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This paper deals with the fault diagnosis of the face milling tool based on machine learning approach
using histogram features and K-star algorithm technique. Vibration signals of the milling tool under
healthy and different fault conditions are acquired during machining of steel alloy 42CrMo4.
Histogram features are extracted from the acquired signals. The decision tree is used to select the salient
features out of all the extracted features and these selected features are used as an input to the classifier.
K-star algorithm is used as a classifier and the output of the model is utilised to study and classify the
different conditions of the face milling tool. Based on the experimental results, K-star algorithm is pro-
vided a better classification accuracy in the range from 94% to 96% with histogram features and is accept-
able for fault diagnosis.
� 2016 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cutting tool is an essential element in metal removal process.
During continuous machining process, deterioration in cutting tool
performance occurs due to the tool wear/breakage. Tool failure
reduces the quality and varies the dimension of the product. The
tool health is a key parameter in the manufacturing industries.
Hence there is a need for an online tool condition monitoring
(TCM) system, which provides a better health condition of the pro-
cess and particularly the cutting tool by using continuous monitor-
ing of certain parameters. This TCM system promises higher
productivity with reduced maintenance cost and by saving idle
time. Byrne et al. [6] made an in depth study on requirement of
TCM system which is to be used for optimizing the tool usage,
reducing the non-productive time, tool breakage detection,
improving the process stability, etc.

Tool condition monitoring techniques include direct measure-
ment and indirect measurement of tool wears. Direct measure-
ment of cutting edge provides the most accurate information
about physical deterioration of the cutting tool. LoCasto et al.
[24] employed charge coupled device (CCD) Camera for tool wear
measurement. Park et al. [31] applied direct measurement method
using optical sensing techniques by computer vision systems.
Ryabov et al. [35] used laser displacement sensor for online mea-
surement of tool geometry in milling process. Prasad and
Ramamoorthy [32] investigated and predicted the tool wears such
as crater wear and flank wear using stereo vision method in turn-
ing process. These direct measurements provide the advantage of
high accuracy in certain conditions only, but they have not yet pro-
ven to be very attractive either technically or economically. Cur-
rently, indirect measurements are more suitable for on-line in
process applications. Indirect measurements are based on the rela-
tionship between the measuring data of the cutting process and
the tool conditions. Machining process data such as cutting force
signals [26,17,7], vibration signals [29], acoustic emission signals
[43], current/power signals [2,37], etc. are acquired and relevant
features are extracted from the data. Then the tool conditions are
diagnosed using these extracted features and artificial intelligent
techniques. However, a very few indirect methods are suitable
for industrial applications, because the measured signals will be
nonstationary and stochastic in nature.

There are two major steps involved in TCM system, first one to
extract features from the ambiguous/noisy data and later one is to
diagnose/classify the condition of the process/cutting tool using
these extracted features. The features of the signal such as statisti-
cal features, histogram features, empirical mode decomposition
(EMD) features, discrete wavelet transform (DWT) features, etc.
and artificial intelligence techniques such as artificial neural net-
work (ANN) [22,16], support vector machine (SVM) [27,41], Baye-
sian network [28,40], fuzzy neural network [23], hidden Markov
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Table 1
Experimental condition of face milling process.

Experimental condition

Work material 42CrMo4/1.1225 steel alloy
Insert material Carbide
Cutting speed 128 m/min
Feed rate 0.12 mm/insert
Depth of cut 0.5 mm
Fault conditions of the tool Flank wear, breakage and chipping
Lubrication Dry
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model [13], decision tree [12], etc. can be seen in the current indus-
tries and manufacturing research field. So there is a need of study-
ing the nature of the signal and their relationship with the tool
condition, especially for an intermittent cutting process like face
milling. Dutta et al. [9] investigated and compared the perfor-
mance of fuzzy based neural network with the standard back prop-
agation neural network for tool condition monitoring during face
milling process using vibration and cutting force signals. They con-
cluded that the proposed method is faster in computational steps
and effectively applicable for on-line TCM system. Baek et al. [3]
developed the digital signal processor board using autoregressive
(AR) and band energy based methods for monitoring the breakage
and chipping conditions of the face milling tool. They concluded
that the developed processor is highly reliable in monitoring the
cutting process and AR based model is more accurate in fault diag-
nosis than the band energy based model. Kuljanic and Sortino [21]
proposed tool wear indicators; normalised cutting force (NCF) indi-
cator and torque force distance (TFD) indicator in face milling by
analysing the characteristics of cutting force signals during opera-
tion. They concluded that TFD indicator is better than the NCF,
because in TFD indicator there is no need to determine the unworn
tool cutting force and it is enough to determine the actual mean
torque and mean cutting force. Ghosh et al. [14] correlated the dif-
ferent signals such as cutting force, vibration, spindle current and
sound signals with the tool wear during face milling process using
ANN technique. They validated the proposed method with the lab-
oratory and the industrial employments. Hsueh and Yang [15] used
the SVM technique in prediction of breakage in face milling cutter
using cutting force signals. Mhalsekar et al. [25] investigated the
vibration signals during face milling using recurrence quantifica-
tion analysis (RQA) for monitoring the flank wear of tool insert.
They concluded that RQA parameters such as entropy, percent lam-
inarity, trapping time and percent recurrence are useful features
for detecting the tool flank wear. Also control system plays a role
in condition monitoring of the cutting tool. Rubio et al. [33] devel-
oped a system consisting of expert rule based modules for cutting
parameter selection to the purpose of multi objectives such as tool
life, material removal rate, surface roughness of the workpiece and
stability in milling process. Rubio et al. [34] carried out the analysis
of milling force control using fractional order holds method.

The time domain features such as statistical and histogram fea-
tures are used in fault diagnosis of the machine component/cutting
tool in the TCM system. Many researchers have carried out studies
on TCM system using these time domain features. Sugumaran et al.
[38] used the statistical features, decision tree and proximal SVM
techniques for fault diagnosis of roller bearings. Alonso and Sal-
gado [1] used the novel techniques in TCM system for detecting
the tool wear in turning process using statistical features, ANN, sin-
gular spectrum analysis and cluster analysis. Elangovan et al. [10]
studied the performances of Naïve Bayes and Bayes net classifiers
through histogram and statistical features in turning operation
using vibration signals. They concluded that statistical features
yielded more classification accuracy than using histogram features.
Sugumaran and Ramachandran [39] employed a fuzzy based clas-
sifier to diagnose the roller bearing conditions using histogram fea-
tures and decision tree technique. Wang et al. [42] carried out the
classification of different milling tool conditions using distributed
Gaussian ARTMAP (adaptive resonance theory mapping) network
by extracting the statistical parameters in time and frequency
domains from the cutting force signals. Sakthivel et al. [36]
achieved good classification results using the combination of prin-
ciple component analysis (PCA) and decision tree in fault diagnosis
of mono block centrifugal pump through the statistical features of
vibration signals. Painuli et al. [30] investigated the different con-
ditions of a single point cutting tool using statistical features of
vibration signals. Gangadhar et al. [11] used the statistical features
and decision tree technique for classifying the tool conditions in
turning process using vibration signals. Jegadeeshwaran and Sugu-
maran [20] employed a clonal selection classification algorithm
(CSCA) for condition monitoring of a hydraulic brake system using
statistical features of vibration signals.

In the above literature, condition monitoring of machine ele-
ment/cutting tool using different diagnostic techniques have been
carried out. The features extraction methods such as statistical,
DWT, EMD techniques with the different classifiers such as ANN,
SVM, Naïve Bayes and decision tree exist in the current research
area of condition monitoring, each having their own merits and
demerits. A good diagnose tool will reduce errors of misjudgement
of tool wear. It provides a quick and right decision about the con-
dition of the cutting tool. The simplicity of histogram method and
the K-star classifier have made them both compelling to use in
fault diagnosis. K-star classifier has achieved appreciable results
in some applications such as misfire detection of an IC engine [4]
and classification of turning tool conditions [30]. In order to
explore the possibility of using K-star algorithm in fault diagnosis
of the milling tool and extensions to the range of its applicability,
the combination of K-star model and histogram method is pro-
posed. Studies on histogram features and K-star algorithm as a
classifier are not reported in the literature of the milling process.
The objective of this study is to evaluate the performance of the
classifier with histogram features extracted from the vibration sig-
nals in the face milling process which can be applicable to develop
an on-line TCM system for face milling. The objective can be sum-
marised as to obtain an effective and efficient classifier with min-
imum response time in the design of TCM system of the face
milling process. In this study, four different conditions (healthy,
flank wear, breakage and chipping) of the face milling tool are con-
sidered. An attempt is made to use histogram features extracted
from the vibration signals and the decision tree is used to select
the salient features from the set of extracted features. K-star algo-
rithm is used as a classifier in fault diagnosis of the face milling
tool. The proposed method provided a better performance in clas-
sification of the face milling tool. Section 2 presents the experi-
mental setup and procedure. Signal processing method called
histogram approach is explained in Section 3, followed by feature
reduction technique in Section 4. The classification tool adopted
in this work is presented in Section 5. Results and discussion about
the fault diagnosis of the face milling tool can be seen in Section 6,
and Section 7 concludes the paper summarising the contribution of
the proposed method.
2. Experimental setup

Experiments were carried out using universal milling machine
[3M (AU) G all feed automatic] with selected machining parame-
ters as shown in Table 1. A face milling cutter (6 Carbide inserts,
Mitsubishi make: SEMT13T3AGSN-VP15TF) of 80 mm diameter
and work-piece material of steel alloy 42CrMo4 were used in this
study. Experimental setup consists of universal milling machine
with data acquisition system as shown in Fig. 1.
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Fig. 1. Fault diagnosis of face milling tool test setup.
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Experiments were conducted with four different conditions of
the face milling tool, namely;

(a) Healthy.
(b) Flank wear.
(c) Cutting tip breakage (breakage).
(d) Chipping on rake face near cutting tip (chipping).

In the healthy condition of the tool, all six inserts are new/
unworn inserts (Fig. 2(a)), whereas in fault condition among six
inserts one is either flank wear (Fig. 2 (b)) or breakage (Fig. 2(c))
or chipping (Fig. 2(d)) and remaining five are healthy inserts and
have been considered for analysis. Vibration signals are acquired
using tri-axial IEPE accelerometer (MEAS 7132A) which is mounted
on spindle housing. Data acquisition system (National Instruments
DAQ 9234) is used to acquire the acceleration signals from the sen-
sor with sampling frequency of 25.6 kHz and these signals are then
processed by LabVIEW software.

Initially, rough machining was carried out to remove the oxide
layer and unevenness of the workpiece. The process was kept run-
ning for 2 or 3 min to stabilize the machine vibration before start-
ing data acquisition. The initial few signals were not considered to
avoid random vibration. The vibration signals were acquired for
healthy and different fault conditions of the face milling tool. Total
200 samples were taken, out of which 50 samples from each con-
dition of the tool for a time interval of 1 s at sampling frequency of
25.6 kHz. Fig. 3 shows the time-series plots in feed direction for
different conditions of the face milling tool such as healthy, flank
(a) Healthy (b) Flank wear

Fig. 2. Different conditions o
wear, breakage and chipping. The acceleration amplitude corre-
sponding to fault condition shows slightly varied as compared to
the healthy condition of the tool. It is quite difficult to diagnose
the faults with the help of time-series plots. Generally, conven-
tional data processing is computed in time or frequency domain
and is not suitable for analysing non-stationary signals. Hence,
there is a need of an artificial intelligent technique for analysing
the signals and diagnosing the faults in milling tool based on the
machine learning approach.

Machine learning is a scientific method to examine diagnosti-
cally the construction and the study of algorithms that can learn
from the data. These algorithms build a model based on inputs
and use that to make decisions or predictions, rather than follow-
ing only explicitly programmed instructions. The flow chart of
machine learning system for fault diagnosis of the face milling tool
is as shown in Fig. 4.

3. Histogram features

Observing the time domain plots pertaining to all classes of the
milling tool, one can notice that the acceleration amplitude is var-
ied from class to class. The histogram plot is a better graph to show
the range of variation in the plots. These variations are analysed by
using bins of the signal which can be used as set features. Fig. 5
shows the histogram plots of the different conditions (healthy,
flank wear, breakage and chipping) of the face milling tool.

The bin range is obtained from the vibration signals pertaining
to all conditions of the milling tool being analysed. The amplitude
(c) Breakage (d) Chipping 

f face milling tool insert.
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Fig. 3. Time-series plots with different tool conditions (a) healthy, (b) flank wear, (c) breakage and (d) chipping.
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range (maximum value to minimum value of the vibration signals)
is divided into number of sub ranges called bins which represent
the x-axis of the histogram plot. The number of data points of
the signals which lie on the corresponding bins are counted and
represent the y-axis of the histogram plot. The objective here is
to investigate the bins whose data points are same for a particular
class but different from other classes. These values may be very
small for a particular class of the milling tool but may be very large
for another class of the milling tool.

The width of the bin should be fixed such that the height of bins
is different for different class of the milling tool. It need not be true
for all width of bins, but at least a few of them should follow this
criterion so that it can be used as a feature for classifying the var-
ious conditions (classes).

4. Decision tree (J48 algorithm)

The decision tree technique is used to classify data into discrete
forms using tree structured algorithms [5]. J48 technique has
found immense applications such as medical, engineering, market
research statistics, etc. The main purpose of the decision tree is to
illustrate the structural information contained in the data. A stan-
dard tree is represented with J48 algorithm; it consists of a root
node, a number of leaves, nodes and a number of branches. Each
branch of a tree represents a chain of nodes from the root to a leaf
and each node represents an attribute (or feature). The presence of
a feature in a tree gives the information about the prominence of
the associated feature. The procedure for making the decision tree
and using the same for feature selection is explained below.

� The set of features is treated as an input to the algorithm and
the corresponding output is a decision tree.

� It consists of leaf nodes which indicate class labels and the rest
of the nodes related to the classes are being classified.

� The branches of the tree exhibit each predictive value of the
generated feature node.

� Feature vectors are classified using decision tree, starting from
the root of the tree to the node of the leaf.

� In each decision node in the tree, the most useful feature based
on the estimation criteria can be chosen. The useful features
identified based on the criteria which invoke the concepts of
information gain and entropy reduction are explained below.

4.1. Information gain and entropy reduction

Information gain is defined as an expected reduction in entropy
by partitioning the samples based on the feature. Entropy is
defined as a measure of disorder present in the set of instances.
By adding information, it reduces uncertainty. Information gain
compares the entropies of the original system and the system after
information added. The Information gain (S, A) of a feature ‘A’ to a
set of examples ‘S’ can be expressed as,



Histogram features extraction

Data acquisition system (NI DAQ-9234)

Feature selection using decision tree (J48 algorithm)

Healthy and fault face milling tool conditions

(Acceleration signals)

Diagnosis of face milling tool condition 
(healthy, flank wear, breakage and chipping) 

Training data set Testing data set

Training of K-star

Trained K-star

Is model 
trained? 

Yes

No

Fig. 4. Flow chart of fault diagnosis of the face milling tool.
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Gain ðS;AÞ ¼ Entropy ðSÞ �
X

v 2 Value ðAÞ

jSv j
jSj Entropy ðSvÞ ð1Þ

where, ‘Values (A)’ is the set of all possible values for attribute ‘A’, ‘Sv’
is the subset of ‘S’ of which feature ‘A’ has a value ‘v’ (i.e., Sv = {s 2 S|
A(s) = v}).

Note the first term in the Eq. (1) is the entropy of the original
collection ‘S’ and the second term is the expected value of the
entropy after ‘S’ is partitioned using feature ‘A’. The expected
entropy described by the second term is the direct sum of the
entropies of each subset ‘Sv‘ weighted by the fraction of samples |
Sv|/|S| that belong to ‘Sv‘. Gain (S, A) is therefore the expected reduc-
tion in entropy caused by knowing the value of a feature ‘A’.
Entropy is given by,

Entropy ðSÞ ¼
Xc

i�1

� Pilog2Pi ð2Þ

where, ‘c’ is the number of classes. ‘Pi’ is the proportion of ‘S’ belong-
ing to the class ‘i’ [11]. In this study, histogram features were
extracted from the vibration signals, total 200 samples (50 samples
per each class) were collected from the experiment and used as
input to the decision tree algorithm. The algorithm has given a set
of salient features which has provided more information about
the face milling tool conditions. The construction of the decision
tree and the explanation about features selection can be seen in
Section 6.2.
5. K-star classifier

The K-star algorithm uses entropic measure based on probabil-
ity of transforming instance into another by randomly choosing
between all possible transformations. Using entropy as appraise
of distance has numerous utility. A consistency of approach in real,
symbolic, missing value attributes makes it important. An instance
based algorithm made for symbolic attributes fails in features of
real value thus lacking in incorporated theoretical base.
Approaches successful in feature of real values are thus in an ad-
hoc fashion made to handle symbolic attributes. Handling of miss-
ing values by classifiers poses similar problems. Usually missing
values are treated as a separate value, thought of as maximally dif-
ferent, substituted for average value, and otherwise simply
ignored. In the present study a tool called WEKA (Waikato Environ-
ment for Knowledge Analysis) was used for classifying the tool
condition. Entropy based classifier is a solution for these issues.
The detailed explanation about K-star classifier can be referred
by Cleary and Trigg [8].

For each class, a set of selected histogram features is used as
input to the K-star model. The results of K-star classifier are
mapped based on 10-fold cross validation. The detailed classifica-
tion of the face milling tool based on selected features is explained
in Section 6.3.
6. Results and discussion

This section deals with the fault diagnosis of the face milling
tool using histogram features, decision tree and K-star classifier
through the vibration signals. Total 200 samples, out of which 50
samples pertaining to all classes (condition of the tool) are consid-
ered for the analysis.
6.1. Histogram features

Following the criteria for extracting the histogram features as
mentioned in Section 3, the bin width and bin range are selected
based on the maximum and minimum values of the signals per-
taining to all conditions and each bin is treated as a feature.
Twenty different sets of histogram features were extracted from
the vibration signals. Each set of features were treated as an input
to the classifier and the results from the classifier were analysed.
Fig. 6 shows the classification accuracies of K-star model for differ-
ent sets of histogram features.

As seen from the Fig. 6, K-star model yielded a maximum clas-
sification accuracy of about 96.5% for both the thirty set and the
forty set of histogram features. After this, the classification accu-
racy of the model has been attained in the range between 94%
and 96% for different sets of features (for 50, 60, . . ., 100 features).
Table 2 depicts the set of thirty histogram features (f1–f30) and out
of 200 samples, only two samples pertaining to each condition of
the milling tool are shown in the table. In this table, the features
f1, f2, f3, f4, f27, f28, f29 and f30 are set to zero value for all conditions
of the face milling tool.

Some of the extracted feature values are having significant dif-
ferences for different conditions of the milling tool. Selecting those
features is an important task for effective classification, doing it
manually demands more expertise; however, the effectiveness of
the features is not guaranteed. By using a suitable algorithm, best
features are selected and also can yield better classification accu-
racy. The decision tree technique is a popular method for feature
selection in the area of fault diagnosis.
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Fig. 5. Histogram plots for different conditions of the face milling tool.
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6.2. Feature selection using decision tree

All extracted features were treated as an input to the decision
tree for selecting the best features which helps to improve the clas-
sification accuracy of the diagnostic tool. The output of the decision
tree is formed as a tree like structure as shown in Fig. 7. The decision
tree has been constructed for the set of thirty histogram features in
such a way that, when the feature f21 is greater than 69 and f23 is
greater than 13, it is classified as ‘healthy’ face milling condition.
When the feature f21 is greater than 69 and f23 is less than or equal
to 13, then it is classified as ‘flankwear’ condition, and the remaining
classes (breakage and chipping) have been organised in the tree
when the feature f21 attains less than or equal to 69. The features
f6, f8, f9, f17, f21, f22 and f23 are selected as significant features from
the tree and these features are used as an input to the classifier.

6.3. Classification using K-star

In this study, K-star algorithm was used as a classifier to distin-
guish the face milling tool condition. 50 samples were considered



Table 2
Histogram features.

Face milling
tool
condition

Sample
No.

Histogram features

f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 f26

Healthy 1 2 4 15 42 120 323 833 1734 2915 4126 4820 4159 2881 1775 990 490 236 92 25 14 4 0
2 1 5 25 47 148 393 889 1593 2792 4081 4956 4174 2829 1731 977 508 263 120 42 16 7 3

Flank wear 1 2 2 11 33 78 237 693 1423 2863 4383 5146 4566 3047 1753 819 335 143 51 13 2 0 0
2 0 1 8 22 67 246 629 1482 2780 4436 5215 4688 3009 1686 824 337 124 33 12 1 0 0

Breakage 1 0 0 1 10 37 114 357 1011 2414 4755 6727 5404 2842 1260 474 142 44 6 2 0 0 0
2 0 1 4 10 32 145 394 988 2446 4898 6469 5379 2795 1259 531 178 55 15 1 0 0 0

Chipping 1 0 0 1 4 19 77 349 1047 2389 4849 6613 5422 2984 1236 445 139 18 7 1 0 0 0
2 0 0 0 2 19 94 317 1032 2450 4856 6609 5416 2929 1260 470 123 19 4 0 0 0 0

Fig. 7. Decision tree for a set of thirty histogram features.

C.K. Madhusudana et al. / Engineering Science and Technology, an International Journal 19 (2016) 1543–1551 1549
for each condition of the tool (for 4 classes 200 samples). This data
were divided into two; training data set and testing data set. 65%
(33 samples per each class) of the samples were used as training
set and remaining 35% (17 samples per each class) of the samples
were used for testing the model. K-star model has provided 100%
classification efficiency for training dataset, whereas 92.7% for test-
ing dataset. Indira et al. [19,18] suggested a minimum number of
samples (less than ten per each class) required to distinguish the
fault conditions in the area of machine learning approach. How-
ever, 50 samples per each class were used for classifying the face
milling tool conditions in order to get a statistically stable
classification accuracy. The K-star model has mapped the classifi-
cation of the milling tool based on 10-fold cross validation test
mode. The output of the classifier is the confusion matrix which
illustrates the classification of different conditions of the face
milling tool. The confusion matrix for the given set of histogram
features (30 features) of vibration signals is as shown in Table 3.

As seen from the confusion matrix, the diagonal elements rep-
resent the correctly classified instances (samples), whereas non
diagonal elements represent the misclassified instances. For
Table 3
K-star confusion matrix.

a b c d Class

50 0 0 0 a-Healthy
0 50 0 0 b-Flank wear
0 0 43 7 c-Breakage
0 0 0 50 d-Chipping
‘healthy’ condition of the milling tool, all 50 instances were cor-
rectly classified as ‘healthy’. While in case of ‘breakage’ condition,
43 out of 50 instances were correctly classified as ‘breakage’,
whereas 7 instances of ‘breakage’ were misclassified as ‘chipping’
condition and so on. The detailed accuracy in classification is
explained with the Table 4 below.

Table 4 shows the detailed accuracy of the K-star model by
class, where the true positive rate (TP rate) and false positive rate
(FP rate) indicate the significance in judging the quality of the
model; for good classification TP rate implies ‘1’, while the FP rate
implies ‘0’. For the given vibration signals, TP rate of healthy con-
dition is 1 which indicates all 50 instances were correctly classified
as healthy. In case of breakage condition, TP rate is about 0.86
which indicates 43 out of 50 instances were correctly classified
as breakage, whereas 7 instances of breakage were misclassified
as chipping which is represented by a FP rate of 0.047 at chipping
condition and so on. Here, out of 200 instances, 7 instances were
misclassified by a K-star algorithm with the overall classification
accuracy 96.5% for the set of thirty histogram features. Ultimately,
one can notice that 100% (50 instances) of healthy instances were
Table 4
Detailed accuracy classification of K-star.

TP rate FP rate Precision Recall F-measure ROC area Class

1 0 1 1 1 1 Healthy
1 0 1 1 1 1 Flank wear
0.86 0 1 0.86 0.925 0.992 Breakage
1 0.047 0.877 1 0.935 0.993 Chipping
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correctly classified, whereas none of the instances of fault condi-
tions were represented as healthy condition. This can be accepted
as a reasonably good performance of the classifier. Also from the
observation in Fig. 6, classification accuracies for different sets of
features (50, 60, . . ., 100 features) by K-star attain the range
between 94% and 96%, which can be considered in the area of fault
diagnosis. Hence, the K-star technique can be suggested for fault
diagnosis of the face milling tool.
7. Conclusion

This article has presented the vibration based fault diagnosis of
the face milling tool using machine learning techniques. The his-
togram features were extracted from the vibration signals under
healthy and different fault conditions (flank wear, breakage and
chipping) of the milling tool. Significant features were selected
by the decision tree technique and classification of the tool has
been carried out using K-star algorithm. Experimental investiga-
tion has proved that the K-star model is able to achieve the classi-
fication accuracy in the range from 94% to 96% for the given
experimental condition and workpiece of steel alloy 42CrMo4in
the applications of the face milling process. In case of signal pro-
cessing using histogram technique, it has served the purpose to
capture different vibration patterns. Also the K-star classifier is
able to assess the tool condition with a minimum response time
(about less than 0.01 s), which is very much essential for auto-
mated manufacturing system. Hence the K-star algorithm is an
effective technique and can be recommended in the applications
of TCM system of the face milling process with the histogram fea-
tures extracted from the acquired vibration signals.
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