreducible polynomial of2[X1]. This implies that the zero-
dimensional varietyw @ #:0:Co) 0 {Cy = «} hasd” points, which in turn shows that
W@®.6.0:Co) has degred”.

Finally, let ®Co-XD . w@®.5.0:Co _, A2 denote the mapping € XV (cq, x) :=
(co, x1). Then we have thatthe imagedf > *? is the plane curve of equati@(Co, X1) =
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0. From the irreducibility ofQ(Cop, X1) we conclude tha¥X represents a primitive el-
ement of the ring extensio®[Co] = Q[W @ -#:0:C0)] and hence of the (finite) field
extensionQ(Co) = Q(W@?..0:C0)) This implies that for Zi <n there exist ele-
mentsp; € Q[Co] \ {0}, Vi € Q[Cp, X1] such thatX; = pfl(Co)V,-(Co, X1) holds in
QW@ b.0:C)y This shows thatb©o-X? represents a birational equivalence between
w@®.5.0:Co) and the curve of equatio®(Co, X1) = 0, and finishes the proof of the
lemma. O

From Lemmab we deduce our second ill-conditioning result concerning the family of
systems2):

Corollary 6. There exists an infinite number of elements Q for which (4) defines a
Q-irreducible variety of degreg”.

Proof. Let w@.0.0:Co) pe the algebraic curve defined bg) ith the valuex replaced
by a new indeterminat€y. Then the proof of Lemm& shows that the minimal equation
of integral dependence satisfied Ky in the ring extensior[Co] <> Q[W @ 0.0:Co)

is an irreducible polynomia € Q[Co, X1] of degreed”. Hence, Hilbert’s Irreducibility
Theorem shows that there exists an infinite number of value£) for which Q(«, X1) is
an irreducible polynomial ofd[ X1]. For these values af, the corresponding instances of
(4) define al-irreducible variety of degre€”. [

In order to state our main result concerning the irreducibility of a given instan@®),of (
we first prove that a generic specialization of the variable®, C,_1, ..., C1 yields a
Q-irreducible curve of degred’:

Proposition 7. There exists a nonempty Zariski open&ett A*~1 such that for any
(a, b, c*) € Uwitha, b € A?, the algebraic curvay @ b-<* Co) defined byp 1 ({(a, b, c*)} x
Ay is (absolutely irreducible of degree!”.

Proof. Let W4-8.0) = A"*3 denote the equidimensional/@limensional variety of
Lemmad,andletd : wA-8-C) _» A3 pe the (finite) morphism defined dy(a, b, ¢, x) =
(a, b, ¢). Combining Lemma& and[16, Corollary 18.17}ve conclude thal[w(4-8-O)] s
afreeQ[A, B, C]-module, of ranki".

Let U € Q[X] be a primitive element of)[A, B, C] — Q[W@-B.O1 and letQ <
QI[A, B, C][Y] be its minimal polynomial ovefl[A, B, C]. Observe thaQ) is a monic
element ofQ[A, B, C][Y] with deg, 0 = degQ = d4". We claim thatQ is an irreducible
polynomial of C[A, B, C, Y]. Indeed, without loss of generality we may assume that
is also a primitive element of the ring extensi@{Co] < Q[W @ 0.0:C0] where
w@©.0.0:Co) s the algebraic curve of Corolla§. Specializing the variables, B and
C* := (Cq_1, ...,C1) into the values:®, 0 € A? and 0 e AL, respectively, from
Corollary 6 we deduce thap (¢ @, 0, 0, Co, Y) is an irreducible polynomial oE[Co, Y]
withdeg, Q(@©?, 0,0, Co, Y) = d". Therefore, the monicity @in C[A, B, C][Y]implies
thatQ is an irreducible polynomial oE[A, B, C, Y], showing our claim.
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From[57, §1.5.2]we have that there exists a nonempty Zariski open sulisef A",
with N := (d" + 2)(d" + 1)/2, such that any polynomial € C[Cp, Y] of degree at
mostd”, whose coefficient vectary € AV (in dense representation) belonggg, is
irreducible inC[Co, Y] of degreed”. Let g1,...,gs € C[Z1, ..., Zy] be a system of
generators of the vanishing ideal A" \ Uo. Let Q := Ziﬂ-gdn ci,j(A, B, C*)CéYf.
Then we have thap (a@, 0, 0, Co, Y) is an irreducible polynomial oE[Co, Y] of degree
d". This shows that there exists<k <s such thatg(c; j(A, B, C*);i + j<d") is a
nonzero element of[Co, Y]. Furthermore, from the definition of; we have that, for
any (a, b, ¢*) € A%¥~1 not annihilatinggk(c,-,j(A, B,C*);i + jéd”), the polynomial
Qf(a, b, c*, Cop, Y) isirreducible of degreg”.

Letid ¢ A%~ pe the complement of the zero set@f(c; (A, B, C*);i + j<d")
and let(a, b, ¢*) e U. ThenQ(a, b, c*, Cop, Y) is irreducible of degreg”. Hence, arguing
as in the last paragraph of the proof of LemBave see that the morphisdh(€o-X?) .
wa.b.c". Co) 5 AZ defined bydC0X (¢q, x) := (co, x1) induces a birational equivalence
between the curvé/ @ b:<C0) .= &~1({a, b, c*} x A1) and the plane curve of equation
Qf(a, b, c*, Co, Y) = 0. The proposition follows from the irreducibility of the latter]

Combining Propositiof with Hilbert’s Irreducibility Theorem we obtain our third and
main ill-conditioning result concerning the family of systerk (

Corollary 8. With notations as in Propositiof, for any(a, b, ¢*) € U N Q3 there exist
an infinite number of valuas) € Q such that the corresponding instance(8f defines a
Q-irreducible variety of degred”.

4.2. A symbolic homotopy algorithm solving any instance of (2).

Our results of the previous section show that a given instanc®) as$ (ikely to be ill-
conditioned from the symbolic point of view. In order to illustrate this behavior, and the kind
of symbolic homotopy algorithms we are referring to, in this section we exhibit a symbolic
homotopy algorithm solving any instance &f vhich slightly improves a direct application
of the best (from the worst-case time—space complexity point of view) symbolic algorithm
[25]. Its complexity is exponential in the number of variableut nevertheless nearly
optimal for the family of systems under consideration [t1,31]). It may be worthwhile
to observe that any instance &) (s a Pham system, which can therefore be (partially)
solved by applying theonuniversabymbolic homotopy algorithm d61]. In such a case,
for certain particular nonirreducible instances ¥ ¢ur time—space complexity could be
significantly improved.

Our algorithm is based on the deformation 8f defined by the polynomials:

Fui=T(20=12(f (X2~ f(X2) =g (XD)) +(T = D(X{ = X2),

Fy = T((n—1)2(f(Xk+1)—Zf(Xk)‘i‘f(kal))_g(Xk)>+(T—l)(XZ —Xk+1),
(2<k<n -1,

Fy =T (201=D?(f 0u2) = f K1) =g ) + 201~ DA (X,) ) +(T- D (X{ ~ D).

(10)
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This deformation satisfies the following conditions, as shall be seen below:

() F1(4, X) =---= F,(1, X) = 0is the input system;
(i) F1(0,X) = --- = F,(0,X) = 0 is a zero-dimensional system with a geometric
solution easy to compute;
(i) If W := V(F1,...,F,) andn : W — Al is the projection mapping onto the first
coordinate, them is a finite generically-unramified morphism;
(iv) 7~1(0) is an unramified fiber of.

We are going to compute a geometric solution of the variety defined by the system
Fi(T,X) =--- = F,(T, X) = 0 using a global variant of a symbolic Newton—Hensel iter-
ation originally due t¢21,23](see als¢7,25,30,32,56] Then, specializing the polynomials
representing this geometric solution into the value= 1, and cleaning up multiplicities,
we shall obtain a geometric solution of our input systél, X) = ... = F,(1, X) = 0.

First we show that our deformation satisfies conditions (i)—(iv) above. Condition (i)
follows directly from the expression oY and (L0). Our next result proves the validity of
conditions (iii) and (iv):

Lemma 9. = is finite and generically unramifigdnd =—*(0) is unramified

Proof. Let us observe thak; is a polynomial of degred whose highest nonzero degree
term in the variableXis the monomialX;’. This shows tha®)[W] is a finiteQ[T']-module
and implies the finiteness of the morphism

From the Bézout inequalitysf we have that #:-1(r)) <d” holds for anyr € A'. On
the other hand, the fiber—1(0) consists of the solutions of the systefp, 1 — X,‘f =0
1<k<n—1),1— Xff = 0, which proves that¢~1(0)) = 4" holds. Hence, from e.g.
[28, Proposition 1br[46, Proposition 3.1Ave deduce that there exists a nonempty Zariski
open subséif of A" such that #1~1(¢)) = d" for anyr € U.

Letr € U. ThenC[X]/(F1i(t, X), ..., F,(z, X)) isaC-vector space of dimension at most
d". Hence, applying e.414, Corollary 2.6\we deduce thaky(z, X), ..., F,(t, X) gener-
ates a radical ideal of[X]. In particular, the Jacobian matrix &4 (z, X), ..., F, (¢, X)
is nonsingular in any point of~1(r), which shows that the fibet—1(¢) is unramified
for anyr e U{. Furthermore, applying this argumentrte= 0 we conclude that=1(0) is
unramified. O

Suppose that we are given a linear fobime Q[X] which is “lucky” in the sense o5,
§5.3] Observe that such a linear form separates the pointstD), and hence represents
a primitive element of the (integral) ring extensi@i7T] — Q[T, X]/(Fx, ..., F,). Our
next result shows that condition (i) holds.

Lemma 10. There exists a computation tree which takes as input the polynomials defining
n~1(0) and the linear form U and outputs a geometric solutionrof(0) using U as
primitive element. This computation tree uses spa¢ed”) and timeO(nd”M(d”)).

Proof. Let us observe that=1(0) consists of the points of\" satisfying the equations
Xpr1—X¢ =0(1<k<n—1), X¢ —1 = 0. By successive substitution we see trat(0)
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may be described as the set of solutions of the systgra- X‘fH(nggn), X‘ll" =1

Let A1, ..., A, be new indeterminates, and €% (X) := A1X1 + --- + A, X,. Then,

for g5 := Resy, (X4" — 1, ¥ — Up(X1, X2, ..., x9" 7)), it follows thatg (Y) = q(¥) +

S (A —2)(Xiq'(Y) —v; (Y)) modulo(A1 — A1, . ..., Ay — 4,)2, where the polynomials
g,v1, ..., v, € Q[Y]formageometric solutionof 1(Q) withU := 11 X1+ -+, X, as
primitive element (see e.{25, §3.3). The computation aj, modulo(Ay — 21, ..., A, —

Jn)? can be done by interpolation in the variaMeFor this purpose, we compute the
evaluated resultanty (o) modulo (A1 — A1, ..., A, — A,)2 for d" + 1 different values

oo, ...,dgmy1 € @, using a fast algorithm for computing resultants over a field based
on the Extended Euclidean Algorithm (§20]). Our “lucky” choice ofU guarantees that
executing this algorithm over the power seri@§A — 1], truncating the power series
arising during the execution up to order 2, will output the right results. Tiagmodulo
(A1—41, ..., Ay—2y)? can be recovered by interpolation (see B}). Taking into account

the time—space complexity of the algorithms for interpolation and computing resultants the
lemma follows. [J

Lemmas9 and 10 show that our deformation satisfies conditions (i)—(iv) above.
Therefore, we may apply the symbolic Newton—Hensel iteration mentioned before. For
this purpose, leV := A1 X1+ - -+ 1, X,, € Q[X] be a“lucky” linear form (in the sense of
[25, §5.3), which also induces a primitive element of the ring extengion> Q[rn~1(1)].

Let us fix p >4. From the Zippel-Schwartz test (¢61]) and the estimates for the de-
gree of the denominators arising during the execution of Extended Euclidean Algorithm of
[20, Theorem 6.54]we see that the coefficients bf can be randomly chosen in the set
{1, ..., 16pd*"} with probability of success at least11/p > 3/4.

Letg,v1,...,v, € Q[Y] be the polynomials obtained after applying the algorithm
underlying Lemmal0. These polynomials form a geometric solutionmof'(0) usingU
as primitive element. Then we may apply the Algorithm “Lift Curve'[25, 84.5] which
outputs polynomial®, V1, ..., V, € Q[T, Y] which form a geometric solution d¥ :=
V(F1, ..., Fy), usingU as primitive element. Taking into account the tridiagonal form of
Jacobian matrix off1, ..., F, with respect to the variables, from [7, Theorem 2; 25,
Proposition 9](see alsd56, Theorem 2] we conclude that this algorithm requires space
0 (nd®") and timeO (nd M(d")?).

Then, specializing, V1, ..., V, into the valuel' = 1, we obtain polynomial® (1, Y),
Vi, Y),..., V,(1,Y) € Q[Y]which representa complete description of our input system
F1(1, X)) =--- = F,(1, X) = 0, eventually including multiplicities. Such multiplicities are
represented by multiple factors 6f(1, Y), which are also factors 6f,(1, Y), ..., V,,(1, Y)
(seee.g25, §6.5). Therefore, they may be removed by computhfigt) := gcd(Q(l, Y),
(00/0Y)(1,Y)), and the polynomial® (1, Y)/M(Y), (0Q/dY)(L, ¥)/M(Y), V;(L, Y)/

M (Y) (1<i<n) which form a geometric solution of our input system, without changing
the asymptotic complexity of our procedure. Summarizing, we have

Theorem 11. There exists a computation tree which takes as input the polynomials
F1, ..., F, of (10) and a“lucky” linear form U € Q[X], and outputs a geometric solution
of the given instance of2). This computation tree requires spacnd?') and time
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O(nd./\/l(d")z), and can be probabilistically built with a probability of success of at
least3/4.

4.3. Symbolic real root counting and approximation

In this section we briefly sketch an algorithm which, having as input a geometric solution
of a given instance of2), determines the number of positive solutions and compttes
approximations to all of them.

Let us fix an arbitrary instancg¢, = --- = f, = 0 of (2). Suppose that we are given
a geometric solution of the variety c A" defined byfi, ..., f,, as computed by the
algorithm underlying Theoremil. Such a geometric solution consists of a linear form
U € Z[X] and univariate polynomialg, 1, ..., v, which, without loss of generality, we
shall assume to belong t8[Y]. From the@Q-definability of this geometric solution we
easily conclude that the number of real pointsVoéquals the number of real roots of
g. Furthermore, the number of positive solutionsfef= ... = f, = 0 is the number
of real roots ofg satisfying the sign conditiong; >0 (1<i <#n). This quantity can be
determined using the algorithf7, Recipe Sl]which yields the number of real roots of a
given univariate polynomial satisfying all possible sign conditigige(v;) = 6; (1<i <n).
Taking into account that this algorithm requires the computatian(@t" ) Cauchy indices,
and the solution 00 (n) linear systems of siz@ (d"), we obtain the following result:

Proposition 12. There exists a computation tree which takes as input a geometric solution
of our input systeny; = --- = f, = 0 and outputs the number of positive solutions of
f1=---= f, = 0.This computation tree requires spac&d?") and timeO (nd®").

Let us remark that the positive solutions of any instancetptén be characterized as
the real solutions with positive first coordinate. In such a case, algofRfinRecipe Sl]
can be significantly simplified, and requires spau@”) and timeO(M (d”)).

Now we consider the problem efapproximating the positive roots of our input system.
For this purpose, we represent the real solutions of our input system by me&herof
encodingg¢see e.g27]). Letp € Z[X]be apolynomial of degresand letp® (1<i <e—1)
denote theth derivative ofp. For a given real roatg of p, its Thom encoding is the list
[p; Eons ..., E1], Whereé; is the sign ofp® (xg) for 1<i <e — 1. The Thom encodings
of the real roots op also allow their ordering (see e[@7, Proposition 5.9)]

Letq; € Z[X] denote the minimal equation satisfied By modulo our input system
for 1<i<n. By an easy adaptation ¢82, Lemma 3]we conclude that there exists a
computation tree with space (nd"*!) and time O (nd"M(d")) which takes as input
the geometric solution computed by the algorithm underlying Thedtgrand outputs

the polynomialsgs, . . ., g,. Then the Thom encodings of each coordinate of the positive
solutions of our input system may be obtained applying the algoifi@TnRecipe Slto the
polynomialg andthe listy, ..., U,, ﬁd Dot ..., q1ov1, ... ,ijld Do, Gn' o0,
and identifying the sign conditiong”, ..., (@, ¢ ¢ )

such thaﬁl@ = + holds for 1<i <n.
Furthermore, let be given > 0 and an upper boungl > 0 on the absolute value of
the coordinates of the real solutions of our input system. Let us observe that the positive
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solutions of any instance off( have coordinates upper bounded(ﬁym — 1)o<)l/d. Then,
combining the above determination of Thom encodings with a bisection strategy we obtain
an algorithm whiche-approximates all the positive roots:= (x1, ..., x,) of our input
system satisfying; <# for 1<i <n. This algorithm requires determining the number of
real roots of the polynomigl satisfying all possible combinations of sign conditions defined
by a list ofO(nd” max{1, Nlog(ne ™) }) polynomials of degree at mogt. Therefore, we

have

Theorem 13. There exists a computation tree which takes as input a geometric solution
of our input systeny; = --- = f, = 0 and outputs arz-approximation of all the pos-
itive solutions off; = --- = f, = 0 with coordinates upper bounded gy with space

0 (nd? max(1, [log(ne~1)1}) and timeO (nd* max1, [log(ne~H1}).

5. Real root counting

In this section we exhibit a deformation technique which allows us to determine the
number of positive solutions of certain instances 2) fncluding in particular all the
instances of4). Such deformation technique consists in finding a smooth real homotopy
which deforms the system under consideration into a system whose number of positive
solutions can be easily determined.

Let X1, ..., X, be indeterminates and l&t := (X3, ..., X,). Let f1, ..., f, be poly-
nomials of Q[ X] and letVg C (R>0)" be the semi-algebraic set consisting of the positive
solutions off; = --- = f,, = 0. LetT be a new indeterminate, and suppose that there exist
polynomialsFy, ..., F, € Q[T, X] such that, for

Wr = {(t,x) € [0,1] x (Rx0)" : F1(t,x) = --- = F,(t,x) = 0},

the identityWr N {T = 1} = {1} x Vg holds. Letrr : Wr — R be the polynomial
mapping defined bytr (¢, x) := ¢. Our deformation technique is based on the following
result:

Proposition 14. Suppose that the following conditions hold

e 7 has no critical values if0, 1],

o #(ng'(1) < oo foranyr € [0, 1],

e Wg is a compact subset 6,

e Wi C [0, 1] x (Rog)".

Then there exists>0 such thal#(ﬂ:ﬁl(t)) = s holds for anyr € [0, 1].

Proof. From [33, Lemma 7]we deduce that there exists’ € N ande € (0, 1) such
that the seh@l(t) hass semi-algebraically connected components for ary[0, ¢) and
s’ semi-algebraically connected components for amy(1 — ¢, 1]. In particular, we have
#(n5'(0)) = s and #nz' (1) = s'. Applying [33, Proposition 8]n the interval(0, 1) we
conclude that (1)) = #(ng"(t")) for anyz, ' € (0, 1). This shows that = s’ holds
and finishes the proof of the proposition]
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We are going to apply Propositiot4 in order to determine the number of positive
solutions of any instance of the following subfamily &j:(

0= (n—D3(f(X2) — f(X1) — 38(X),
0= (n—D(f(Xes1) — 2f (Xp) + f(Xx—1) — g(Xp) @<k<n — 1), (11)
0=(n—D*(f(Xu-1) — (X)) — 38(Xs) + (0 — D)z,

wherex > Oandf, g are elements d®[ X ], withd := degg > degf andf(0) = g(0) =0,
which define increasing functions iR o. These hypotheses are satisfied, for example, if
f, g are positive monomials with deg> degf.

LetVg C (R>0)" bethe setof positive solutions dff). In order to apply the deformation
technique underlying Propositidd, we introduce the following polynomials, ..., F, €
QIT, X1

Fii= (1—D2(f(X2) — f(XD) — 3g(XD).
Fi = (n=D2(f (Xpp1) — A+T) f(Xp) + Tf (X4-1) —g(Xp)  (2<k<n—1),
Fyi= (=0T (f (Xu-1) = f(Xn)) = 58(X) + (n — D,

Let Wr := {(r,x) € [0,1] x (R>0)" : Fi(t,x) = --- = F,(t,x) = 0}. Observe that
Wr N{T = 1} = {1} x Vg holds. Letng : Wg — R be the projection mapping onto
the first coordinate. We are going to show ttat . .., F, satisfy all the hypotheses of
Propositionl4.

Lemma 15. ng has no critical values in0, 1].

Proof. Observe that the Jacobian mat¢it'/0X) of Fi, ..., F, with respect to the vari-
ablesX s the following tridiagonal matrix:

—(n = D2f' (X)) — 3g'(XD) fori=j=1,
—(n—D2A+T)f'(X;) — g'(X;) for2<i=j<n—1,
)= (X)) - 3(8' (X)) fori=j=n,
(OF/0X)i,j = (n—D2f(X)) forl<i=j—1<n—1,
(n — D2Tf'(X;) for2<i =j+1<n,
0 otherwise

By the conditions satisfied by, ¢ we easily conclude thdd(¢) - (0F /0X)(t, x) is a strictly
column diagonally dominant square matrix for amyx) € (0, 1] x (R>0)", whereD(r)
is the following diagonal matrix

tnfl
D(t) :=
1

and(0F/2X)(0, x) is a triangular matrix with positive diagonal for amye (R>)". Thus
(0F/0X)(t, x) is a nonsingular matrix for ang, x) € [0, 1] x (R>0)". Therefore, from
e.g.[5, 812.3, Proposition 6jve conclude thatk has no critical points iWgk, and hence
no critical values iri0, 1]. O
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Lemma 16. n@l(t) is a finite set for any < [0, 1].

Proof. Let W c A"*! be the affine variety defined b, ..., F,. We observe thaf;

is a polynomial of degred whose highest nonzero degree term in the varialflesthe
monomiale’. This shows tha®)[W] is a finite@[ T ]-module and hence that the projection
mappingz : W — Al defined byn(s,x) := ¢ is a finite morphism, which implies
that 7=1(r) is a finite set for any e AL In particular,n@l(t) is a finite set for any
te[0,1]. O

The following result, probably well-known, is included here for lack of a suitable refer-
ence.

Lemma 17. n is a proper morphismi.e., the preimage of a compact set [@ 1] is a
compact set oWp.

Proof. Let K c [0, 1] be a compact set and let; ) ey == (t%, x®)),cn be a sequence
contained inr;'(K). Then there exists a subsequenceé);cn which converges in
K. Therefore, we may assume without loss of generality that the sequéRsg.y itself
converges to € K.

Let as beforew < A"*! denote the affine variety defined b, ..., F, and let
n: W — A be the projection morphism(z, x) := . Since the ring extensiof[7]
= QI[T, X]/(Fy, ..., Fy) is integral (see Lemma®), if U is a linear form of@Q[X], the
minimal polynomialQ(T, Y) of the coordinate function induced Wy in this extension
is a monic element of)[T][Y]. The fact thatQ (T, U (X)) vanishes ove¥ implies that
0™, Ux®)) = 0 holds for anyk € N.

Since (1), converges ta € K, we have thaiQ(«, Y) converges, coefficient by
coefficient, toQ(¢, Y). Taking into account the standard bounds on the absolute value of
the complex roots of a univariate polynomial in terms of its coefficients (se@@ly, we
conclude that fok > 0 there exists a uniform bound on the absolute value of the complex
roots of the polynomialg) (7, Y) andQ(z, Y). This shows that the sequen@é(x ®)),cn
is contained in a compact subsetRyfwhich implies tha(U (x®))),cn has a subsequence
converging to a valua € R for which Q(¢,u) = 0 holds. Let us observe that, for a
generic choice ofJ, there existsx € Wy such thatU (x) = u holds, becaus® is the
minimal polynomial ofU in the ring extension induced byand(¢, u) does not annihilate
the discriminant of) with respect to.

Our previous argument is valid for any linear form@fX] which separates the points
of n=1(r). Hence, letrs, ..., ¥, € Q[X]beQ-linearly independent linear forms satisfying
this condition. Then, fol/ = Y1, we obtain a subsequengeg;, )ien Of (ar)ren Such that
(Y1(xUn)), ., converges to a valug € R which equals the evaluation &% in a point

of n@l(t). Arguing with this subsequence abtd = Y, we obtain a value, which also
corresponds to a certain pointm@l(t). Arguing inductively we conclude that there exists
an accumulation point afa )ien in n@l(K), finishing thus the proof of the lemmal]

Lemmal7implies thatWy = n@l([o, 1]) is a compact subset &L,
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Lemma 18. Wi C [0, 1] x (R-g)".

Proof. Let us recall thatWy is the semi-algebraic set which consists of the points of
(t,x) € [0,1] x (R>0)" satisfying the equations:

0=(m-1?(f(X2) — f(X1) — 2g(X0),
0=n—D2(f(Xp)— A+T) fF(Xp)+Tf (Xx1)) —g(Xp) (2<k<n—1), (12)
0=n—D2T(f (Xp—1) — f(Xn)) — 38(Xs) + (n — Do

Let (r,x) € [0,1] x (R>0)" be an arbitrary point oWk and suppose thay = 0 holds.
Specializing the right-hand side of the first equatiorni@) {nto the valueX = x we see that
f(x2) = 0 holds. Sincé defines a strictly increasing function f ¢ with £(0) = 0, we
conclude that, = 0 holds. We claim that; = 0 holds for 3< k <n. Arguing inductively,
let us fix 3<k <n and assume that = - - - = x;_1 = 0 holds. Specializing the right-hand
side of the(k — 1)th equation of 12) into the valueX = x we see thalf (x;) = 0 holds,
which impliesx; = 0. This completes our inductive argument and shows thai =
x, = 0 holds. Then, the last equation 4% implies (n — 1)a = 0, which contradicts our
hypotheses. We conclude thagt> 0 holds.

Now we claim thaty; > 0 holds for 2<k < n. For this purpose, it suffices to show that
xr+1 > x¢ holds for 1<k < n. Sincex; > 0 holds andy defines an increasing function in
R0, we have thatn — 1)?(f (x2) — f(x1)) = 3g(x1) > 0 holds, which implies; > x1.
Let us fix 1<m < n and suppose that;11 > x; holds for 1<k < m. Specializing
the right-hand side of theth equation of {2) into the valueX = x, we deduce that
(n = D2(f (tmr1) — f(xm)) = (0 = DT (f (xm) — f(xm—1)) + g(xm) > 0 holds, which
impliesx,,+1 > x,. This shows that, > --- > x1 > 0 holds for any(z, x) € Wi. O

Now we are able to determine the number of positive solutiong Bf (

Theorem 19. Leta > 0 and let f, g be polynomials of2[X] with d := degg > degf
and f(0) = g(0) = 0, which define increasing functions i . Then(11) has exactly
one solution iR >g)".

Proof. Lemmasl5-18 show thatWr andny : Wr — R satisfy the hypotheses of Propo-
sition 14. We conclude thaté#z@l(l)): #(7%1(0)) holds. Therefore, in order to finish the

proof of the theorem there remains to prove th@tE(O)) = 1 holds. We observe that
%1(0) = {0} x VR holds, where‘7R C (R.p)" is the semi-algebraic set consisting of the

pointsx := (x1, ..., x;) € (R-0)" satisfying following polynomial system:
0= (n—D(f(X2) — f(X1)) — 38(X0),
0= (n—D*(f(Xes1) — F(X0) —g(Xx)  (2<k<n—1D), (13)

0= (n—Da— 35(Xn).

Sinceg(X,) defines a strictly increasing function iR ¢ which satisfies the conditions
lim,_, 100 g(x) = 400 andg(0) = 0, we see that there exists a unique positive solutjon
tothe equatioin —1)o— %g(Xn) = 0. Nowwe showthatfor 2 k <n—1, there exist unique
valuesx, ..., x, € R>osatisfying the lasi—k+1 equations off3). Arguing by induction
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onn —k, letl < k < n and assume our statement true ot 1, i.e., there exist unique
valuesxy1, ..., x, € R>osatisfying the last —k equations of13). Hence, the coordinate
x; € R>omustbe a solution of the equation— 1)2 f (x;11) = 2(n — 1) £ (Xx) + g (Xx).
Sincep(Xy) := 2(n — 1) £ (Xx) + g(Xx) defines a strictly increasing polynomial function
in R0 and satisfiep(0) = 0, we conclude that there exists a unique solutipre R ¢

to the equatiorin — 1)2 f (xx+1) = p(Xx). This completes our inductive argument. Finally,
in order to prove the uniqueness\fe R o, we apply a similar argument as above to the
polynomial 5(X1) = (n — D?f(X1) + 3g(X1). O

6. Numerical conditioning and complexity of our systems

In this section we are going to analyze the set of positive solutiond) d6( d > 2 and
o € Q.o from the numeric point of view. Let us recall that the positive solutionsApf (
represent the stationary solutions of the initial value probléjrof Section3. The main
result of this section asserts thd) ias only one positive solutioti € (R )", which is
well-conditioned from the numeric point of view. Then, following the homotopy of Section
5 we shall be able to exhibit an algorithm which computes-@pproximation ofc* with
n?® M floating point operations, whetd := log | log(en3~Y4ud)|. In particular, we see
the difference of behavior between symbolic and numeric conditioning and complexity
regarding the positive solution of,

We claim that there exists only one positive solution4)f (ndeed, following the ideas
of Sectionb, we consider the following deformation of)¢

0= (n—D?X1— X2) + 5X¢,
0= —(n—D*(Xer1— Xx — T(Xp — Xp-1) + X 2<k<n = 1), (14)
0= (n—12T(X, — Xp_-1) — (n — Do+ X%

Let W be the set of positive solutions df4). From Theoreni9and Propositiodi4 we
conclude thatVy N ({t} X (IR>0)”), and in particular4), has only one positive solution
foranyt € [0, 1].

6.1. An estimate on the condition number of the positive solution of (14).

LetT, X1, ..., X, beindeterminates ovéb, letX := (X1, ..., X,,) andletF : R+
R" denote the polynomial mapping defined by the right-hand side membetég)ofiben
F(t, X) = 0 has exactly one positive soluticﬁml(t), e ,xn(t)) for anyt € [0, 1], which
in fact belongs tqR-)". Thus, we have defined an analytic functipn [0, 1] — R" by
g = (xl(t), eee, Xn (t)).

Our intention is to analyze the conditioning of approximating the valde by a contin-
uation homotopy method. Following, e[§], the condition number of approximatiggr)
is given by

lg'Olloo = [@F/0X)(1, (1) - @F/0T)(t, g®)' |,
< [[@F/ax)(1, 8@) | | @F /T (1, 8()

where|| - || denotes the standard infinite norm gnd denotes transposition.

”oo’
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Let us fix + e [0,1]. In order to estimate|(0F/0X)(t, g(z))*1||Oo and
|(0F/0T)(t, g(1))| . we are going to find a suitable lower bound farz) and a suit-
able upper bound forx,, (¢).

From the first: — 1 equations of14) we easily see that,(¢), ..., x,(¢t) are uniquely
determined byt and x1(¢). Therefore, lettingcy vary, we may consideXo, ..., X, as
functions ofx1, which are indeed recursively defined as follows:

X1(x1) == x1, Xa(x1) :=x1+ (1/2)(n — 1)~ 2x{,
X3(x1) := Xa(x1) +1(X2(x1) — x1) + (n — 1) 72X4 (x2), (15)
Xir1(x1) = Xe(x1) + (X — Xe—)(x2) + (0 — 72X (x1)  fork>3.

Remark 20. For anyx; > 0 we have:
® (Xr — Xr—1)(x1) >0 and Xi(x1) >0 for2<k<n.
(i)  (Xp—=X;_pPx1) >0 and X;(x1) >0 for2<k<n.
Proof. Letk = 2. Then, from 15) we have the identities
Xo(x1) —x1= (1/2)(n — D72x{,  Xp(x1) =1+ (d/2)(n — 1) ~2x{ !

from which we immediately deduce (i) and (i) for= 2. Now, arguing inductively, suppose
our statement true for a giver=2. From (L5) we have

Xig1 — Xo)(x1) = 1(Xg — Xp—1) (x1) + (0 — D72X{ (xp),
Xy — Xp(1) = (X}, — X;_p(x1) +d(n — D72X{ () X (xa).

Combining these identities with the inductive hypotheses, we easily conclude that (i) and
(i) hold fork + 1. O

Our next technical result is a critical point in our estimate on the lower boung(of
foranyr € [0, 1].

Lemma 21. Assume that/ >2 andn>3d/2 4+ 1 hold, and let4 := 1/d. For x1,0 :=
(n — 1)~42+% andr € [0, 1], we have the following estimates B k <n:

Xi(x1,0) — Xe—1(x1,00 < (1/2+ 3(k — 2)) (n — )~ H+H,
Xi(x1,0) < (n — 1)7HFA 4 (k;zl + 3k — 1)k — 2)) (n —1~4+A,

Proof. Letxk o := Xk(x1,0) for 2<k <n. By hypothesis, we have
x20=x10+300— D72 o=@ — DD 4 J;n — 1=,
X2.0—x1,0= 3(n — =G,

Arguing inductively, assume the statement true for a givea & < n. From (@5) we
have

2. d —-2.d
Xk4+1,0—Xk, 0 = 1 (Xk, 0—Xk—1,0) + (1 —=1) "X} o <Xk, 0—Xk—1,0 + (n—=1)"“x; o

< <% +3(k — 2)) (n=1)" D 4 (n—172 ((n — 1)~
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d
+ (%1 + g(k - Dk — 2)) = 1)—<4+’~>> :

We first estimate the second term in the right-hand side of the last expression

d
(n—1)72 ((n — 1T (k 5 =43 (k Dk - 2)) (n— 1)—<4“>>

3k2 d
< (l’l _ l)—/ld(2+/l)—2 (1 + T(n _ 1)—(4-%/1)-{-/1(24—/1))

d
<(n— l)—(4+/l) <1+ g(n _ 1)-(2—}-/1)(1—)_))

d
<(n—1~@+AH <1+ g(n — 1)—1> (forn>3d/2 + 1)

< — 1)~ A+ 1/d)? <3(n — 1)~
Hence, combining this estimate with the previous one we obtain:
X410 — X, 0 < (1/24 3k — 2))(n — 1)~ 4 3(n — 1=+
< (/24 3(k — D) (n — 1)~

which shows our first assertion fér+ 1. In order to prove our second assertionor 1,
we have

Xk4+1,0 S Xk, 0 + (% + 3(k — 1)) (n— 1)~ @4
< (n 1)—A(2+A) + <k . 1 g(k — 1)k — 2)) (n— 1)—(4+),)
+ <% + 3(k — 1)) (n— 1)~ @4

< (n -1~ 4 <§ + Sk — 1)) (n — 1)~ @A,
This finishes the proof of the lemmall

From Lemma21 we easily deduce the following estimates:

Xn,0 = Xn-1,0 < (% +3(n — 2)) (n— )~ HHL3n — 1)~ G+
5,0 < (1= DT 4 (14 30— D0 - ) (n — 1@+ (16)
< (n— DD 42 — 1)=@+A),

6.1.1. A lower bound farq ()
Let 0 : [0, 1] x R — R be the polynomial mapping defined by

O(t, x1) = t(n — D*(X,(t, x1) — Xn—1(t, x1)) — (n — Do + %X;‘ (t.x1). (17)

Observe thaQ represents the minimal polynomial of the coordinate function defined by
X1 inthe integral ring extensio@®[7] — Q[W], whereW s the affine subvariety o+l
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defined by the polynomial systef(T, X) = 0 of (14). Therefore, for fixed < [0, 1], the
(only) positive root ofQ (¢, X1) is the valuex1 () we want to estimate.

From Remark20 we see tha (¢, X1) is a strictly increasing function ik > o for any
t € [0, 1]. In particular, taking into account théX(¢, 0) < 0 holds, we obtain a new proof of
the uniqueness of the positive solution of the systefn X) = 0 for any: € [0, 1]. Letus
assume, as in Lemn24, thatd >2 andn >3d/2 + 1 hold, and lek; o := (n — 1) *3+4),
x2,0:= X2(x1,0), ..., Xn, 0 := Xn(x1,0). From (L6) we have

t(n — D?(xn0— xn-1,0) < (-1~ HILBn -1t
3o < 30— DT 2 — = @HA)
Tn-D2(1+20 - DY) <3 — 12

NN

forn>2d + 1. We conclude that
3
ot (n — )N B - - (n — D+ 50— 1) 2<0

holds, provided that > 2x~1? + 1 holds. Combining this estimate with the fact that
Q(t, X1) is astrictly increasing function iR > o for anyr € [0, 1], we deduce the following
result:

Lemma 22. Assume that/ >2 and n> max{2d + 1, 202 + 1} hold. Then for any
t € [0, 1] we have the following estimate

(n — DD L x1). (18)

6.1.2. An upper bound for, (1)
We adapt an idea d8]. Let Q : [0, 1] x R — R be the function defined irl{), and

letx1,1(r) € R.o be the only positive solution of the equatiai (7, X1) = (20(n — 1))‘.
Then we have

O(t, x1.1(1) = (n — D2t (X, (¢, x1.1) — Xn_1(t, x1,0)).

If t = 0, from the above expression we conclude tha0) = (Zoc(n — 1))’1 holds. On the
other hand, for € (0, 1]we haveQ(r, x1,1(t)) > 0 = Q(¢, x1(1)), whichimpliesxy 1(r) >
x1(t). Therefore, taking into account thj, (z, X1) is a strictly increasing function iR > o
foranyr € [0, 1], we have

Lemma 23. For anyz € [0, 1] we have the estimate, (1) < (2(n — 1)a)”.
6.1.3. An estimate on the condition number of approximagiay

Letus fixt € [0, 1]. In order to estimate the condition number of approximati(rg, we
observe that the Jacobian matfik (z, X)/0X of F(¢, X) is tridiagonal with the following
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expression:
(n—12+4¢x{* —(n—1)2
Fe.X) | —m—D% (m-12Q+0)+dXx5 !
ox :

.. _(n _ 1)2
—(n—D% (-1 +4x4-1

Following [47], for a given reak x n matrix A := (a;;)1<i,j <» W€ have the estimate
TA™ oo < Max << {laii |72 — )7L}, with g == Jagi| =2 > jzilaijl for 1<i<n.In
the case of the matri¢dF (¢, X)/0X)(g(1)), we have

(n —1)? 1+ (n—-1)7>?

= N = nggn_l,
T BV A s Ry T [N EAD T )

My

B t(n—1)>2
St - 12+ Lx, (et

My

which implies the following estimates:
la1a| 21— pp) ™t = 2d g (1)~
a2 — )™t = a7 ()" <24 (7T (2<k<n — 1),
|ann|_1(1 - ,un)_l = Zd_lxn (t)_d+l<2d_lxl(t)_d+l

for any solutiong(¢) € (R>0)" of the polynomial systen#'(, X) = 0. Combining these
estimates with Lemma2 we deduce

|(0F @, X)/0X) (1, 80)) ||, <24 Lxa ()41 <2d 1 (n — 1> (19)

Now we estimatg (0F /0T )(z, g(1)) || foranyz € [0, 1]. Forthis purpose, let us observe
that(0F /0T)(t, g(t)) = (n — 1)?(0, x2(t) — x1(t), . .., X, (t) — xn_l(t))l holds. From {4)
we deduce the following estimate fok < n:

1
(n — D2 (x(t) — x—1(1)) = Etk—lemd + 58 + -+ xp_1(0)?

< (k= Dxy ().
This implies
|@F/0T) (1, g1))] o < (n = Dxa (1) <2(n — D)%, (20)
Combining @9) and @0) we obtain the main result of this section:

Theorem 24. The condition number of approximating the only positive solutiaf(of X)
= 0 satisfies the estimate< 5 (n — 1)*~*« for anys € [0, 1].
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6.2. A numerical algorithm computing the positive solution of (4)

As an illustration of the numerical well-conditioning of the positive solution of the system
F(t, X) = 0 of (14) for anyr € [0, 1], we shall exhibit golynomialalgorithm which com-
putes the only positive solutigg(1) of (4). This algorithm is a Newton—Euler continuation
method (see e.§48]). For this purpose, let us fix & € < o and let us introduce for any
1 € Rthe polynomial mapping?, : [0, 1] x R" — R" defined in the following way:

Fy(T,X):=F(T,X)—(0,...,0,n".

With the same arguments as in Secttf.1we conclude thafy, (¢, X) = 0 has only one
positive solution for any € [0, 1] and anyy € R with |5| <é.

Let f(T) := —2T3 + 3T2. Observe thaif (0) = 0, f(1) =1 and f([—1/4,5/4]) =
[0, 1] hold. Then we have that the semi-algebraic subsé& of (R> )" defined by the
following system of equalities and inequalities:

(Oa '""0’ —/8\),<F(f(T),X)<(0, "~’Oa/8\)t’ _1/4<T<5/45

is a compact neighborhood of the real algebraic cury&, X) = 0, 0< T < 1. Observe
that this semi-algebraic set may also be defined as the set of [faigts, 1)) with €
[—1/4,5/4] and|y| <F, whereg (1, 1) := (x1,4(t), ..., x4 (1)) denotes the positive solu-
tion of F,(f(T), X) = 0.

In order to estimate the complexity of the Newton—Euler method which computes the
positive solution of 14), we need an upper bound foy ,(¢) and a lower bound fary ; (1),
foranyr € [—1/4,5/4] and anyy € [—¢, ]. For this purpose, we follow the approach of
Sectior6.1 More precisely, analogously td7), we introduce for any € R the polynomial
mappingQ, : [0, 1] x R — R defined in the following way:

2 1 4
Qy(t, x1) = f(O)(n — D*(Xy — Xp—1)(f (1), x1) — (n — Do — n + = X5 (f (1), x1).
Observe thap,, (¢, X1) is a strictly increasing function if-o with Q,(z, 0) < 0 for any
t € [-1/4,5/4]. As in the proof of Lemma3, for anys € [—1/4, 5/4] we denote by
x1,1,4(¢) the only positive solution of the equatioty, (f (1), X1) = (2o(n — 1) + 2;7)”.
Then we have

Oyt x11.) = (n — D2 F () (X — Xp—1) (f (1), x1,1.9(1)) =0 = Oy (t, x1.5(D)).
We conclude thaty 1, (f) > x1,,(t), which implies
(40 — V)" > (20 — D)o+ 21)"
=X (f(©), x1,1.5(0)) > X (£ (1), X1.9(1)) = Xy ().

On the other hand, assuming thit 2 andn > max(2d + 1, 2x~1/2 + 2} hold, applying
Lemmaz22 mutatis mutandisve deduce that — 1)~*?+% <xq , (1) holds for anyr e
[—1/4, 5/4]. Therefore, using the estimates of Sectioh 3we conclude that the following
estimate holds:

|(0Fy (£ (T), X)/0X) " (1, g(n, )|, <2472 — DZF =: B.
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We also needan upperbound|t(@2F,7(f(T), X)/0X?)(t. g(n.1)| - Forthis purpose,
we have to estimate the norm of the Hessian matrix of each coordindig wihich is in
turn reduced to estimate the quantity max<,{d(d — l)Xk(f(t), xl.n(t))d_z} for any
t € [-1/4,5/4] and anyy € [—¢, €]. We have

| (%Fy (f(T).X)/0X?) (.8 (n. D) || o, < d(d — Dxny ()2
<4dd —1)(n — Do =:y.

Finally, we havel|(0F,(f(T), X)/0T)(t, g(n, 1)) llec <4(n — 1%z =: 5.

Then, applying e.g.[48, 10.4.3] we see that there existsN<4ﬂ2y5<
<28(n — 1)""%42 = 0(n") such that the following holds:

If x© := g(0) denotes the positive solution #f(0, X) = 0,and 0=1g <11 < --- <
ty = 1is auniform partition of the intervaD, 1], then the iteration

D = x® _(aF (T, X)/ﬁX)_l(tk, xYF (e, x®)  (0<k<N - 1),

yields an attraction point of the standard Newton iteration associated to the gygleX) =
0. Let us remark that, taking into account that the Jacobian m@txr’, X)/0X)(tx, x©)
is tridiagonal, we conclude that each step of this iteration requireg log @) floating
point operations, keepin@ (n log d) arithmetic registers.

From[48, 10.4.2—3}we conclude that the vectafV ™), obtained from the vector®™
above aftek steps of the iteration

XD = B _ ((aF(l, X)/(?’X)(x(k))>7lF(l,x(k)) (k> N),

satisfies the estimatex V0 — ¢(1)||o <27%(2py)~L. Furthermore, combining this es-
timate with[48, 10.2.2Jwe see thafix V0 — ¢(1)]lee <272 2 (4By)~"1 <272 7*-5(d —
1)~Yo~1(n—1)*~3 holds fork >2. Therefore, in order to obtain arapproximation og (1),
we have to performO (M) steps of the second iteration, witl := log | Iog(sn3‘;~ad)|.
Summarizing, we have

Theorem 25. There exists a computation tree computingsaapproximation of the posi-
tive solution of(4) with spaceO (nlog d) and time O (n?log d(n” + M)), whereM :=
log | log(en3*ad)).
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