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Abstract--This paper presents a new method for solving linear programming problems with fuzzy 
coefficients in constraints. It is shown that such problems can be reduced to a linear semi-infinite 
programming problem. The relations between optimal solutions and extreme points of the linear 
semi-infinite program are established. A cutting plane algorithm is introduced with a convergence 
proof, and a numerical example is included to illustrate the solution procedure. (~) 1999 Elsevier 
Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

This paper studies a linear programming problem with fuzzy coefficients in constraints. To 
describe this problem, we consider the following linear program in the conventional form [1]: 

maximize c T x, 

s.t. Ax <_ b, (1) 

x _ ~ 0 ,  

where c and x are n-dimensional column vectors, A is an m x n (m <_ n) matrix, b is an m- 
dimensional column vector, and 0 is the n-dimensional zero vector. Note that  in this model, 
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all coefficients of A, b, and c are crisp numbers, and each constraint must be satisfied strictly. 
However, in the real-world decision problems, a decision maker does not always know the exact 
values of the coefficients taking part in the problem, and that vagueness in the coefficients may 
not be of a probabilistic type. In this situation, the decision maker can model the inexactness by 
means of fuzzy parameters [2]. Many papers have appeared in the literature on this subject [3]. 
An early contribution was made by Tanaka et al. [4]. They considered the following problem: 

maximize 

s.t. 

n 

j = l  

n 

a, xj _< 
j=l  

xj >_0, 

i = 1 , . . . ,m ,  

j = 1 . . . .  ,n, 

(2) 

where 5ij, bi, and 5j, i = 1 . . . .  , m, j = 1 , . . . ,  n, are fuzzy coefficients in terms of fuzzy sets. Ramik 
and R/mhnek [5] also dealt with problem (1) with fuzzy parameters in the constraints. Later, 
Delgado, Verdegay and Vila [6] studied a "general model" for fuzzy linear programming problems 
which involve fuzziness both in the coefficients and in the accomplishment of the constraints. In 

n order to convert the fuzzy constraint )-~j=l aijxj <_ bi in (2) into a more tractable one, all the 
papers mentioned above assumed that there exists a comparison relation " _< " between two fuzzy 
numbers ~ and $, for ranking purpose. In this way, ,~ < ] means the fuzzy number ~ is less 
than or equal to fuzzy number ~ under this ranking. Because there is no universal ranking in 
fuzzy set theory, depending on the comparison relation adopted, different auxiliary models and 
solution methods can be established [3]. 

In this paper, we focus on the linear programming problem (1) with fuzzy coefficients in 
both A and b. We show such problems can be reduced to a Linear Semi-Infinite Programming 
(LSIP) problem. The optimality conditions of solutions to (LSIP) are investigated. An efficient 
algorithm for solving the original fuzzy linear program in terms of (LSIP) is also developed. The 
organization of the rest of this paper is as follows. Section 2 models a linear program with fuzzy 
coefficients as a linear semi-infinite programming problem. Section 3 presents basic analysis of 
(LSIP). In Section 4, some relationships between the optimal solutions and extreme points of 
(LSIP) are established. A solution algorithm with a convergence proof is proposed in Section 5. 
Section 6 concludes this paper by making some remarks. 

2. T H E  MODEL 

To specify the fuzzy coefficients in the constraint set, we use convex fuzzy numbers [2]. 

DEFINITION 1. A convex fuzzy number N is a fuzzy set defined on the real line R with a mem- 

bership function PLY(') such that its a-level set IVa ~= {x • R [ #~(x)  >_ a} forms an interval 
where 

and 

L/~(a) =A min{x • R[#R(x)  > a} 

R~(a)  =~ max{x e R I #~(x) _> a} 

are real-valued continuous functions in a E [0, 1]. 

Figure 1 shows the membership function of the convex fuzzy number N. 
Let F ( h  r) be the set of all convex fuzzy numbers. Based upon the Extension Principle [2], we 

have the following results. 
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~(.)' 

~ R  

L~(a) R~(a)  
A A 

=min { x~ RI ttm(x) ~ a} max { x~ RI ~ts(x) ~a} 

Figure I. The membership function of a convex fuzzy number N. 

PROPERTY 1. If/~1,/V2 6 F(N),  then ATI _a/V1 n a/V2 E F(N) and 

L~(a)  = L91(a ) + L~2(a), 
Va e [0, 11. 

PROPERTY 2. If/~" e F(N)  and k is a positive real number, then /Q ~ k./~r e F(/X r) and 

LK~(a ) = k.  Lg(a), 
v~  e [o,1]. 

R~Ca) = k. R~(~) ,  

PROPERTY 3. I f / f / e  F(/V) and k = 0, then k.  N ~ 0. 

After introducing the concept of fuzzy numbers with their properties, we have to discuss the 
issue of ranking fuzzy numbers. There are many ranking methods available for the compari- 
son relation between two fuzzy numbers [3,7]. Here we adopt the commonly used concept of 
c~-preference [8,9] and provide the following ranking method. 

DEFINITION 2. For NI, 1V2 6 F(JfI) and a 6 [0, 1], Yl ~>a ]V2 if and only if 

L ~  (t) >_ n~2 (t), 
v+ • [~, 1]. 

Figure 2 illustrates such a relation of/V1 >_a ]V2 for some a • [0, 1]. 

~ ( . )  

C~ 

Figure 2. N1 _~o N2. 
R 
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3.  B A S I C  A N A L Y S I S  

Let T be a compact metric space, C(T) be the space of all real-valued continuous functions on 

T, M(T)  be the space of bounded regular Borel measures on T, C+(T) ~= {h E C(T) I h(t) > 

0,V t • T}, and M+(T) a= {# • M(T)  [ #(B) >_ 0,V B • B(T),where B(T) is the set of all Borel 
set in T}. Consider the dual problem of (LSIP) [10]: 

m 

m mize 

m 

(DLSIP) s.t. E f T  f~j(t) d#i <_ cj, j = 1 . . . . .  n, 
i----1 

#i • M+(T), i = 1 ,2 , . . . ,m .  

(6) 

Let FD be the feasible region of (DLSIP) and v(DLSIP) the optimal objective value of (DLSIP). 
From a result of [11], it follows that if the optimal value of (DLSIP) has finite value and there 
is a #o o o m = (#1, #2, . . .  ,it°m) • (M+(T)) m such that ~,=1 fT f i j ( t )du o < cj, j = 1 , . . . ,  n, then the 
strong duality holds for (DLSIP). This is stated in Theorem 1. 

THEOREM 1. Assume that FD :i/0 and - c~  <v(DLSIP) < oo. If  there exists ~o = (#o, # o . . . ,  ~om) 
• (M+(T)) m such that m . = ~i=1 fTf iJ( t )dl  ~° < ci, J = 1,.. ,n, then FP ~ q} and v(LSIP) 
v(DLSIP). 

Applying Theorem 1, we have the following result. 

THEOREM 2. Assume that v(LSIP) =v(DLSIP), then x* • FP solves (LSIP) and #* • FD solves 
(DLSIP) if and only if  

and 

n 

~ ]  f,j(t)x; - b,( t )  = o, v t • Supp (,;), 
j = l  

ej - Z f~ f,~(t) a , ;  = 0, 
i----1 T 

Vj  e {klz*k # 0}. 

i =  l , . . . , m  

PROOF. Let x* E FP and ~* E FD. Then we have 

m 

>_ E [ s,j(t) d,;, 
i--1 J T  

j = l , . . . , n  

and 

Thus, 

n 

E f~j(t)x; >_ b~(t), 
i - -1  

i = 1 , . . . ,m .  

j - -1  j - -1  i=1 

m n m 

(7) 
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If x* and #* are optimal solutions to (LSIP) and (DLSIP), respectively, then by the assumption 
that v(LSIP) = v(DLSIP), we have 

m 

j = l  

Therefore, by (7), the identity (8) holds if and only if 

n 

~ f i j ( t ) x ; - b i ( t ) = O ,  V t e  Supp(#~), i = l , . . . , m  
j = l  

and 

i = 1  

This proves the theorem. | 
Next we discuss the existence theorem for (LSIP). 

THEOREM 3. / f  FP is bounded, then (LSIP) has an optimal solution which is an extreme point 
of FP. 

PROOF. It is obvious that the feasible set FP is bounded and closed, and hence, is a compact 
set in R n. Since the objective function of (LSIP) is a continuous linear function on the compact 
set FP C R n, it will attain its minimum at an extreme point of FP. | 

From Theorem 3, we see that the extreme points of the feasible set FP play an important role 
for optimal solutions of (LSIP). We will discuss the relationship between the optimal solutions 
and extreme points of the feasible region of (LSIP) in the next section. 

4. E X T R E M E  P O I N T S  

To study the extreme points of the feasible region of (LSIP), we recall some useful definitions 
for general linear programming. Let E and F be real linear spaces, and A : E --, F a linear 
operator. Consider the following linear program (LP): 

minimize (c*, x), 

(LP) s.t. Ax = b, (9) 

x ~ P ,  

where c* is a linear functional in E, b E F, and P is a positive convex cone in E. For x ° E P, 
we define 

B ( x  °) = { x E E I x  ° + A x E P f o r s o m e r e a l A > 0 } .  

Reference [12] showed that x ° is an extreme point of the feasible region for (LP) if and only if 
B(x°) N R(A) = {0} where 0 denotes the zero vector and R(A) = {x E E I Ax = 0}, the null 
space of A. 

In order to investigate the conditions under which a feasible solution becomes an extreme 
point, the inequality constraints of (LSIP) are transformed to equality constraints. Let g = 
( g l , . . .  ,gin) E (C+(T))  m be the vector of "slack variables" of (LSIP), and consider a new semi- 
infinite programming problem with equality constraints (LSIP)e: 

n 

minimize Z cjxj, 
j--1 

n 

(LSIP)e s.t. Z f ~ j ( t ) x j  - gi(t) = b~(t), V t  E T, i = 1 , . . .  ,m,  (10) 
j=l  

xj  >_ O, j = 1 , . . . , n ,  

g~(t) e C+(T) ,  i = 1 , . . . , m .  
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Let FPe be the feasible region of (LSIP)e and (x, g) • FP~. Suppose tha t  exactly p components 
of the variable x are greater than zero, and, without loss of generality, we assume that  the first p 

. . .  ÷(~) ÷(i) t(~) components of x are positive, i.e., x = ( x l , . . . ,  xp, 0, ,0) T. Let ~1 , ~2 , . . . ,  t, • T such that  

g,(t~ ~)) = g,(t(2 ~)) . . . . .  g,(t~ )) = 0. Define the ~, x p matrices 

Ki ~ : " ".. " , for i = 1 , . . . , m  (11) 

\ f,1 (t~i)) f,2 (t~i)) .-. lip (t~:)) ] 

and 

K ~ K2 . (12) 

m 

Then we have the following theorem. 

THEOREM 4. Let  K and (x, g) • FPe be defined as above. I f  rank (K) = p, then (x, g) is an 

extreme point  of FP~. 

PROOF. By definition, it is easy to see that  if the point (5, ~) is in B(x ,  g), then 

Supp (5) C Supp ix),  

and gi(t(k ~)) = 0 implies ~,(t (i)) = 0, for i ---- 1 , . . .  ,m, k = 1 , . . .  ,£i. Define a constraint map 

¢ i :  R n x C +(T) ---, C(T)  by 

n 
¢ , ( x ,  g)Ct)  = - 9 , ( t ) ,  

j----1 
for t E T 

and 

Then (I) is a linear operator. Thus, for a point (x', g') • B(x ,  g) N R(¢), we have 

Supp (x')  C_ Supp (x) 

and 

g~(t(k~))=O, f o r i = l , . . . , m ,  k = l , . . . , l , .  

It follows that  g~(t) n = = ( x ~ , . . . , x n )  E = ~ j = l f i j ( t ) x ~ ,  for i 1 , . . . , m ,  where x '  , m R n (since 
t T " t't(~)' t ' t  (i)' . . ,g~t t  ( i )~r  f o r / = l , . . , m a n d S =  (x'l, ,xp) . ( x ' , g ' ) E R ( ¢ ) ) .  L e t g i = L g i (  1 ),g~( 2 ),. ~ t ,  JJ , • "'" 

Then $ ~ =(~)1,. . . ,  gin) T = ( 0 , . . . ,  0) T and K 5  = • = 0. Since K has rankp, K 5  = 0 implies 
5 = 0. It then follows that  B(x,  g) n R(¢) = {o}. This shows that  (x, g) is an extreme point of 

the feasible region of (LSIP)e. | 

Next we check the conditions for an extreme point (x, g) to be an optimal solution for (LSIP)e. 
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n p 

Z c3xj = ~ cix j = xrc 
j = l  j~-i  

, . , . . .  , . . .  \ , . , , , ] )  

m \Ur.~ / 
m I'i 

i=l k=l 

Let u* = (u],..., Ur~1, ...... , u~ n, , Umr~ J~x" From (ii) and (iii), we see that u* is a feasible solution 
for (DLSIP). Hence, Theorem 2 asserts that (x, g) is an optimal solution for (LSIP)e. | 

5. S O L U T I O N  P R O C E D U R E  

There are many semi-infinite programming algorithms [13,14] available for solving linear semi- 
infinite programming problems• The difficulty lies in how to effectively deal with the infinite 
number of constraints. Based on a recent review [13], the "cutting plane approach" is an effective 
one for such application. 
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Following the basic concept of the cutting plane approach, we can easily design an iterative 
algorithm which adds m constraints at a time until an optimal solution is identified. To be more 
specific, at the k th iteration, given Tk = { t l , t 2 , . . .  , tk}, where t k = (t~,t~,.. .  ,tkm) • T m, and 
k _> 1, we consider the following linear programming problem (Lpk): 

(LP k) s.t. 

minimize • cjxj, 

( / , , ,  

xj >_O, j =  l , 2 , . . . , n .  

> 

b, 

b m  

b, (tl 

Let F k be the feasible region of (LPk). Suppose that  x k = (xlk,.. •, xkn) is an optimal solution 
of (LPk). We define the "constraint violation functions" as follows: 

n 

- b,(t), 
j=l  

V t E T ,  i = l , . . . , m .  

Since fij(t) and bi(t) are continuous over T and T is compact, the function v~+l(t) achieves 
its minimum over T, for i -- 1, , m. Let tk +1 be such a minimizer and consider the value 
of vk+llt k+l~ for i = 1, m. If the value is greater than or equal to zero, for i = 1, m, i ~, i I ,  " • ' ,  ' ' ' ,  

then x k becomes a feasible solution of (LSIP), and hence, x k is optimal for (LSIP) (because 
the feasible region F k of (LP k) is no smaller than the feasible region F P  of (LSIP)). Otherwise, 
x k is not optimal and t k+l = (tlk+l, • • • ,-m~k+l~J ¢ Tk. We then augment Tk to a larger set 
Tk+l = { t l , . . . ,  t k, t k+l }. By repeating this process, x k will converge to the optimal solution of 
(LSIP). This background provides a foundation for us to outline a cutting plane algorithm for 
solving (LSIP). 

C P L S I P  A L G O R I T H M •  
Step 0. [Initialization] Set k -- 1; Choose any t~ e T; Set T1 = {tl}. 

Step 1. Solve (LP) k and obtain an optimal solution x k. 

Step 2. Find a minimizer _,t. k+l of vk+l(t) over T, for i = 1, . . .  , m. 

Step 3. If - k+l¢ ,k+l , ,  ui ~ ) _> 0, for i = 1 . . . .  ,m, then stop w i t h x  k being an optimal solution of 
(LSIP). Otherwise, set Tk+l = Tk U{t  k+l} and k *-- k + 1; go to Step 1. 

When (LSIP) has at least one feasible solution, i.e., FP ~ 0, it is easy to see that  the CPLSIP 
algorithm either terminates in a finite number of iterations with an optimal solution or generates 
a sequence of points {x k [ k = 1, 2 , . . .  }. Our objective for the remaining part  of this section is 
to show that  if the CPLSIP algorithm does not terminate in finite iterations, then {x ~} has a 
subsequence which converges to an optimal solution of (LSIP). We now show a convergence proof 
for the CPLSIP algorithm. 

THEOREM 6. Let  {x k} be a sequence generated by the CPLSIP algorithm. H there exists an 
M > 0 such that [[xk[[ < M, Vk, then there is a suhsequence of {x k} which converges to an 
optimal solution of (LSIP). 
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PROOF. It is easy to see that  the feasible domain of (LP k) contains tha t  of (LPk+~), for k = 

1 , 2 , . . . ,  and 
n t'1 1'1 

E cSx} <- E c5 x2 <-"" <- E cSx;' (13) 
j----1 5=1 j----1 

where x* = (x~ , . . . ,  x~) T is an optimal solution of (LSIP). Due to the boundedness of {xk}, we 
kt know that  there exists a subsequence {x kt } of {x k } with a limit ~. It is obvious that  ~'~=I c5x5 --~ 

n ~ 5 = i  c5~ 5. From (13), we see that  

n n 

-< (14) 
j=l  j = l  

To show that  ~ • FP,  consider 

n 

v~(t)~Ef~5(t)~j-b~(t), t • T ,  i= l , . . . ,m ,  (15) 
5=1 

and let t~ • T be a minimizer of vi(t) over T, for i = 1 . . . .  , m. By the definition of ~, we know 
that  

where t~ ~+t • T is generated by the CPLSIP algorithm for minimizing v~+t(t) over T. Since T 
is a compact metric space, there exists a subsequence {x st } of {x k~ } such that  {t~ '+1 } converges 
to a limit point t~ • T. Consequently, by (16), vi(t[) >_ O, for i = 1 . . . .  , m. Remember that  t~ ~+1 
is the minimizer of v~t+l(t) over T, hence, 

n n 

EfiS(t~'+l)  x; ' -b i ( t :  '+t) <_ Ef is( t~)x; ' -b~({ i ) ,  i =  1, . . . ,m.  (17) 
j = l  5=1 

Moreover, since x s~ also converges to ~, we have 

0 _< v~ (t*) < v~ ( {4 ,  i = 1 , . . . ,  m. (18) 

It follows tha t  ~ E FP, and hence, 

n n 

E c5x5 >- ~-, csx;" (19) 
j = l  j----1 

n $ Combining (14) and (19), we see that  ~ • FP and Y~jn__ 1 cj~ 5 = ~ j = l  c5x5" Therefore, we know 

that  {x k } has a subsequence which converges to an optimal solution of (LSIP). | 

6 .  N U M E R I C A L  E X A M P L E  

In this section, we use one simple example to illustrate the proposed theory and solution 
procedures. Let us consider the following fuzzy linear programming problem: 

min - xl  - 2x2 - 2x3, 

(FLP) s.t. - 2xl - ix2 >-a -8 ,  

- i x s  >a  -1"0, 

XI,:~2,X3 ~_ 0, 

(20) 



74 S.-C. FANG e t  al. 

where a E [0.1] and the membership function of each fuzzy coefficient is specified below. 

x + 2 ,  

~_ i (z )  = - z ,  
O, 

if - 2 < x < - l ,  

if - l < x < 0 ,  

otherwise. 

x + 4  
- T '  

~_~(=)  = - =  
-~ - ,  

O, 

if - 4 < x < - 2 ,  

if - 2 < x < 0 ,  

otherwise. 

x + 9 ,  if - 9 < x < - 8 ,  [' x + l l ,  

#_~(x) = - x  - 5 if - 8 < x < -5 ,  # - f ° (x )  = / - x  -_____.~8 
3 ' 2 ' 

0, otherwise. 0, 

if - 1 1 < x < - 1 0 ,  

if - 1 0 < x < - 8 ,  

otherwise. 

Substituting expression (21) in problem (20) results in the following problem: 

(21) 

min 

s . t .  

- -  X l  - -  2 X 2  - -  2X3, 

[-2, 2, 2Ix] + [-1, 1, 1]x2 > [-8, 1, 3], 
[-1, 1, 1Ix3 >_ [-10, 1, 2], 
X l ~ X 2 , X  3 > O, 

which is equivalent to the following linear semi-infinite programming problem: 

min - Xl  - 2x2  - 2x3 ,  

0 - 2  + t~ xl  | - 1 1  + t 2  

(LSIP) s.t. ~ -20t3' -t30 -t40 x3X2 _> \[-5-8-- 2t43t3 ' Vt, E [a, 1], 

Xl ,X2 ,X  3 ~ O. 

Given any a E [0, 1], say a = 0.6 in this example and an arbitrary starting point, say t 1 = 
( t ~ , '  1 t2 ,  t3 ,  t~ )  = (0 .7 ,  0 .8 ,  0 .7 ,  0 .8 ) ,  w e  h a v e  a regular l i n e a r  p r o g r a m  

min 

(LP 1) s.t. 

--  Xl  --  2X2 -- 2X3, 

- 4  + 2t~ - 2  + tl 
0 0 

0 0 

X l , X 2 , X  3 > O. 

01/( ) 
Xl -11  + t~ 

- 2  t 2 x2 > 
- - 5  - 3 t ~  ' 

- t~  / =3 - 8 -  2t,' 

Solving (LP 1) results in an optimal solution x 1 (x~ 1 1 = , x2, x3) = (0, 6.3846, 8.5). 

Define v~ ( t l )  = ( - 4  + 2t l )  =~ + ( - 2  + t , )  =~ - ( , 9  + t l )  = 5 .3846t l  - 3.7692, 

v~ (t2) -- ( - 2  + t 2 ) x ~  - ( -11  + t2) = 7 . 5 t  2 --  6,  

V 2 ( t3 )  = - - 2 t 3 X  ] --  ~3 x l  --  ( - - 5  --  353)  ---- --3.3846t3 + 5, 

V2(t4) = --t4X~ -- ( --8 -- 2t4) ----- --6.5t4 "4- 8. 

The minimizers of v~(tl), v~(t2), v2(t3), v~(t4) over [c~, 1] = [0.6, 1] are 0.6,0.6,1,1, respectively. 
Hence, we choose t2 2 2 2 2 = (tl, t2, t3, t4) = (0.6, 0.6, 1, 1). 
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Since v2(t 2) <_ O, v2(t 2) <_ O, v2(t]) > O, v](t 2) Z O, the  C P L S I P  a lgor i thm i tera tes  wi th  a new 

linear p r o g r a m  

min 

(LP 2) s.t. 

-- =1 -- 2X2 -- 2=3, 

- 4  + 2tI - 2  + t~ 
0 0 

- 2 t ~  - t ~  
0 0 

-4  + 2t~x -2 + t~ 
0 0 

-2t~ -t~ 
0 0 

2:l,X2,X 3 ~ O. 

0 
- 2  + t~ 

0 

-tl 

0 
- 2  + t~ 

0 

-tl 

(x,) 
x2 >_ 

x3 

- 9  + t~ 
- 1 1  + t 1 
- 5  - 3t 1 

- 8  - 2t~ 

- 9  + t~ 
- 1 1  + t~ 
- 5  - 3t3 2 
- 8  - 2t 2 

Solving (LP 2) results in an optimal solution x2 = (xl,2 x2 ,2 x 2) = (0,6.0001,7.4287). 

Define v~ (t~) = ( - 4  + 2t , )  =~ + ( - 2  + t , )  =~ - ( - 9  + t , )  = 5.0001t, - 3.0003, 

v 3 (t2) = ( - 2  + t2) x32 - ( - 1 1  + t2) = 6.4287t2 - 3.8575, 

v~ ( ts )  = - 2 t 3 = ~  - t~=~ - ( - 5  - 3t~) = - 3 . 0 0 0 1 t ~  + 5, 

v~ (t4) = - t 4 = ~  - ( - 8  - 2t4) = - 5  4287t4 + 8. 

T h e  minimizers  of  v3(tl) ,  v3(t2), v3(t3), v3(t4) over [0.6,1] are 0.6,0.6,1,1, respectively.  Hence, 
we choose t = (t 3, t2,t3,3 3 t43) = (0.6, 0.6, 1, 1). 

Now, since v3(t~) >_ O, va(t 3) >_ O, v3(t~) > O, v3(t 3) >_ O, the  a lgor i thm s tops  and re turns  an 

op t ima l  solut ion x* = x 2 = (0, 6.0001, 7.4287) to  the  fuzzy linear p rog ram (20) wi th  (~ = 0.6. 

7. C O N C L U D I N G  R E M A R K S  

In  this paper ,  a l inear p r o g r a m m i n g  p rob lem wi th  fuzzy coefficients in A and b is s tudied.  Based 
on the  specific ranking  of fuzzy numbers ,  we have shown t h a t  such p rob lems  can be reduced to  

a l inear semi-infini te  p r o g r a m m i n g  problem.  T h e  rela t ionship between the  op t ima l  solutions and 
ex t reme  points  of  (LSIP)  are established.  A cut t ing  plane a lgor i thm is proposed for solving a 
linear p r o g r a m m i n g  p rob lem wi th  fuzzy coefficients in t e rms  of linear semi-infinite p rogramming .  
Only  those  cons t ra in t s  which become binding are genera ted  and used in the  solut ion procedure.  
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