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a  b  s  t  r  a  c  t

Manganese  (Mn)  is  an  essential  element  for biological  systems;  however  occupational  exposure  to high
levels of  this  metal  may  lead to  neurodegenerative  disorders,  resembling  Parkinson’s  disease  (PD).  While
its mechanisms  of  neurotoxicity  have  yet  to  be  fully  understood,  oxidative  stress  plays  a critical  role.
Thus,  the  main  goal  of  this  study  was  to investigate  the  efficacy  of  aqueous  extract  of  Melissa  officinalis
in  attenuating  Mn-induced  brain  oxidative  stress  in  mice.  Sixteen  male  mice  were  randomly  divided
into  two  groups  and  treated  for  3  months:  the  first  group  consumed  tap water  (control  group)  and  the
second  group  was  treated  with  Mn  (50  mg/kg/day  for  habituation  during  the  first  15  days  followed  by
100  mg/kg/day  for additional  75  days)  in  the  drinking  water.  After  3 months  both  groups  were sub  divided
(n =  4  per  group)  and  treated  for additional  3  months  with  Mn  and/or  M.  officinalis  in the  drinking  water.
The  first  group  (control)  was  treated  with  water  and  served  as  control;  the  second  group  (M.  officinalis)
was  treated  with  M.  officinalis  (100  mg/kg/day);  the  third  group  was  treated  with  Mn  (100  mg/kg/day);
the  fourth  group  (Mn  + M. officinalis)  was  treated  with  both  Mn  and  M.  officinalis  (100  mg/kg/day  each).
Mn-treated  mice  showed  a  significant  increase  in  thiobarbituric  acid  reactive  species  (TBARS)  levels  (a
marker of oxidative  stress)  in  both  the hippocampus  and  striatum.  These  changes  were  accompanied  by

a decrease  in  total  thiol  content  in  the  hippocampus  and  a significant  increase  in  antioxidant  enzyme
activity  (superoxide  dismutase  and  catalase)  in  the  hippocampus,  striatum,  cortex  and  cerebellum.  Co-
treatment  with  M. officinalis  aqueous  extract  in Mn-treated  mice  significantly  inhibited  the  antioxidant
enzyme  activities  and  attenuated  the oxidative  damage  (TBARS  and  decreased  total  thiol  levels).  These
results  establish  that  M.  officinalis  aqueous  extract  possesses  potent  antioxidative  properties,  validating
its  efficacy  in  attenuating  Mn-induced  oxidative  stress  in  the  mouse  brain.
. Introduction

Manganese (Mn) is an abundant and essential metal acquired
aturally through dietary intake [5].  Usually humans are exposed
o low levels of Mn  in air, food and water, which are kept at optimal
oncentration by both gastrointestinal absorption and efficient bil-
ary excretion [7].  However, overexposure to Mn  can also occur in
ccupational environments, and cases of Mn  neurotoxicity (man-

anism) have been reported particularly in miners, smelters and
orkers in the alloy industry where exposures occur predomi-
antly via the inhalation of Mn  fumes or Mn-containing dusts [6].
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The gasoline additive, methylcyclopentadyenylmanganese tricar-
bonyl (MMT), is another source of airborne Mn  [32].

This essential trace element is required for normal growth,
development, cellular homeostasis and many ubiquitous enzy-
matic reactions involved in neurotransmitter synthesis and
metabolism [5,44].  However, at high doses it has been considered
a neurotoxic metal [28,41]. Chronic exposure to Mn  leads to exces-
sive Mn  accumulation in the nervous system [9,22],  predominantly
in the basal ganglia, namely in the globus pallidus, striatum and
substantia nigra pars reticulata [16,48]. As a result, Mn  induces
a decrease in dopamine (DA) levels and cell death, a syndrome
commonly referred to as manganism [10], resembling idiopathic

Open access under the Elsevier OA license.
Parkinson’s disease (PD).
The cellular and molecular mechanisms of Mn-induced neu-

rotoxicity have yet to be fully understood. Mn exerts its cellular
toxicity via several mechanisms, including direct or an indirect
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ormation of reactive oxygen species (ROS) [8,36],  oxidation of
iological molecules [4] and the disruption of Ca2+ and iron (Fe)
omeostasis [25,66]. An imbalance between ROS generation and
ntioxidant defense mechanisms with subsequent oxidative stress
26,27] may  initiate apoptosis and/or necrosis [40]. Thus, oxida-
ive stress is a putative mechanism by which Mn  induces neuronal
amage [20], and its mediation of neuronal damage is further
upported by the protective effect of N-acetylcysteine (NAC), glu-
athione (GSH) and vitamin C in mitochondrial preparations against

n-induced ROS production [29,65]. Accordingly, it is reasonable to
ostulate that natural biomolecules possessing antioxidant prop-
rties may  be effective in attenuating Mn-induced oxidative stress.

Melissa officinalis belongs to the Laminaceae family, being a
erennial herb. Preparations derived from the aerial part of M.
fficinalis are often used in folk medicine for the treatment of
evers and colds, indigestion associated with nervous tension,
yperthyroidism, depression, mild insomnia, epilepsy, headaches,
oothaches, flatulence, colic, nausea, nervousness, anaemia, vertigo,
yncope, malaise, asthma, bronchitis, amenorrhea, cardiac fail-
re, arrhythmias, depression, psychosis, hysteria, ulcers, wounds,
mong others [14,52]. In addition, recent data from literature
ave supported a protective role for M.  officinalis intake against
lzheimer disease [53].

M.  officinalis extracts possess antioxidant [14,42], sedative [33],
nti-inflammatory, hepatoprotective, digestive [54,56],  antiviral
14,3], antilipidaemic [12] and anxiolytic [53] properties. In addi-
ion, M.  officinalis extracts show efficacy in ameliorating some
ymptoms of Alzheimer’s disease (AD) [2].

Phytochemical studies carried out in M.  officinalis have
emonstrated the presence of numerous constituents, including
olyphenolic compounds, essential oils, monotherpenoid alde-
ides, sesquiterpenes, flavonoids and tannins [14,52,33,19].  All of
hese may  be responsible for the therapeutic efficacy of M. officinalis
xtracts and the prevention of the effects described above.

Considering the major role of oxidative stress in Mn-induced
eurotoxicity and the presence of a number of compounds with
ntioxidant properties in M.  officinalis plant extracts, we hypothe-
ized that treatment with the aqueous extract of this plant would
esult in protective effect against Mn-induced neurotoxicity in a
ong-term mouse intoxication model. Additionally, we  chose this
erb over other potential botanical therapies or over bioactive com-
ounds (e.g., catechins, flavonols, etc.) found in food due to two
easons: (a) recently we have shown a more pronounced antiox-
dant effect of M.  officinalis against three different pro-oxidants,
nder in vitro conditions, compared to Matricaria recutita and Cym-
opogon citratus [42]; (b) the antioxidant effect of M. officinais, in
ivo, are very scarce in the literature. Considering both, we  decide
o test if the well reported in vitro antioxidant properties of M.
fficinalis, could also be found under in vivo conditions, using a
n-chronically exposed mice model.

. Materials and methods

.1. Chemicals

Manganese chloride (MnCl2), 2-thiobarbituric acid (TBA), sodium dodecyl
ulfate (SDS), epinephrine and 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB) were pur-
hased from Sigma, St. Louis, MI,  USA. All the other chemicals were commercial
roducts of the highest purity grade available.

.2. Animals
Young male albino mice (20–25 g) from our own breeding colony were used in
his  study. The animals were housed in plastic cages with water and food (Guabi-RS,
rasil) ad libitum, at 22–23 ◦C, humidity approximating 56%, and 12/12 (h) light/dark
ycle. The animals were used according to guidelines of the Committee on Care and
se of Experimental Animal Resources, the Federal University of Santa Maria, Brazil.
h Bulletin 87 (2012) 74– 79 75

2.3. Preparation of the M.  officinalis aqueous extract

The plants were obtained from commercial sources (Madrugada Alimentos Ltda,
Venâncio Aires, RS, Brazil). Aqueous extracts were obtained by maceration of 500 mg
of  dried plant material (aerial parts) placed in 100 mL hot water (100 ◦C; for 10 min).
The extracted solution was filtered through filter paper and its concentration was
adjusted with distilled water. In other words, the initial 100 mL  of hot water diluted
to  1.667 L, resulting in 30 mg  of plant in 100 mL of water.

2.4. Animals’ treatments

Sixteen animals were divided into two groups with 8 animals each. Group 1
was  treated daily for three months with tap drinking water; group 2 was treated
for  the first 15 days with 50 mg/kg of MnCl2 dissolved in the drinking water (15 mg
of  MnCl2 in 100 mL of water) followed by 100 mg/kg of MnCl2 (30 mg  of MnCl2 in
100  mL  of water) for the next 75 days. Water consumption was monitored every 2
days in order to correct the Mn dosage, when necessary. Body weight gain was mon-
itored every 2 weeks. During first 90 days the animals were weekly accompanied for
the  sings of Mn intoxication in the open field apparatus. We  clearly noticed that Mn
exposed mice presented a decrease in the locomotor and exploratory activity, com-
pared to control mice (data not shown); because after four experimental sections
the animals became adapted to apparatus and no significant differences were seen
among groups. After three months, both groups (1 and 2) were randomly divided
into four groups containing 4 animals each. Subsequent treatments were as follows:

(1) Control (only water).
(2) M. officinalis control (treated with M.  officinalis aqueous extract 100 mg/kg/day

in  the drinking water for additional 90 days).
(3) Mn (MnCl2 in drinking water for additional 90 days).
(4) Mn + M. officinalis (MnCl2 + M.  officinalis 100 mg/kg/day in drinking for additional

90  days).

The administered doses of Mn and M.  officinalis aqueous extract were based
on  previous studies ([9,15], respectively). Additionally, Mn-chelating properties of
the  M. officinalis aqueous extract was investigate as previously described [55] after
mixture both (Mn  and M.  officinalis extract) in different proportions and time of
co-incubation. In fact, we found that M.  officinalis aqueous extract does not interact
with Mn  under our experimental conditions (data not shown), suggesting that M.
officinalis extract was not able to decrease the intestinal absorption of Mn  via direct
chelating effects.

2.5. Tissue preparation

At the end of the treatments, mice were euthanized, the brains were removed
and the cortex, cerebellum, hippocampus and striatum were dissected out and
homogenized (1:10) in 10 mM Tris-buffer (pH 7.4) followed by centrifugation
(10 min, 2000 × g, 4 ◦C) to obtain a low speed supernatant (S1) for the biochemical
analysis.

2.6. Thiobarbituric acid reactive substances production (TBARS)

Lipid peroxidation in the S1 of the cortex, cerebellum, hippocampus and stria-
tum  were analyzed by the thiobarbituric reactive substances (TBARS) method [39].
TBARS were determined spectrophotometrically at 532 nm after 1 h of incubation
of 200 �L of S1 from the various brain areas with SDS 8.1%, acetic acid/HCl buffer
and  thiobarbituric acid 0.6% at 95 ◦C.

2.7. Total thiol determination

Although the specific molecular targets by which Mn-induces oxidative stress
are not known, it has been reported that Mn  can indirectly interact with low molec-
ular weight thiols via Mn-induced ROS generation, oxidizing them to disulfides [18].
Consequently, total thiol content in cortex, cerebellum, hippocampus and striatum
were  determined in S1 fraction of the samples with the Ellman’s reagent (DTNB),
measured spectrophotometrically at 412 nm, following standard methodology [21].

2.8. Superoxide dismutase (SOD) activity

SOD was  determined in S1 fraction of cortex, cerebellum, hippocampus and
striatum following the method by Misra and Fridovich [38]. The adrenochrome pro-
duction was  measured spectrophotometrically at 480 nm. One  unit of the enzyme
was  defined as the amount of enzyme required to inhibit the rate of adrenaline
auto-oxidation by 50%.

2.9. Catalase (CAT) activity
CAT activity in S1 of cortex, cerebellum, hippocampus and striatum was ana-
lyzed following the method by Aebi [1],  measuring the rate of disappearance of
H2O2 spectrophotometrically at 240 nm. One unit of the enzyme was  considered as
the amount which decomposes 1 �mol  H2O2/min at pH 7.
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Fig. 1. Effects of Mn treatment (100 mg/kg/day) and/or co-treatment with M. offici-
nallis (100 mg/kg/day) on TBARS levels in mouse hippocampus (A) and striatum (B).
Data are expressed as nmols of malondialdehyde (MDA)/g of tissue. Each bar rep-
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Fig. 2. Effects of the Mn exposure (100 mg/kg/day) and/or co-treatment with M.
officinallis (100 mg/kg/day) on total thiol content in mouse hippocampus. Data are
expressed as nmols of –SH/g of tissue. Each bar represents mean ± S.E.M. (n = 4). (a)
Statistical difference from control group by two-way ANOVA, following by Duncan
post hoc test (p < 0.05) when appropriate.

Table 2
Total thiol content in striatum, cortex, and cerebellum in Mn-treated mice: protec-
tion with M. officinalis treatment.

Striatum Cortex Cerebellum

Control 2.76 ± 0.09 2.65 ± 0.12 2.43 ± 0.11
M.  officinalis 2.67 ± 0.10 2.67 ± 0.06 2.57 ± 0.29
Mn 2.81 ±  0.11 2.41 ± 0.19 2.48 ± 0.15
Mn  + M. officinalis 2.78 ± 0.14 2.39 ± 0.31 2.47 ± 0.23

Moreover, statistical analysis indicated a significant (p < 0.05) inter-
esents mean ± S.E.M. (n = 4). (a) Statistical difference from the control group; (b)
tatistical difference from the Mn-treated group by two-way ANOVA, followed by
uncan post hoc test (p < 0.05) when appropriate.

.10. Protein determination

Aliquots from the homogenates were separated for protein measurements that
ere assessed according to Bradford [13]. Results for each of the biochemical assays
ere corrected for protein content in the samples.

.11. Statistical analysis

Biochemical data were analyzed by two-way ANOVA followed by Duncan’s mul-
iple range test when appropriate, and the values were expressed as mean ± S.E.M.
tatistical software package for Windows version 8.0 was  used and p < 0.05 was
onsidered as statistically significant for all comparisons made.

. Results

Mn treatment caused a significant increase in TBARS levels in the
ippocampus and striatum (p < 0.05) (Fig. 1A and B, respectively),
ut not in the cortex and cerebellum (Table 1). Moreover, statis-
ical analysis indicated a significant (p < 0.05) interaction between

n and M.  officinalis, either in hippocampus and striatum, but not
n the cortex and cerebellum. Co-treatment with M. officinalis sig-
ificantly (p < 0.05) attenuated the increase in Mn-induced TBARS
evels in the hippocampus and striatum to levels indistinguishable
rom controls (Fig. 1A and B). Treatment with M. officinalis alone
ad no effect on brain TBARS levels (Fig. 1A and B) in any of the
rain areas.

able 1
BARS levels in cortex and cerebellum in Mn-treated mice: protection with M. offic-

nalis treatment.

Cortex Cerebellum

Control 277.89 ± 39.59 320.13 ± 42.27
M.  officinalis 310.54 ± 45.40 369.05 ± 18.66
Mn  276.31 ± 21.11 353.76 ± 46.48
Mn  + M. officinalis 295.60 ± 56.02 323.78 ± 51.74

ata are expressed as mean ± S.E.M. (n = 4). Values are expressed as nmol MDA/g.
ata were analyzed by two-way ANOVA following by Duncan post hoc test when
ppropriate.
Data are expressed as mean ± S.E.M. (n = 4). Values are expressed as nmol –SH/g.
Data were analyzed by two-way ANOVA following by Duncan post hoc test when
appropriate.

Consistent with increased ROS generation, Mn  treatment caused
a significant (p < 0.05) decrease in total thiol content, but this effect
was  inherent only to the hippocampus (Fig. 2; Table 2). The Mn-
induced decrease in hippocampal thiol content was completely
restored by M. officinalis treatment (Fig. 2) to levels indistinguish-
able from controls. However, statistical analysis did not indicated
significant interaction between Mn  and M. officinalis in hippocam-
pus. Treatment with M.  officinalis alone had no discernable effect
on thiol content in any of the investigated brain areas (see Fig. 2
and Table 2).

SOD activity was  significantly (p < 0.05) increased by Mn  treat-
ment in all the investigated structures (hippocampus, striatum,
cortex and cerebellum) (see Fig. 3A, B and Table 3). Moreover, statis-
tical analysis indicated a significant (p < 0.05) interaction between
Mn and M. officinalis in cortex. Treatment with M.  officinalis extract
completely restored SOD activity to control levels in the hippocam-
pus (Fig. 3A), but only partially in the striatum (Fig. 3B), cortex
and cerebellum (Table 3), all three remaining statistically (p < 0.05)
significantly different from the control group.

CAT activity was significantly (p < 0.05) increased by Mn  treat-
ment in all the studied brain areas (Fig. 4A, B and Table 4).
action between Mn  and M.  officinalis only in cortex. However, M.
officinalis treatment did not attenuate CAT activity in the hippocam-
pus (Fig. 4A) and only partially restored it in the striatum (Fig. 4B)

Table 3
SOD activity (UI/min) in cortex and cerebellum of Mn-treated mice: Protection with
M.  officinalis treatment.

Cortex Cerebellum

Control 5.10 ± 0.93 6.44 ± 1.23
M.  officinalis 7.30 ± 2.20 4.50 ± 1.65
Mn  27.31 ± 2.43a 21.26 ± 2.93a

Mn + M. officinalis 12.33 ± 1.06a,b 11.20 ± 1.77a,b

Data are expressed as mean ± S.E.M. (n = 3–4).
a Different of control group.
b Different of Mn  group by two-way ANOVA following by Duncan post hoc test

when appropriate.
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Fig. 3. Effects of the Mn exposure (100 mg/kg/day) and/or co-treatment with M.
officinallis (100 mg/kg/day) on SOD activity in mouse hippocampus (A) and stria-
tum (B). Data are expressed as UI/min. Each bar represents mean ± S.E.M. (n = 4).
(a)  Statistical difference from control group; (b) statistical difference from Mn-
treated group by two-way ANOVA, following by Duncan post hoc test (p < 0.05) when
a
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Table 4
CAT activity (UI/min) in cortex and cerebellum of Mn-treated mice: protection with
M. officinalis treatment.

Cortex Cerebellum

Control 6.60 ± 0.38 5.11 ± 0.99
M.  officinalis 8.33 ± 0.77 6.03 ± 0.61
Mn  13.00 ± 1.04a 17.36 ± 6.14a

Mn  + M. officinalis 10.42 ± 1.35a,b 7.92 ± 1.11b

Data are expressed as mean ± S.E.M. (n = 3–4).
a

ppropriate.

nd cortex (Table 4), remaining statistically (p < 0.05) significantly
ifferent from the control group. However, in the cerebellum, M.
fficinalis treatment completely restored CAT activity in Mn-treated

ice (Table 4) to levels indistinguishable from control group.

ig. 4. Effects of the Mn exposure (100 mg/kg/day) and/or co-treatment with M.
fficinallis (100 mg/kg/day) on CAT activity in mouse hippocampus (A) and stria-
um (B). Data are expressed as UI/min. Each bar represents mean ± S.E.M. (n = 4).
a)  Statistical difference from control group; (b) statistical difference from Mn-
reated group by two-way ANOVA, following by Duncan post hoc test (p < 0.05) when
ppropriate.
Different of control group.
b Different of Mn  group by two-way ANOVA following by Duncan post hoc test

when appropriate.

4. Discussion

Human exposure to Mn  is of clinical interest because of the neu-
rological symptoms that it can cause after exposure in occupational
and/or environmental settings. In fact, a recent study suggests that
high levels of Mn  in drinking water (>300 �g/L) are associated with
reduced intellectual function [62], although additional exposure
(food and air containing Mn)  could have pushed the total daily
dose above that value. The syndrome caused by Mn  toxicity shares
similar characteristics to PD, and accordingly it has been postu-
lated that Mn  exposure is a risk factor for this disease [47]. In
this context, recent studies have indicated that oxidative stress
plays a key role in Mn-induced neurotoxicity [9,8,35,37,50].  In
fact, oxidative stress has been implicated in the pathophysiology
of numerous neurodegenerative disorders [11,61]. In the present
study, mice treated with Mn  in the drinking water (mimicking
an environmental chronic exposure to high Mn  levels) showed
increased lipid peroxidation (as measured by a significant increase
in TBARS levels) both in the hippocampus and striatum (Fig. 1A
and B), a decrease in total thiol content only in the hippocampus
(Fig. 2) and an increase in the antioxidant enzymes (SOD and CAT)
in the hippocampus, striatum, cortex and cerebellum (Figs. 3 and 4,
Tables 3 and 4). Remarkably, the majority of the Mn-induced effects
on the oxidative stress parameters were partially or fully reversed
by co-treatment with the M. officinalis aqueous extract. However,
Mn content in the brain regions was  not determined; therefore it
is unknown whether the reported effects are due to M.  officinalis
preventing Mn  accumulation or directly effecting enzyme activity
in affected brain regions.

The effects of Mn  were brain area-dependent. For example, the
effect on TBARS was  restricted to the hippocampus (Fig. 1A) and
striatum (Fig. 1B) with a maximal increase of 1.4–1.8-fold. For the
total thiol content, the Mn-induced decrease was relatively small
(about 30%) and it was restricted to the hippocampus (Fig. 2).
In contrast, CAT and SOD activities were increased 1.5–5.0 times
after Mn  treatment, dependent on the brain area. The Mn-induced
increase in SOD and CAT activity was  more pronounced in the cor-
tex and cerebellum (Tables 2 and 3) compared to hippocampus and
striatum (Figs. 3 and 4). Collectively, these results indicate a hetero-
geneous effect of Mn,  which is dependent upon both the molecular
endpoint and the analyzed brain structure. In fact, Mn  did not lead
to a ubiquitous effect in all brain regions, but rather, selective oxida-
tive stress in those areas known to be predominately sensitive to
this metal [7,6,9,43].

In sharp contrast, the effect of M.  officinalis extract was generally
homogenous in all brain areas and for all the analyzed molecular
endpoints. Indeed, we demonstrate for the first time, an in vivo
antioxidant efficacy for the M.  officinalis aqueous extract against
Mn-induced oxidative stress in the mouse brain. Co-treatment with

the plant extract in the drinking water at 100 mg/kg/day com-
pletely attenuated the Mn-induced lipid peroxidation (TBARS) in
the hippocampus (Fig. 1A) and striatum (Fig. 1B) as well as the
increase in total thiol content in the hippocampus (Fig. 2). These
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ndings are likely due to the antioxidant activity of M.  officinalis
queous extract, which has only been reported in vitro prior to
he present study [14,42]. Thus, taking into account the literature
ata, we posit that the plant’s constituents (mainly flavonoids) may
e responsible for the protective effects of M.  officinalis aqueous
xtract [49,59,63].

In agreement with our studies, earlier reports in human post-
ortem brains, non-human primates and rodents corroborate
n-induced neuronal damage is most prominent in the hippocam-

us and striatum [6,43,17]. We  suggest that the striatum and
ippocampus are more sensitive to Mn  due to a higher content of
ivalent metals transporters type-1 (DMT-1) in these areas com-
ared to others [7,9]. Further evidence of Mn  accumulation in the
ippocampus is provided by previous data, showing that 3 days
ost injection, Mn  was localized to the dentate gyrus and CA3 of the
ippocampus [6,58].  Additionally, the striatum contains higher DA
ontent than other brain areas, which in the presence of Mn(II) may
ead to increased ROS generation [23,45] contributing to oxidative
tress related changes. We  hypothesize that the Mn-induced oxida-
ive changes (increase in TBARS and antioxidant enzymes SOD and
AT and the decrease in total thiol content) in the hippocampus and
triatum reported here must be, at least in part, due to the prefer-
ntial accumulation of Mn  in these brain areas, as compared to the
erebellum and cortex. This conclusion however, does not account
or the fact that activities of SOD were higher induced in cortex
nd cerebellum compared to hippocampus and striatum after Mn
xposure. Taking this into account, we speculate that some kind of
eficiency of SOD activation mechanisms following Mn  exposure

n cerebellum and cortex may  play an important role in selective
ensitivity of these two regions to Mn-induced oxidative stress.

Additionally to DMT-1, we must consider the differential
xpression of ferroportin-1 under Mn  exposure. In fact, ferroportin-

 is an iron exporter that shows altered surface localization
ollowing Mn  exposure, making it a potential candidate as a puta-
ive Mn  exporter [60]. In view of that, it was recently shown that

ice exposed to Mn  showed an increase in ferroportin-1 levels in
oth cerebellum and cortex [64], contributing to reduced cytotox-

city associated to the exposure to this metal. In fact, one could
peculate that under our experimental conditions the increase in
he levels of ferroportin-1 levels in both cerebellum and cortex
ssociated with lower content of DMT-1 could be responsible for
he lower sensitivity of both structures reported here; whereas
ower levels of ferroportin-1 and higher content of DMT-1 in stria-
um and hippocampus could contribute to the higher sensitivity
bserved in both structures. However, whether such differences
relatively low ferroportin-1 and relatively high DMT-1 expression
evels) account for the propensity of hippocampal and striatal areas
o accumulate large amounts of Mn  remains to be established.

Reduced cysteinyl residues from proteins may  be a molecu-
ar target for Mn  toxicity, which might cause the loss of enzyme
atalytic activities [46]. Thus, considering that GSH is the major
aturally occurring nonenzymatic antioxidant in the brain [24],
he potential indirect oxidation of –SH groups by Mn-induced ROS

ay  cause depletion of –SH groups, contributing to a decrease in
he non-enzymatic antioxidant defenses in hippocampus of treated

ice reported in the present investigation (Fig. 2). It is therefore
resumed that the decrease in total thiol levels reported here were
ue to GSH, that could be oxidized due either to the excess of free
adical formation or by regenerating the nitrosyl groups [57,51]. In
act, GSH was shown to provide cell protection, generating GSSG
nd protein S-glutathionylated adducts (–SSG) [34]. However it
oes not address the specificity of the Mn-induced effect. Thus,

e posit that Mn-induced ROS generation may  be responsible for

he decrease in the hippocampal thiols (Fig. 2). However, unex-
ectedly the total striatal thiol content was not changed after Mn
reatment (Table 2), suggesting that Mn-induced thiol oxidation is a

[

[
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complex process that could not be easily explained by solely taking
into account the Mn-induced ROS generation.

As mentioned above, Mn  modulated the activity of the antiox-
idant enzymes by increasing SOD and CAT in all the studied brain
areas (Figs. 3 and 4, Tables 3 and 4). Notably, these enzymes rep-
resent the first barrier against reactive species and are essential to
cell survival [26,27].  We  speculate that the observed increase in
the antioxidant enzymes (SOD and CAT) may be due to an adap-
tive response, which mitigates the Mn-induced oxidative damage
[30]. Thus, after prolonged exposure, Mn  may  lead to an adaptive
mechanism, as evidenced by increased activity of these enzymes
[31]. M. officinalis aqueous extract partially restored the activities of
SOD and CAT in all studied brain areas, likely due to its antioxidant
effects.

5. Conclusions

In summary, our results clearly demonstrated that antioxi-
dant properties of M. officnalis may  be potentially neuroprotective
against Mn-induced neurotoxicity, especially in the hippocampus
and striatum. However, further studies are required to identify the
active constituents involved in the antioxidant and neuroprotec-
tive activity of this plant. In addition, studies on uptake of the active
ingredients of M. officinalis must be performed to better understand
its potential utility as a broad spectrum therapeutic antioxidant in
manganism as well as other neurodegenerative disorders.

Acknowledgements

This work was supported by grants from UNIPAMPA (Univer-
sidade Federal do Pampa), UFSM (Universidade Federal de Santa
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