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Abstract

We will describe the appearance of specific algebki)/ potentials as a consequence of a requirement on an integro-
differentialexpressionThis expressiorelongs to a class generatedrhgansof Virasorovectorfields acting ortheKdV field.
The “almost” rationaKdV fields are describeih termsof a geometrical locus of complex points. A class of solutions of this
locus has recently appeared as a description of any confM@nadamodulewithout degeneration.
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1. Introductory remarks

A large well-known classf (Abelian)isospectral deformations of the Schrédinger operatef—af + u takes
the nameof Korteweg—deVries (KdV) hierarchy[1]; for the Korteweg—dé/ries equation

au

oty

is thefirst non-trivial exampleof flow in this hierarchy(r; andx are time and space respectively, their appearance

as indices means derivation). The enf@V hierarchy can be derived from the Schrddinger operator as the only
fundamental objedtl], butit is also generated effectively by the pseudo-differential operator

= —Uyyx + Ouyu, (1)

Ny =—02+du+2u, 97, 2)
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after successive actions on the trivial vector fi&lglu] = u,
Kj+1:Nqu» ]20 (3)

And the actions of the different vector fieldS; must be understood in the usual way, as given by the time deriva-
tives

ou

— =K;[u]. 4

8tj ][M] ( )
These flows do not change the spectrum of the Schroédinger opéraio#&f + u [1] and are all compatible, in
the sense that they commute with each other:

[Ki,K;]=0. (5)

In this Letter we will not be self-contained and would like to address the attentive reader to the mal[2 REfst
definitions and theorems.

2. TheVirasoro vector fieldsand their decaying rational solutions

In the same spirit, Zubelli and Magf2] constructed recursively an algebra of vector fiél@so called, in
another context, master-symmetries after Fokas and FuchsiBihestarting from the generator of the scaling
transformation

1
Volul =u + Exux, Vig1=N,V;, j=0. (6)

Albeit the flows of the KdV hierarchy commute with each other, the flévsvere proved to close half centerless
Virasoro algebra (only generators fpg= 0 are present):

Vi, Vil=( — i) Vigj. (7
Moreover, the commutator with a higher KdV flow gives another KdV vector field according to

1
[Vi,Kj]=<j+§>Kj+i- (8)

Since the right-hand side is not zero, the Virasoro vectors are not proper symmetries of the KdV hierarchy, but they
nevertheless generate all the hierarchy by successive commutators starting only from the f{dst flowontrast

with the KdV flows, they also change the spectrum of the Schrédinger operator, though their action on the “energy
levels” is simply realised by the polynomial vector fields in the complex pJéhe.ater on, how they act on the
modified KdV field,¢ such that

u= ¢§ + ¢xxs (9)

has been studied if7], showing that the algebré) can be completed to form an entire Virasoro algebFar-
thermore, the Virasoro algebra has been given a geometrical origin and meaning, by which it has been also proved
to enjoy a zero-curvature form (involving the differential first-order matrix operator associated to the second-order
Schrodinger operator through the Miura transformat{@ih)ynd to commute (genuine symmetry) with the (light-

cone) sine-Gordon flow8]. Going back to the paper by Zubelli and Maff], they proved that the half Virasoro

1 These vector fields may also be derived from thos@bputting formally all the KdV times to zero.
2 Actually, we should apologise because at that time we did not know the con{@t béter, we also had a nice conversation with F. Magri
about the algebraic structure [@, though we have discovered the contenf2jfonly very recently.
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algebrg6) is tangent to some previously well-known manifolds: these are spanned by the bispectral patentials

of the Schrédinger operatdr= —d2 + u [3]. In fact, Duistermaat and Griinbaum characterised these potentials to
be the family of the pure angular momentum potentigbhs) = Wx%l) with /(I 4+ 1) an arbitrary constant, and two
other classes: both are obtained by iterative actionsmtbdnal Darboux transformations starting from two very
simple potentials, i.ey(x) =0 andu(x) = —4%2. Therefore, they concluded that all the bispectral potentials are

rational functions decaying atc = oo® (with a peculiar pattern of poles, dB] and below). As a consequence of
tangency it comes out that the (bounded) bispectral potentials stay rational while they evolve according to one of
the Virasoro vector fieldg) [2]. Recently, Zubelli and Silva have shown the reverse statemerit Jfis a rational
function decaying at infinity, which remains rational by each of the fl(&ysthenu(x) is a (bounded) bispectral
potential[9]. To prove it, they have almost used only the first vector field obtained from the scaling transformation
Volul, i.e.,

x
Vl[u]:—z(u”x—6uux)—2uxx+4u2+ux8;lu. (20)

In fact, they have sought for decaying rational solutions, decomposed in partial fractions

ur () = ZZ e an

peEP m= 1
of the “equation of motion”

ou,

9p1
whereps is the “time” associated with the flow under examination and the pelesp(B1) and the coefficients
cp.m = cp.m(B1) depend smoothly on it. Here they have assumed that the number of poles is constant (neither poles
creation nor annihilation) and that the leading order coefficignt, (81) must not vanish. They have discovered
that the “generic” rational function of the for(d1), under these conditions, undergoes severe restrictions on its
form as necessary conditions to satisfy the previous equation of ma@)and takes the simpler double pole form

l(l+1) 2
r( )_ X +Z(.X—p)2’ (13)

peP

wherel(l + 1) is a constant, that may also be zero, and eaeh p(B1) is a function of time. Ifi(l + 1) =
thenx = 0 is not a stationary pole and then it may belong to the set of complex non-stationarypahssead if
I(I + 1) #0thenx = 0 is a stationary pole and it does not belongPtoNow, the time evolution of, (13) comes
out by equating the (x — p)3 terms of both members ¢12) and involves only the poles(f1)

1 2
p=_2<l(l+ )+ZP_7+CI>’ (14)

2
p ger, P~ )

where the upper dot indicates the derivative with respect to thefiiraed we have for short defingt), = P —{ p}.
Finally, the poles inP must satisfy a static constraint which derives from equating to zero the-1 (£ terms of

the right-hand side dofL2).

I+1) 2

— + ——=0. 15
2 (P 9?3 13)

3 To be rigorous, they also found the only exception to zero-boundedness, i.e., the linear patentiak,x + cg. But it was excluded
from the analysis if2] because of its triviality.
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When! € Zxg orl € Z>o — 1/2 these relations give the celebratedus of Duistermaat and Griinbauf]. As
particular case, it reduces to the even more famous locus of Airault, McKean and Mager If) = 0 [10]

) —) (16)

— 3
ger, P~ D

where nowP may contain the zero. The (x) satisfying the previous condition are again given by the f(t8)

with now!/(/ + 1) = 0 and they are also the only rational solutions of the KdV fl§id (in which case the poles

would depend on the KdV times (4)). Moreover, they were obtained [B] by rational Darboux transformations

from the initial potentiakig = 0. Instead, ifl (I + 1) # 0 the potential§13), (15) cannot be solutions of the KdV
hierarchy, albeit they are yielded by rational Darboux transformations frein) = iz/“ . Actually, the locus

(15) seems to be more general than in the Duistermaat and Grliinbaum context since no restrictiomes out
manifestly. In fact, this appears as a consequence of imposing that the rational potentials are also solutions of the
higher Virasoro equatior9]

ou,
9Bn

Actually, the poles ofs,. (x) cannot be considered proper functions of all the tirieg; > 0) at once, since the
different flowsV; do not commute. Nevertheless, the imposition of the rational invariance under the higher flows
is geometrically meaningful and suggestive. But it does not easily imply that the restrictiomight be seen as

a consequence of the only equation of mot{d8), although it has been conjectured®j. Of course, there is no
restriction orv, if the only pole inu, (x) (13)is x = 0 (bispectral potentiat, (x) = [(I 4+ 1)/x?, which invariant:

Volu,] = 0).

=V,lu,], n>1. (17)

3. Rational potentials perturbed by x2*: CFTs

So far, we have been dealing with rational functienéx) (11) decaying at infinity and now we would like to
consider potentials which play some réles in 1-dimensional quantum mechanics. Moreover, as the whole Virasoro
algebra was derived ifY] by dressing the infinitesimal generators of diffeomorphisms in the spectral parameter,
we expect it to have an interesting action on more general potential. Therefore, we consider paitagdation
of (11)

u(x) = x% +u,(x), (18)

where 2ais a non-negative real number. This anharmonic perturbftitEarly changes the behaviourat oo,
dominating the asymptotic expansion, and destroys any chance thay be consistently a solution of E{.2).
Nevertheless, thanks to their aforementioned origifrinwe may think of the vector fieldé) as infinitesimal
transformations acting of18)

(SjMZEjVj[M], n>0, (19)

wheree; is an infinitesimal variation o ;. In this perspective, it is natural to require that these transformations do
not introduce new double poles; for this is the requirement which gives ridébjoBesides, a (rational) Darboux
transformation maps the solutions of the algebraic equafidBpinto the solutions of a set of equations with
the same form (but differer) [3].% In the first instance, we do not want double poles in the first non-trivial

4A coupling constant in front af2* can be considered as re-absorbed through a redefinition of
5 We do not expect that the Darboux transformation will play exactly the same rdle here, since the &ti@liitself breaks the rationality.
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transformation o{18)

Squ = Vilu], (20)

where we have omitted;. Hence, if we limit 2a= r/s to be rational, we realise rather easily that we need
ur(x) in (18) to be more stringently a rational function of= x¥/%, in order to equate the squared powers of

the transformatiorf20) to zero. And this easily means that we can assume, without loss of generality, &y

a non-negative integer number. A similar but more refined balancing of partial fraction decomposition yields, as
necessary condition, the restricti@iB) and hence

o D) 2
u(x) =% + —— +Z;(x_p)2. (21)

Eventually, plugging again this form into the right-hand sid€28f) we equate to zero the coefficients of the powers
1/(x — p)?, obtaining‘v’p eP
»

(p —q)3

These constraints can be thought of atefar mation of the Duistermaat and Grinbaum lo¢@$), in the sense that
they reduce to that locus when= 0. Actually, we must emphasise that so far no restriction on the possible values
of [ has appeared. Nevertheless, we might think to deduce a restriction by using the higher Virasoro vector fields,
likewise to what happens in the decaying potential ¢8k€eThis possible restriction would be of crucial interest
for what we are going to illustrate. Moreover, we would like to deliver a more detailed analysis of the geometrical
interpretation o{22)in a future publicatiorjl11], where we also should shed light on the creation and annihilation
properties of the negative and positive Virasoro generatofg| ofespectively.

To gain some meaning from the algebraic equati@), we will look for particular solutions. Thanks to the
presence of the last term in the left-hand side, it would be very natural to have solutidrish gather in2«+ 2)th
roots of another variable More precisely, we want that the whole geis generated from another non-empty set
of complex numbersZ, in this way:

P={p: p*2 =2z zeZ}. (23)

Naturally, the sum i(22) splits into two parts: (1) the sum over tgewhich are not roots of = p2**2, i.e.,
over P\Y = {g € P,: q2*+2 % p22+2}; (2) the sum over the rootg of z = p%+2 different from p, i.e., over

I+D+ ) —ap®t?=0. (22)

qePy

PP ={geP, q2“+2 = p%*2}. As for the case (1) we easily have
3
L _ 3_ | [ 20042 24
Z(_)3_33n1_[(p q)= BZn w)’ (24)
EP[(,l) pP=9q p qu,Sl) weZ;

where again we have defined = Z — {z}. Therefore, after three derivatives we obtain

Z 2 2042 Z 27022 + 1+ 2a)(a+3)wz+(1+2a)w2]

= 25
epV (p—q)3 pe (z—w)3 (@5)

weZ;
On the other hand the sum (2) over all the rootg ef p2**+2 exceptp itself yields, after simple trigonometric
manipulations,

20+1

2 2a+1
L oar T 2 3Zsm2 Tk (26)

(2) 2012
epP,
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Moreover, the last sum can be computed explicitly (cf., ¢1&@]) with the simple outcome

2 1— 402
2 p—a@ 4P &0

2
qu,(,>

Eventually, we collect both contributioif5) and(27) into the locus equation®@2)

Al +1) 4o’ +1 Zz[zz+(1+2(¥)(06+3)wz+(1+205)w2]_ « 5
16(a+ 1) (z—w)? dat+D)

(28)

weZ,

which are the constraintéz € Z. In the end, we remark that this locus of complex points has been recently
proposed by Bazhanov et fiL3] as describing the non-degenerate conformal Verma module of highest weight

%‘fi‘;*l with central charge =1 — O%Zl, where the cardinality of gives the level. This sort of description
comes out “naturally” within a surprising correspondence between the whole spectrum of a specific Schrédinger
operatorL = —33 + u and the eigenvalue of the Baxt@roperatof14] on a conformal state. As for the vacuum

the authors of15] have first furnished the potential (without the non-zero pplesP) u(x) = x?* + (I + 1) /x?.
Therefore, the locu@8) extends the correspondence to the excited states by means of exactly the rational potentials
(21), (23) we have found. In addition, we have met a restrictiord anthe previous case where we have obtained
(22) with « = 0, i.e., when the potential(x) is indeed bispectral, and we might expect a similar restriction from

implementing the higher Virasoro flovj$1].

4. Pergpective

We have already stressed some of the relevant issues we would like to pursue in the next future. Now we are
interested in delineating and summarise the main perspective. Essentially, we want to obtain information about the
geometry of the locu§22) and any possible algebraic structure connected to it. Of course, an important analysis
tool should be the Virasoro algebra of flows, since the KdV hierarchy played a crucial réle in the study of the
Airault-McKean—Moser locugl0]. Besides, the centerless character of the algebra can be emended looking at
the action on the-function, in terms of which the potential reads= —Zaflnr (cf., e.g.,[6] and the second
reference of1] about the KP hierarchy). In this scenario the relation with a posgisieralised bispectrality is
still mysterious, though most intriguing.

In the end, we would like to emphasise the importance of considering non-rational forms of the patantial
like for instance the soliton case (for which the action of the entire Virasoro algebra has been already described
in [16]).
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