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Abstract

We will describe the appearance of specific algebraicKdV potentials as a consequence of a requirement on an int
differentialexpression.Thisexpressionbelongs to a class generated bymeansof Virasorovectorfields acting ontheKdV field.
The “almost” rationalKdV fields are describedin termsof a geometrical locus of complex points. A class of solutions of
locus has recently appeared as a description of any conformalVermamodulewithoutdegeneration.
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1. Introductory remarks

A large well-known classof (Abelian)isospectral deformations of the Schrödinger operatorL = −∂2
x + u takes

the nameof Korteweg–deVries (KdV) hierarchy[1]; for theKorteweg–deVries equation

(1)
∂u

∂t1
= −uxxx + 6uxu,

is thefirst non-trivial exampleof flow in this hierarchy(t1 andx are time and space respectively, their appeara
as indices means derivation). The entireKdV hierarchy can be derived from the Schrödinger operator as the
fundamental object[1], but it is also generated effectively by the pseudo-differential operator

(2)Nu = −∂2
x + 4u+ 2ux∂

−1
x ,
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after successive actions on the trivial vector fieldK0[u] = ux

(3)Kj+1 = NuKj , j � 0.

And the actions of the different vector fieldsKj must be understood in the usual way, as given by the time de
tives

(4)
∂u

∂tj
= Kj [u].

These flows do not change the spectrum of the Schrödinger operatorL = −∂2
x + u [1] and are all compatible, in

the sense that they commute with each other:

(5)[Ki,Kj ] = 0.

In this Letter we will not be self-contained and would like to address the attentive reader to the main Refs.[2,3] for
definitions and theorems.

2. The Virasoro vector fields and their decaying rational solutions

In the same spirit, Zubelli and Magri[2] constructed recursively an algebra of vector fields1 (also called, in
another context, master-symmetries after Fokas and Fuchsteiner[5]) starting from the generator of the scalin
transformation

(6)V0[u] = u + 1

2
xux, Vj+1 = NuVj , j � 0.

Albeit the flows of the KdV hierarchy commute with each other, the flowsVj were proved to close half centerle
Virasoro algebra (only generators forj � 0 are present):

(7)[Vi,Vj ] = (j − i)Vi+j .

Moreover, the commutator with a higher KdV flow gives another KdV vector field according to

(8)[Vi,Kj ] =
(

j + 1

2

)
Kj+i .

Since the right-hand side is not zero, the Virasoro vectors are not proper symmetries of the KdV hierarchy,
nevertheless generate all the hierarchy by successive commutators starting only from the first flow(1). In contrast
with the KdV flows, they also change the spectrum of the Schrödinger operator, though their action on the
levels” is simply realised by the polynomial vector fields in the complex plane[6]. Later on, how they act on th
modified KdV field,φ such that

(9)u = φ2
x + φxx,

has been studied in[7], showing that the algebra(6) can be completed to form an entire Virasoro algebra.2 Fur-
thermore, the Virasoro algebra has been given a geometrical origin and meaning, by which it has been als
to enjoy a zero-curvature form (involving the differential first-order matrix operator associated to the secon
Schrödinger operator through the Miura transformation)[7] and to commute (genuine symmetry) with the (lig
cone) sine-Gordon flows[8]. Going back to the paper by Zubelli and Magri[2], they proved that the half Virasor

1 These vector fields may also be derived from those of[4] putting formally all the KdV times to zero.
2 Actually, we should apologise because at that time we did not know the content of[2]. Later, we also had a nice conversation with F. Ma

about the algebraic structure of[7], though we have discovered the content of[2] only very recently.
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algebra(6) is tangent to some previously well-known manifolds: these are spanned by the bispectral potentiu(x)

of the Schrödinger operatorL = −∂2
x + u [3]. In fact, Duistermaat and Grünbaum characterised these potenti

be the family of the pure angular momentum potentialsu(x) = l(l+1)

x2 , with l(l + 1) an arbitrary constant, and tw
other classes: both are obtained by iterative actions ofrational Darboux transformations starting from two ve
simple potentials, i.e.,u(x) = 0 andu(x) = − 1

4x2 . Therefore, they concluded that all the bispectral potentials

rational functions decaying atx = ∞3 (with a peculiar pattern of poles, cf.[3] and below). As a consequence
tangency it comes out that the (bounded) bispectral potentials stay rational while they evolve according t
the Virasoro vector fields(6) [2]. Recently, Zubelli and Silva have shown the reverse statement: ifu(x) is a rational
function decaying at infinity, which remains rational by each of the flows(6), thenu(x) is a (bounded) bispectra
potential[9]. To prove it, they have almost used only the first vector field obtained from the scaling transform
V0[u], i.e.,

(10)V1[u] = −x

2
(uxxx − 6uux) − 2uxx + 4u2 + ux∂

−1
x u.

In fact, they have sought for decaying rational solutions, decomposed in partial fractions

(11)ur(x) =
∑
p∈P

mp∑
m=1

cp,m

(x − p)m
,

of the “equation of motion”

(12)
∂ur

∂β1
= V1[ur ],

whereβ1 is the “time” associated with the flow under examination and the polesp = p(β1) and the coefficients
cp,m = cp,m(β1) depend smoothly on it. Here they have assumed that the number of poles is constant (neith
creation nor annihilation) and that the leading order coefficientcp,mp(β1) must not vanish. They have discover
that the “generic” rational function of the form(11), under these conditions, undergoes severe restrictions o
form as necessary conditions to satisfy the previous equation of motion(12)and takes the simpler double pole for

(13)ur(x) = l(l + 1)

x2
+

∑
p∈P

2

(x − p)2
,

where l(l + 1) is a constant, that may also be zero, and eachp = p(β1) is a function of time. Ifl(l + 1) = 0
thenx = 0 is not a stationary pole and then it may belong to the set of complex non-stationary polesP ; instead if
l(l + 1) �= 0 thenx = 0 is a stationary pole and it does not belong toP . Now, the time evolution ofur (13) comes
out by equating the 1/(x − p)3 terms of both members of(12)and involves only the polesp(β1)

(14)ṗ = −2

(
l(l + 1)

p
+

∑
q∈Pp

2p + q

(p − q)2

)
,

where the upper dot indicates the derivative with respect to the timeβ1 and we have for short definedPp = P −{p}.
Finally, the poles inP must satisfy a static constraint which derives from equating to zero the 1/(x− p)2 terms of
the right-hand side of(12):

(15)
l(l + 1)

p3
+

∑
q∈Pp

2

(p − q)3
= 0.

3 To be rigorous, they also found the only exception to zero-boundedness, i.e., the linear potentialu(x) = c1x + c0. But it was excluded
from the analysis in[2] because of its triviality.
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When l ∈ Z�0 or l ∈ Z�0 − 1/2 these relations give the celebratedlocus of Duistermaat and Grünbaum[3]. As
particular case, it reduces to the even more famous locus of Airault, McKean and Moser ifl(l + 1)= 0 [10]

(16)
∑
q∈Pp

1

(p − q)3
= 0,

where nowP may contain the zero. Theur(x) satisfying the previous condition are again given by the form(13)
with now l(l + 1)= 0 and they are also the only rational solutions of the KdV flows[10] (in which case the pole
would depend on the KdV timestj (4)). Moreover, they were obtained in[3] by rational Darboux transformation
from the initial potentialu0 = 0. Instead, ifl(l + 1) �= 0 the potentials(13), (15) cannot be solutions of the KdV
hierarchy, albeit they are yielded by rational Darboux transformations fromu0(x) = −1/4

x2 . Actually, the locus
(15) seems to be more general than in the Duistermaat and Grünbaum context since no restriction onl comes out
manifestly. In fact, this appears as a consequence of imposing that the rational potentials are also solutio
higher Virasoro equations[9]

(17)
∂ur

∂βn

= Vn[ur ], n > 1.

Actually, the poles ofur(x) cannot be considered proper functions of all the timesβj (j > 0) at once, since th
different flowsVj do not commute. Nevertheless, the imposition of the rational invariance under the highe
is geometrically meaningful and suggestive. But it does not easily imply that the restriction onl might be seen a
a consequence of the only equation of motion(12), although it has been conjectured in[9]. Of course, there is n
restriction onl, if the only pole inur(x) (13) is x = 0 (bispectral potentialur(x) = l(l + 1)/x2, which invariant:
V0[ur ] = 0).

3. Rational potentials perturbed by x2α: CFTs

So far, we have been dealing with rational functionsur(x) (11) decaying at infinity and now we would like t
consider potentials which play some rôles in 1-dimensional quantum mechanics. Moreover, as the whole
algebra was derived in[7] by dressing the infinitesimal generators of diffeomorphisms in the spectral para
we expect it to have an interesting action on more general potential. Therefore, we consider a simpleperturbation
of (11)

(18)u(x) = x2α + ur(x),

where 2αis a non-negative real number. This anharmonic perturbation4 clearly changes the behaviour atx = ∞,
dominating the asymptotic expansion, and destroys any chance thatu may be consistently a solution of Eq.(12).
Nevertheless, thanks to their aforementioned origin in[7], we may think of the vector fields(6) as infinitesimal
transformations acting on(18)

(19)δju = εjVj [u], n � 0,

whereεj is an infinitesimal variation ofβj . In this perspective, it is natural to require that these transformation
not introduce new double poles; for this is the requirement which gives rise to(15). Besides, a (rational) Darbou
transformation maps the solutions of the algebraic equations(15) into the solutions of a set of equations w
the same form (but differentl) [3].5 In the first instance, we do not want double poles in the first non-tr

4 A coupling constant in front ofx2α can be considered as re-absorbed through a redefinition ofx.
5 We do not expect that the Darboux transformation will play exactly the same rôle here, since the addition(18) itself breaks the rationality
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(20)δ1u = V1[u],
where we have omittedε1. Hence, if we limit 2α= r/s to be rational, we realise rather easily that we n
ur(x) in (18) to be more stringently a rational function ofy = x1/s , in order to equate the squared powers
the transformation(20) to zero. And this easily means that we can assume, without loss of generality, 2αto be
a non-negative integer number. A similar but more refined balancing of partial fraction decomposition yie
necessary condition, the restriction(13)and hence

(21)u(x) = x2α + l(l + 1)

x2
+

∑
p∈P

2

(x − p)2
.

Eventually, plugging again this form into the right-hand side of(20)we equate to zero the coefficients of the pow
1/(x − p)2, obtaining∀p ∈ P

(22)l(l + 1)+
∑
q∈Pp

2p3

(p − q)3
− αp2α+2 = 0.

These constraints can be thought of as adeformation of the Duistermaat and Grünbaum locus(15), in the sense tha
they reduce to that locus whenα = 0. Actually, we must emphasise that so far no restriction on the possible v
of l has appeared. Nevertheless, we might think to deduce a restriction by using the higher Virasoro vect
likewise to what happens in the decaying potential case[9]. This possible restriction would be of crucial intere
for what we are going to illustrate. Moreover, we would like to deliver a more detailed analysis of the geom
interpretation of(22) in a future publication[11], where we also should shed light on the creation and annihila
properties of the negative and positive Virasoro generators of[7], respectively.

To gain some meaning from the algebraic equations(22), we will look for particular solutions. Thanks to th
presence of the last term in the left-hand side, it would be very natural to have solutionsp which gather in(2α+2)th
roots of another variablez. More precisely, we want that the whole setP is generated from another non-empty
of complex numbers,Z, in this way:

(23)P = {
p: p2α+2 = z, z ∈ Z

}
.

Naturally, the sum in(22) splits into two parts: (1) the sum over theq which are not roots ofz = p2α+2, i.e.,
over P

(1)
p = {q ∈ Pp: q2α+2 �= p2α+2}; (2) the sum over the rootsq of z = p2α+2 different fromp, i.e., over

P
(2)
p = {q ∈ Pp: q2α+2 = p2α+2}. As for the case (1) we easily have

(24)
∑

q∈P
(1)
p

2

(p − q)3
= ∂3

∂p3
ln

∏
q∈P

(1)
p

(p − q) = ∂3

∂p3

∑
w∈Zz

ln
(
p2α+2 − w

)
,

where again we have definedZz = Z − {z}. Therefore, after three derivatives we obtain

(25)
∑

q∈P
(1)
p

2

(p − q)3
= 2α + 2

p3

∑
w∈Zz

2z[z2 + (1+ 2α)(α + 3)wz+ (1+ 2α)w2]
(z − w)3

.

On the other hand the sum (2) over all the roots ofz = p2α+2 exceptp itself yields, after simple trigonometri
manipulations,

(26)
∑

q∈P
(2)
p

2

(p − q)3
= 2α + 1

2p3
− 3

4p3

2α+1∑
k=1

1

sin2 π
2α+2k

.
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Moreover, the last sum can be computed explicitly (cf., e.g.,[12]) with the simple outcome

(27)
∑

q∈P
(2)
p

2

(p − q)3
= 1− 4α2

4p3
.

Eventually, we collect both contributions(25)and(27) into the locus equations(22)

(28)
4l(l + 1)− 4α2 + 1

16(α+ 1)
+

∑
w∈Zz

z[z2 + (1+ 2α)(α + 3)wz+ (1+ 2α)w2]
(z − w)3

− α

4(α + 1)
z = 0,

which are the constraints∀z ∈ Z. In the end, we remark that this locus of complex points has been rec
proposed by Bazhanov et al.[13] as describing the non-degenerate conformal Verma module of highest weigh∆ =
4l(l+1)−4α2+1

16(α+1)
with central chargec = 1− 6α2

α+1, where the cardinality ofZ gives the level. This sort of descriptio
comes out “naturally” within a surprising correspondence between the whole spectrum of a specific Schr
operatorL = −∂2

x + u and the eigenvalue of the BaxterQ-operator[14] on a conformal state. As for the vacuu
the authors of[15] have first furnished the potential (without the non-zero polesp ∈ P ) u(x) = x2α + l(l + 1)/x2.
Therefore, the locus(28)extends the correspondence to the excited states by means of exactly the rational po
(21), (23) we have found. In addition, we have met a restriction onl in the previous case where we have obtain
(22) with α = 0, i.e., when the potentialu(x) is indeed bispectral, and we might expect a similar restriction f
implementing the higher Virasoro flows[11].

4. Perspective

We have already stressed some of the relevant issues we would like to pursue in the next future. Now
interested in delineating and summarise the main perspective. Essentially, we want to obtain information a
geometry of the locus(22) and any possible algebraic structure connected to it. Of course, an important a
tool should be the Virasoro algebra of flows, since the KdV hierarchy played a crucial rôle in the study
Airault–McKean–Moser locus[10]. Besides, the centerless character of the algebra can be emended loo
the action on theτ -function, in terms of which the potential readsu = −2∂2

x ln τ (cf., e.g.,[6] and the second
reference of[1] about the KP hierarchy). In this scenario the relation with a possiblegeneralised bispectrality is
still mysterious, though most intriguing.

In the end, we would like to emphasise the importance of considering non-rational forms of the potentiau(x),
like for instance the soliton case (for which the action of the entire Virasoro algebra has been already d
in [16]).
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