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ABSTRACT 

Motivated by explicit expressions appearing in the work of A. Rhodius (1993) for 

n X n stochastic matrices P, it is shown that ordinary matrix norms on Iw”-’ for 

(n - 11 X (n - 1) matrices of the form APB can be used to generate results of this 

kind. 

1. ERGODICITY COEFFICIENTS FOR STOCHASTIC MATRICES 

Suppose 11. (1 is any vector norm on row vectors constituting OX”, and S, 
(n > 2) the set of all n X n stochastic matrices. The definition of an 
ergodicity coefficient r for P = { pij} with respect to the norm ]I * I), given in 
Seneta (1979) [see also Seneta (1981)], is 

r(P) = sup(]lx*P]I:xr E W”, llXT II = I}, (1.1) 

where 

W” = (XT:2 E KY”, XTln = 0). 

Such coefficients have the following properties: 

(A) &‘,P,) 6 T(P~)T(P~), PIPz E S,; 
(B) T(P) = 0 iff rank P = 1 (i.e. iff P = I?, v 2 0, v*l = 1); 
(C) I A I < d P) for any eigenvahie h of P, h # 1. 
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(A) and (B) follow easily from the definition. Since II* 11 is a norm on [w” 
rather than C”, the validity of (C) is less obvious. It has been proved in 
general by Rothblum and Tan (1985, Theorem 3.1, purportedly only for 
irreducible P, but in fact for any P E S,), although its validity in special cases 
of 11. II (the 1, norms where p = 1, m> was known earlier. 

Properties (A) and (B) are useful in consideration of ergodicity problems 
of inhomogeneous Markov chains in that the scalar submultiplicative func- 
tional T provides a measure of divergence from equal row sums for a 
stochastic P. Property (C) is useful for homogeneous Markov chains for 
which P is a primitive matrix provided r(P) < 1, since for such a matrix all 
eigenvalues, except one unit eigenvalue, have moduli less than unity. In the 
setting (C) in particular, an explicit form in terms of the elements of P is 
desirable. 

Explicit forms for r in terms of the entries of P are known for the I, 
norms when p = 1, p = m. In the case p = 1 we denote the coefficient by 
6: 

s(p) = y,y f c 1 Pis - PjsI, 
s-l 

(1.2) 

so that 6(P) < 1 for all P E S,. 
We note that in effect 11. II may be regarded as a norm on W”, and then 

r(P) is an ordinary norm of the operator P on W”, the vector subspace of 02” 
which is the orthogonal complement of lT. Very recently, Rhodius (1993) has 
focused on other norms on W” and used the relation between norms and 
convex bodies to produce the explicit forms 

and 

n-1 

T,(P) = max C 
i=l,...,n-1 ._ 

J-1 

h (l?ik -pi+l,k) 

k=l 

(1.3) 

(1.4) 

He has also shown that there are P E S, such that To < 6(P) < 1, which 
is enough to illustrate the occasional usefulness of such 7. 

The purpose of the present note is to provide a possibly simpler approach 
to the generation of explicit forms such as (1.3) and (1.4). This amounts, in 
the end, to the use of ordinary norms, such as I, and 2, but on Iw”- ’ 
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(without any linear constraint such as xT 1 = 0, which introduces the compli- 
cation of a subspace), as suggested by the forms of (1.3) and (1.4), which are 
standard matrix norms on [w” - ’ . In particular, this paper shows that the 
results of Rhodius (1993) fall within the framework of Rothblum and Tan 
0985). 

2. UNDERLYING RESULTS 

The underlying idea of this paper is, as with Rhodius (19!B), the consider- 
ation of norms on the s&pace w”. Note again that P may be regarded as an 
operator on W”, since for xT E W”, x'P1 = xTl = 0 . Let 11. IIwn be any 
vector norm on HI”, so that IIP~~w~~ denotes the corresponding operator norm. 

THEOREM 1. For each 11. (Iw- there is a vector nom on [w 11 such that the 
corresponding T(.) defined by (1.1) satz@es 

T( P) = IIPIIW~~. 

In particular, properties (A)-(C) hold for the functional II * Ilw” 

Pro@ As noted, 1' spans the orthogonal complement of w” in R”. Thus 
we may write uniquely, for any v?‘E[W”, 

vT = hT + ail’, 

where a~ [w ‘, h“ E W” 
It is readily verified’that ~~~~~~~ defined for vT EIW” by 

/llvTlll = llhTIlw + lal 

is a norm on R” (thus, an extension of the norm II . llw” to (Wn). Further, for 
xT~WI’ we have ll!xTlll = IlxTll~~, so from (l.l), using 111. III for the norm on 

R”, 

T (P) =s”p{llxTPllw” : XT E W”, IlXTllW~’ = I} = JlPll~.~, 

THEOREM 2. Let A be a real (n- 1) Xnmatrixofrankn - 1 and 
such that Al , , = O,, 1. LetBbe a real, n X (n- l>, and such that AB = 
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I”_ 1. zf (1 * p l) is any vector norm on R”- ‘, thenfor yT E HI”, llyTBII(“- ‘) 
defines a norm on the linear subspace HI” of R”. 

Proof. The only ro erty of norms which doesn’t follow immediately 
from the fact that II * IIpn-’ is a norm on Iw”-’ is 

Now, U-U” is the subspace of 08” orthogonal to the subspace spanned by 1'. 
Since Al, = 0, and the rows of A are linearly independent, they span O-U”, 
and so for some xT E Iw”-’ we have yT = xTA and yT # 0,’ w xT # OT_i. 
Further, yTB = xTAB = xT, 
= o;_, =a XT = OT 

since AB = Zn_1. Thus IlyTBII’“-” = 0 * yTB 

n-l * yT = O%, as required. n 

Thus we may use, for any norm II - Il(n-l) on aB”-’ and fKed B satisfying 
the conditions of Theorem 2, the class of ergodicity coefficients 

r(P) = SU~{~~~PBII~“-‘) : yT E W”, IbTB(((“-‘) = I} 

to have available all the properties deriving from (1.1). Further, since 
yT E W” = yT = xTA, xT E [W”-‘, it follows that 

T( 2’) = sup(ll~~APBI[‘“-I’, (brrll’“-” = 1) 

since AB = I,_ 1, so that this class of coefficients is given simply by 

T(P) = IJAPBI(‘“-l’, p E s,, (2.1) 

for fxed B and A described in Theorem 2. 

3. CONSTRUCTION OF A AND B 

A general construction of appropriate A and B is as follows. Let V be an 
(n - 1) X (n - 1) nonsingular real matrix, and write a = -V l,_ 1. Then 

Put 

A = (a,V), (3.1) 
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These satisfy the conditions of Theorem 2 and may be used in (2.1). Then by 
writing P in partitioned form: 

P= PT 

I 1 p’ ’ 

we find 

AP = ap: + VP’= -Vl,_,pr + VP = V(F - l,_,pr), 

so that APB = VPcl’Vpl, where 

‘(l) = ( Pii - Plj} P i,j =2 ,..., 72, 

whence with the choice (3.1), 

T(P) = IIvP’l)v- y(“- l). (3.2) 

Other possible constructions of A and B lead to the coefficients 

T(P) = IIvP(“)v-lpl), T(P) = IIVP(%-‘pl), (3.3) 

where 2 < k Q n, and 

Pc”)={pij-p,j}, i,j=l,..., n-l; 

Pck’={pij-pkj}, i,j=l,..., n (i,j#k). 

4. EXAMPLES 

EXAMPLE 1. Take V = I,_ 1 in (3.2) and the 1, norm for I(. (fnel): this 
yields 

G(P) = +y” n ,czlPri -Pljl . > I- 

in the notation of (1.3). More generally, using (3.3) with the same V and 



250 EUGENE SENETA 

norm produces (1.3). Alternatively, if J is a permutation matrix which moves 
the kth entry to first position in the manner (1, . . . , k, . . . , n> + (k, 1, . . , k 
- 1, k + 1,. . . , n), then T,(P) = T’(JPJ-‘> = T~(P>. 

v= 

I 0 1 -1 1 -1 ! .. 1’ -1 0 1 

the (i, j) entry of VP(“‘V- ’ is 

EXAMPLE 2. Using (3.3) and 

i (Pi,k - Pi+l,k)> 

k=l 

i,j = 1,2 ,..., n - 1, 

and using the I, norm for II* Ilcnpl) results in (1.4). 

EXAMPLE 3. In Examples 1 and 2 use the Z, norm for II * lfnel) to obtain 

EXAMPLE 4. In Example 2 replace V by VT. Then V TP(n)(V-l)T has 

(i,j) entry 

n-1 

C(piS-p,,) at i=l, j=l,..., n-l, 
s=j 
n-l 

C(pi,s-pi_,,,) at i=2 ,..., n-l, j=l,..., n-l. 
s=j 
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EXAMPLE 5. In Example 2 replace V by V-‘. Then V- lP(n)(V-l)T has 

(4 j> entry 

1 kF, {Pkj - Pnj - (Pk,j-1 - Pn,j-1)) 
z 

i = 1, 

i = 1, 

j = 2, 

. . 

. . 

,n-1, j=l, 

>n-1, 

,n--1. 

5. EXTENSIONS 

Theorem 1 can be reformulated for n X n irreducible nonnegative matri- 
ces ‘I’ with Perron-Frobenius eigenvalue p and corresponding right eigenvec- 
tor w. With stochastic matrices P the irreducibility assumption is unneces- 
sary, and we also have the probabilistically interesting property (A), which 
does not extend to irreducible T,, T2 which have different right eigenvectors. 
Define r(T) by (1.1) again, where now, however, 

l-0” = {x’:x’E R”, XTW = 0). 

Since xTTw = pxTw = 0 for any xT E W”, we may consider T as an 
operator on W”. 

THEOREM 1’. For each vector norm 11. ll~n, there is a vector norm on R” 

such that 

IA1 < T(T) = IlTIlw 

for any eigenvalue h # p, where T is any irreducible nonnegative matrix. 

Proof. Since w spans the orthogonal complement of W” in R”, we may 
write uniquely for any vT E R” 

vT=hT+awT, 

where (Y E R1, hT E W”. Define the norm lIl*lll for vT E R” in exactly the 
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same way as in Theorem 1, and proceed as in that theorem with T replacing 

P, to obtain T(T) = /ITll~n. The result IhI < S-(T) now follows directly from 

the fundamental Theorem 3.1 of Rothblum and Tan (1985). W 

Likewise we could state and prove a Theorem 2’ in precisely the same 

way Theorem 2, with w replacing 1,. Equation (2.1) holds with T replacing 

P. 

The specific extension used of a norm on W” to that on R” is due to a 

referee. 
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