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Abstract

This paper considers the problem of performing tasks in asynchronous distributed settings. This prob-
lem, called Do-All, has been substantially studied in synchronous models, but there is a dearth of efficient
algorithms for asynchronous message-passing processors. Do-All can be trivially solved without any com-
munication by an algorithm where each processor performs all tasks. Assuming p processors and t tasks, this
requires work �(p · t). Thus, it is important to develop subquadratic solutions (when p and t are compara-
ble) by trading computation for communication. Following the observation that it is not possible to obtain
subquadratic work when the message delay d is substantial, e.g., d = �(t), this work pursues amessage-delay-
sensitive approach. Here, the upper bounds on work and communication are given as functions of p, t, and d,
the upper bound onmessage delays, however, algorithms have no knowledge of d and they cannot rely on the
existence of an upper bound on d. This paper presents two families of asynchronous algorithms achieving,
for the first time, subquadratic work as long as d = o(t). The first family uses as its basis a shared-memory
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algorithm without having to emulate atomic registers assumed by that algorithm. These deterministic algo-
rithmshaveworkO(tpε + p d�t/d�ε) for any ε > 0. The second family uses specific permutations of tasks, with
certain combinatorial properties, to sequence the work of the processors. These randomized (deterministic)
algorithms have expected (worst-case) work O(t log p + p d log(2 + t/d)). Another important contribution
in this work is the first delay-sensitive lower bound for this problem that helps explain the behavior of our
algorithms: any randomized (deterministic) algorithm has expected (worst-case) work of �(t + p d logd+1 t).
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The effectiveness of distributed computing critically depends on the ability ofmultiple processors
to cooperate on a common set of tasks. The need for such cooperation exists in several applica-
tion domains, including grid computing, distributed simulation, multi-agent collaboration, and
distributed search, such as SETI. In their seminal work, Dwork et al. [9], abstracted a distributed
collaboration problem in terms of p message-passing processors that need to perform t idempotent
and computationally similar tasks.We call this problemDo-All. The efficiency ofDo-All algorithms
is measured in terms of the work complexity W (one task consumes one work unit), and the cost
of communication is measured in terms of the message complexityM ; in some settings efficiency is
also measured in terms of effort, defined as the sum W +M .

Common impediments to effective coordination in distributed settings include failures and asyn-
chrony that manifests itself, e.g., in disparate processor speeds and varying message latency. For-
tunately, the Do-All problem can always be solved as long as at least one processor continues to
make progress. In particular, with the standard assumption that initially all tasks are known to all
processors, the problem can be solved by a communication-oblivious algorithm where each pro-
cessor performs all tasks. Such a solution has work W = �(t · p), and requires no communication.
On the other hand, �(t) is the obvious lower bound on work and the best known lower bound is
W = �(t + p log p), e.g. [13,15]. Therefore, the trade-off expectation is that if we increase the number
of messages we should be able to decrease the amount of work so that it is subquadratic in t and p .

Two work complexity measures have been considered in evaluating the efficiency of algorithms.
The measure of [9] accounts only for the task-oriented work, thus allowing the processors to “idle”
for free. The measure of [10,14] charges processors for each computation step, whether it is task
oriented or not. In this work, we use the latter measure (charging for each step) for two reasons:
(1) this measure is a natural generalization of the processor-time product, a standard complexity
measure in parallel computing: if p processor compute for � time units each, then thework efficiency
is p · �; (2) disallowing idling has the effect of speeding up computation (cf. [9], where idling leads
to work-efficient but time-inefficient solutions).

1.1. Background and related work

In the message-passing settings, the Do-All problem has been substantially studied for synchro-
nous failure-prone processors under a variety of assumptions, e.g. [5–7,9–12]. However, there is a
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dearth of algorithms for asynchronous models. This is not that surprising. For an algorithm to be
interesting, it must be better than the oblivious algorithm, in particular, it must have subquadrat-
ic work complexity. However, if messages can be delayed for a “long time,” then the processors
cannot coordinate their activities, leading to an immediate lower bound on work of �(p · t). In
particular, it is sufficient for messages to be delayed by�(t) time for this lower bound to hold. The
algorithmic techniques in the above-mentioned papers rely on processor synchrony and assume
constant-time message delay. It is not clear how such algorithms can be adapted to deal with asyn-
chrony. Thus, it is interesting to develop algorithms that are correct for any pattern of asynchrony
and failures (with at least one surviving processor), and whose work depends on the message la-
tency upper bound (cf. [8]), such that work increases gracefully as the latency grows. The quality
of the algorithms can be assessed by comparing their work to the corresponding delay-sensitive
lower bounds.

A similar problem, called Write-All, has been extensively study in the shared-memory models of
computation. The problem is formulated as follows [14]: using p processors write 1’s to all locations
of an array of size t. In this problem, writing 1 abstracts the notion of performing a constant-time
task. Write-All has been substantially studied in the synchronous models of computation [14], how-
ever, the techniques used in the synchronous shared-memory setting are not easily ported to the
asynchronous message-passing setting.

The most efficient known asynchronous algorithm is due to Anderson and Woll [2], and it has
work O(t · pε) for t � n. The algorithm uses a q-ary progress tree with t leaves that associates tasks
(array elements) with the leaves of the tree. The progress tree directs processors to tasks, and helps
balance the loads of the processors. This is done using the individual digits of the q-ary represen-
tation of processor identifiers, where each digit is used to choose between the q branches at the
interior nodes within the progress tree. The algorithm uses a set of q permutations from Sq, the
symmetric group of permutations of [q]. In more detail, the p processors use these permutations
in conjunction with q-ary processor identifiers to determine the order of traversal of the q subtrees
of each interior node of the progress tree. Thus, the algorithm is based on a recursive post-order
traversal of the progress tree, in which processors traverse the tree in search of work until all tasks
are performed. Whenever all tasks associated with a subtree are done, the root of the subtree is
marked. After all tasks are done, the root of the whole tree is marked, and the algorithm terminates.
It was shown [2] that for any ε > 0 it is possible to choose q and a set of q permutations with certain
combinatorial properties such that the algorithm has work O(t · pε). The required combinatorial
property is measured in terms of contention introduced in [2]. Contention is used to assess the
bounds on the number of tasks that are performed redundantly (we discuss this in detail in Section
4).

Various approaches can be used to construct sets of permutations with low contention.When the
q permutations on the set [q] are chosen uniformly and independently at random, then contention
is bounded by O(q log q) with high probability [2]. Anderson and Woll [2] show how to search for
these permutations, taking exponential in q processing time. A different approach is given by Naor
and Roth [20]. They show that a set of q permutations with contention O(q1+ε) can be obtained
such that each permutation can be computed in time q · polylog(q). The value of q for which the
bound holds is exponential in 1/ε3.

One approach to obtaining message-passing algorithms for Do-All is based on emulating asyn-
chronous shared-memory algorithms, such as the algorithms of Anderson and Woll [2] and Buss
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et al. [4] (a precursor of [2] that uses binary progress trees). For example, Momenzadeh et al. [19,16]
show how to do this using replicated linearizable memory services that rely on quorum systems
(or majorities of processors), e.g. [3,18]. This approach yields Do-All algorithms for asynchronous
message-passing processors with subquadratic work complexity, however, it is assumed that quo-
rum systems are not disabled by failures, and that the delays are O(K), where K = o(p) is the size
of quorum sets. When processor failures damage quorum systems, the work of such algorithms
becomes quadratic, even if message latency is constant.

1.2. Contributions

Our goal is to obtain complexity bounds for work-efficient message-passing algorithms for the
Do-All problem: Given t similar and idempotent tasks, perform the tasks using p asynchronous
message-passing processors.

We require that the algorithms tolerate any pattern of processor crashes with at least one surviv-
ing processor. Equally important, we are interested in algorithms whose work degrades gracefully
as a function of the worst-case message delay d . Here, the requirement is that work must be sub-
quadratic in t and p as long as d = o(t). Thus, for our algorithms we aim to develop delay-sensitive
analysis of work and message complexity. Noting again that work must be �(p · t) for d � t, we
show that work need not exceed O(p · t). More interestingly, we give a comprehensive analysis for
d < t.

In this paper, we present the first delay-sensitive lower bounds for Do-All and the first asynchro-
nous algorithms for Do-All that meet our criteria for fault tolerance and efficiency. The summary
of our results, stated here for d < t, is as follows:

(1) We present delay-sensitive lower bounds for the Do-All problem for deterministic and
randomized algorithms with asynchronous processors. Any deterministic (randomized) al-
gorithm with p asynchronous processors and t tasks has worst-case work (expected work)
of �(t + p d logd+1 t), where d is the upper bound on message delay (unknown to the pro-
cessors). This shows that work grows with d and becomes �(p t) as d approaches t.

(2) We present a family of deterministic algorithms DA, such that for any constant ε > 0 there
is one with work W = O(tpε + p d�t/d�ε) and message complexityM = O(p · W ). More pre-
cisely, algorithms from the family DA are parameterized by a positive integer q and a list
� of q permutations on the set [q] = {1, . . . , q}, where 2 � q < p � t. We show that for any
constant ε > 0 there is a constant q and a corresponding set of permutation �, such that the
resulting algorithm has workW = O(tpε + p d�t/d�ε) and message complexityM = O(p · W).
These works of these algorithms are within a small polynomial factor of the corresponding
lower bound (1).
Algorithms in the family DA are modeled after the shared-memory algorithm of Anderson
and Woll [2], and use a list of q permutations in the same way. The two main differences are:
(i) instead of maintaining a global data structure representing a q-ary tree, in our algorithms
each processor has a replica of the tree, and
(ii) instead of using atomic shared memory to access the nodes of the tree, processors read
values from the local tree, and instead of writing to the tree, processors multicast the tree; the
local data structures are updated when multicast messages are received.
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(3) We present a family of algorithms PA, deterministic and randomized, parameterized by a list
� of p permutations on the set [p] = {1, . . . , p}, where p � t.
We show that when the required permutations are chosen randomly, the algorithms have ex-
pected work W = O(t log p + p d log(2 + t/d)) and expected message complexity M =
O(tp log p + p2d log(2 + t/d)).
We show that there exists a deterministic list of schedules � such that the deterministic algo-
rithm has work W = O(t log p + p d log(2 + t/d)) and message complexityM = O(tp log p +
p2d log(2 + t/d)).

The deterministic algorithms in PA have somewhat better work than the deterministic algorithms
inDA, however, they requires substantially larger permutations, the former requiring permutations
of set [q] and the latter of set [p]. Hence, one can instantiate algorithms from the family PA that are
more efficient than any in familyDA, but to do somay require substantial preprocessing time to find
good permutations, which are substantially larger in the case of algorithms in PA. Also note that
efficient algorithms in PA are only a logarithmic factor worse work than the best possible Do-All
algorithms in this model, which follows from the lower bound on work—the best algorithms from
family DA have O(pε) overhead on work for large t = �(p d) and O(�t/d�ε) overhead for small
t = O(p d).

Our algorithms in the family DA are obtained by a re-interpretation for the message-passing
setting of the shared-memory algorithm of Anderson and Woll [2]. In our algorithm, a processor
multicasts a message instead of writing a value to shared memory, and a processor consults local
data structures instead of reading from sharedmemory. In this work, we use (and extend) the notion
of contention of permutations [2]. We describe this in detail in Section 4, showing how reducing
contention leads to lower work in certain algorithms.

1.3. Document structure

We define the model of computation and complexity measures in Section 2. In Section 3, we
show the first delay-sensitive lower bounds for Do-All. In Section 4, we deal with permutations and
contention. In Section 5, we present and analyze the first work-efficient asynchronous determinis-
tic Do-All algorithm. In Section 6, we present and analyze two randomized and one deterministic
algorithm that satisfy our efficiency criteria. We discuss our results and future work in Section 7.

2. Model and definitions

2.1. The model of computation

In our distributed setting, we consider a system consisting of p processors with unique identifi-
ers (pid) from the set {0, . . . , p − 1}. The processors must perform t tasks. A processor’s activity is
governed by its local clock. We model asynchrony as an adversary that introduces arbitrary delays
between local clock ticks. The processors are subject to crash failures, again determined by the ad-
versary. (We give the detailed description of the adversarial model later in the section.) We assume
that p and t are known to all processors. Processors communicate over a fully connected network
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by sending point-to-point messages via reliable asynchronous channels. When a processor sends a
message to a group of processors, we call it a multicast message, however, in the analysis we treat a
multicast message as multiple point-to-point messages. Messages are subject to delays, but are not
corrupted or lost.

2.2. Modeling adversity

We assume an omniscient adversary that introduces delays. The adversary can introduce arbi-
trary delays between local processors steps and cause processor crash failures (crashes can be viewed
as infinite delays). The only restriction is that at least one processor is non-faulty. The adversary
can also impose message delays up to d time units. We call such an adversary the d-adversary. The
adversary is adaptive, meaning that it makes its decisions during the execution of an algorithm.
For deterministic algorithms, the adaptive adversary does not gain any advantage over the adver-
sary that has to make all decisions off-line, however, adversarial adaptivity becomes important for
randomized algorithms.

2.3. Timing assumptions

For the purpose of algorithm analysis, we assume the existence of a global real-timed clock that
is unknown to the processors. For convenience, we measure time in terms of units that represent
the smallest possible time between consecutive clock-ticks of any processor. This time is assumed
to be positive (non-zero). We assume that there exists an integer parameter d , that is not assumed
to be a constant and that is unknown to the processors, such that messages are delayed by at most
d time units. By the choice of the time units, a processor can take at most d local steps during any
global time period of duration d .

2.4. The Do-All problem

For this model, we define the Do-All problem as follows:

Given t similar and idempotent tasks, perform the tasks
using p asynchronous message-passing processors.

When we say that the tasks are similar, this means that any task can be performed in constant
time. When we say that the tasks are idempotent, this means that any task can be performed more
than once, and that the results of multiple task executions are always the same. Any tasks may be
performed concurrently.

2.5. Measures of efficiency

We assess the efficiency of algorithms in terms of work and message complexity.
We assess the work of algorithms by counting all processing steps performed by all processors

[14]. We assume that it takes a unit of time for a processor to perform a unit of work according to
its local clock. We also charge a unit of time per local step of any processor (whether the processor
is idling or not, or halted voluntarily). We assume that it takes a unit of time to submit a broad-
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cast request to the network (of course such messages are delivered after a delay is imposed by the
adversary), and it takes a unit of work to process multiple received messages.

Let E be the set of all possible executions of an algorithm in a specific model of computation.
For an execution � ∈ E of an algorithm, we denote by p�(�) the number of processors completing
a unit of work at time � of the computation (according to the global time that is not available to
the processors). Let �� be the time when all tasks have been performed and at least one processor
is informed of this fact.

Definition 2.1.For a p-processor algorithm solving a given problem of size t the work complexityW
is defined as W(p , t) = max

{∑
���� p�(�) : � ∈ E} . For a randomized algorithm the expected work

complexity EW is defined as EW (p , t) = E
{∑

���� pi(�) : � ∈ E} .
Message complexity is defined similarly. A single point-to-point message contributes 1 to the

message complexity. When a processor broadcast a message to m destinations, this counts as m
point-to-point messages in the message complexity. For an execution � of an algorithm, we denote
by m�(�) the number of (point-to-point) messages sent at time � of the computation (according to
some global time that is not available to the processors).

Definition 2.2. For a p-processor algorithm solving a given problem of size t the message complexi-
tyM is defined asM(p , t) = max

{∑
���� m�(�) : � ∈ E} . For a randomized algorithm the expected

message complexity EM is defined as EM (p , t) = E
{∑

���� m�(�) : � ∈ E} .
In the cases where work or message complexity is a function of p , t, and d , we use the notation

W(p , t, d) to denote work andM(p , t, d) to denote message complexity. Expected work and message
complexity are denoted by EW (p , t, d) and EM (p , t, d), respectively. The above notation is conve-
nient for expressing complexity results obtained for the d-adversary, where the set of executions E
contains all executions in the presence of the d-adversary.

Next, we formulate a proposition leading us to not consider algorithms where a processor may
halt voluntarily before learning that all tasks have been performed.

Proposition 2.1. Let Alg be a Do-All algorithm such that there is some execution � of Alg in which
there is a processor that (voluntarily) halts before it learns that all tasks have been performed. Then
there is an execution �′ of Alg with unbounded work in which some task is never performed.

Proof. For the proof we assume a stronger model of computation where in one local step any
processor can learn the complete state of another processor, including, in particular, the complete
computation history of the other processor. Assume that, in some execution �, the Do-All problem
is solved, but some processor i halts in � without learning that certain task z was performed. First,
we observe that for any other processor j that i learns about in �, j does not perform task z by
the time i learns j’s state. (Otherwise i would know that z was performed.) We construct another
execution �′ from � as follows. Any processor j (except for i) proceeds as in � until it attempts to
perform task z. Then j is delayed forever. We show that processor i can proceed exactly as in �.
We claim that i is not able to distinguish between � and �′. Consider the histories of all processors
that i learned about in �′ (directly or indirectly). None of the histories contain information about
task z being performed. Thus, the history of any processor j was recorded in advance of j’s delay
in �′. Then by the definition of �′ these histories are identical to those in �. This means that in �′
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processor i halts as in �. Since the problem remains unsolved, processor i continues to be charged
for each local clock tick (recall that work is charged until the problem is solved). �

As the result of Proposition 2.1, in this paper we will only consider algorithms where a processor
may voluntarily halt only after it knows that all tasks are complete, i.e., for each task the processor
has local knowledge that either it performed the task or that some other processor did.

Note that for large message delays the work of any Do-All algorithm is necessarily �(t · p). The
following proposition formalizes this lower bound and motivates our delay-sensitive approach.

Proposition 2.2. Any algorithm that solves the Do-All problem in the presence of a (c · t)-adversary,
for a constant c > 0, has work W(p , t) = �(t · p).
Proof. We choose the adversary that delays each message by c · t time units, and does not delay
any processor. If a processor halts voluntarily before learning that all tasks are complete, then by
Proposition 2.1 work may be unbounded. Assume then that no processor halts voluntarily until it
learns that all tasks are done. A processor may learn this either by performing all the tasks by itself
and contributing t to the work of the system, or by receiving information from other processors by
waiting for messages for c · t time steps. In either case, the contribution is �(t) to the work of the
algorithm. Since there are p processors, the work is �(t · p). �

Lastly, we note that since in our study we are trading communication for work, we design algo-
rithms with the focus on work.

3. Delay-sensitive lower bound on work for asynchronous algorithms

We now present delay-sensitive lower bounds for asynchronous algorithms for the Do-All
problem.

3.1. Lower bound for deterministic algorithms

First, we prove a lower bound on work that shows how the efficiency of work-performing algo-
rithms depends on the number of processors, the number of tasks, and the message delay.

Theorem 3.1.Any deterministic algorithm solvingDo-All with t tasks using p asynchronous message-
passing processors performs work

W(p , t, d) = �(t + p min{d , t} logd+1(d + t))

against the d-adversary.

Proof. That the required work is at least t is obvious—each task must be performed. We present
the analysis for t > 5 and t that is divisible by 6 (this is sufficient to prove the lower bound). We
present the following adversarial strategy. The adversary partitions computation into stages, each
containing min{d , t/6} steps. We assume that the adversary delivers all messages sent to a processor
in stage s at the end of stage s (recall that the receiver can process any such message later, according
to its own local clock)—this is allowed since the length of stage s is at most d . For stage s, we will
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define the set of processors Ps such that the adversary delays all processors not in Ps. More precisely,
each processor in Ps is not delayed during stage s, but any processor not in Ps is delayed so it does
not complete any step during stage s.

Consider stage s. Let us > 0 be the number of tasks that remain unperformed at the beginning
of stage s, and let Us be the set of such tasks. We now show how to define the set Ps. Suppose first
that each processor is not delayed during stage s (with respect to the time unit). Let Js(i), for every
processor i, denote the set of tasks from Us (we do not consider tasks not in Us in the analysis
of stage s since they were performed before) which are performed by processor i during stage s
(recall that inside stage s processor i does not receive any message from other processors, by the
assumption on consider kind of the adversary). Note that |Js(i)| is at most min{d , t/6}, which is the
length of a stage.

Claim. There are at least us
3min{d ,t/6} tasks z such that each of them is contained in at most 2p min{d ,

t/6}/us sets in the family {Js(i) | i = 0, . . . , p − 1}.
We prove the claim by the pigeonhole principle. If the claim is not true, then there would be more

than us − us
3min{d ,t/6} tasks such that each of themwould be contained inmore than 2p min{d , t/6}/us

sets in the family {Js(i) | i = 0, . . . , p − 1}. This yields a contradictionbecause the following inequality
holds

p min{d , t/6} =
∑
0�i<p

|Js(i)|

�
(
us − us

3min{d , t/6}
)

· 2p min{d , t/6}
us

=
(
2 − 2

3min{d , t/6}
)

· p min{d , t/6}
> p min{d , t/6} ,

since d � 1 and t > 4. This proves the claim.
We denote the set of us

3min{d ,t/6} tasks from the above claim by Js. We define Ps to be the set
{i : Js ∩ Js(i) = ∅}. By the definition of tasks z ∈ Js we obtain that

|Ps| � p − us

3min{d , t/6} · 2p min{d , t/6}
us

� p/3 .

Since all processors, other that those in Ps, are delayed during the whole stage s, work performed
during stage s is at least p3 · min{d , t/6}, and all tasks from Js remains unperformed. Hence, the
number us+1 of undone tasks after stage s is still at least

us
3min{d ,t/6} .

If d < t/6 thenworkduring stage s is at least p d/6, and there remain at least us3d unperformed tasks.
Hence, this process may be continued, starting with t tasks, for at least log3d t = �(logd+1(d + t))

stages, until all tasks are performed. The total work is then �(p d logd+1(d + t)).
If d � t/6 then during the first stage work performed is at least pt/18 = �(pt logd+1(d + t)) =

�(pt), and at the end of stage 1 at least t
3t/6 = 2 tasks remain unperformed. Notice that this asymp-

totic value does not depend on whether the minimum is selected among d and t, or among d and
t/6. More precisely, the work is



190 D.R. Kowalski, A.A. Shvartsman / Information and Computation 203 (2005) 181–210

�(p min{d , t} logd+1(d + t)) = �(p min{d , t/6} logd+1(d + t)),

which completes the proof. �

3.2. Delay-sensitive lower bound for randomized algorithms

In this section, we prove a delay-sensitive lower bound for randomized work-performing algo-
rithms. We first state a technical lemma used in the lower bound proof (the proof of this lemma is
found in Appendix A).

Lemma 3.2. For 1 � d � √
u

1
4

�

(
u− d

u/(d + 1)

)
(

u

u/(d + 1)

) �
1
e
.

The idea behind the lower bound proof for randomized algorithms is similar to the one for de-
terministic algorithms in the previous section, except that sets Js(i) are random, hence we have to
modify the construction of set Ps also. We partition the execution of the algorithms into stages,
similarly to the lower bound for deterministic algorithms. Let V be the set of p processors. Let Us
denote the remaining tasks at the beginning of stage s. Suppose first that all processors are not
delayed during stage s, and the adversary delivers all messages sent to processor i during stage s at
the end of stage s. The set Js(i), for processor i ∈ V , denotes a certain set of tasks from Us that i is
going to perform during stage s. The size of Js(i) is at most d , because we consider at most d steps
in advance (the adversary may delay all messages by d time steps, and so the choice of Js(i) does
not change during next d steps, provided |Js(i)| � d). The key point is that the set Js(i) is random,
since we consider randomized algorithms, and so we deal with the probabilities that Js(i) = Y for
the set of tasks Y ⊆ Us of size at most d . We denote these probabilities by pi(Y). For the given set
of processors P , let Js(P) denote set

⋃
i∈P Js(i).

The goal of the adversary is to prevent the processors from completing some sufficiently large
set Js of tasks during stage s. Here, we are interested in the events where there is a set of processors
Ps that is “large enough” (linear size) so that the processors do not perform any tasks from Js.

In the next lemma, we prove that, for some set Js, such set of processors Ps exists with high prob-
ability. This is the main difference compared to the deterministic lower bound—instead of finding
a suitably large set Js and a linear-size set Ps, we prove that the set Js exists, and we prove that
the set Ps of processors not performing this set of tasks during stage s exists with high probability.
However, in the final proof, the existence with high probability is sufficient—we can define the set
on-line using the rule that if some processor wants to perform a task from the chosen set Js, then
we delay it, and do not put it in Ps. In the next lemma, we assume that s is known, so we skip lower
index s from the notation for clarity of presentation.

Lemma 3.3. There exists set J ⊆ U of size u
d+1 such that

Pr[∃P⊆V : |P | = p/64 ∧ J(P) ∩ J = ∅] � 1 − e−p/512 .
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Proof. First, observe that

∑
(
J : J⊆U ,|J |= u

d+1

)
∑
(v∈V)

∑
(Y : Y⊆U ,Y∩J=∅,|Y |�d)

pv(Y)

=
∑
(v∈V)

∑
(Y : Y⊆U ,|Y |�d)

pv(Y) ·
(
u− |Y |
u/(d + 1)

)

� p ·
(

u− d

u/(d + 1)

)
.

It follows that there exists set J ⊆ U of size u
d+1 such that

∑
(v∈V)

∑
(Y : Y⊆U ,Y∩J=∅,|Y |�d)

pv(Y) �
p ·
(

u− d

u/(d + 1)

)
(

u

u/(d + 1)

) �
p

4
, (1)

where the last inequality follows from Lemma 3.2. Fix such a set J . For every node v ∈ V , let

Sv =
∑

(Y :Y⊆U ,Y∩J=∅,|Y |�d)
pv(Y).

Notice that Sv � 1. Using the pigeonhole principle to inequality 1, there is a set V ′ ⊆ V of size p/8
such that for every v ∈ V ′

Sv �
1
8
.

(Otherwise more than 7p/8 nodes v ∈ V would have Sv < 1/8, and fewer than p/8 nodes v ∈ V
would have Sv � 1. Consequently,

∑
v∈V Sv < 7p/64 + p/8 < p/4, which would contradict (1)). For

every v ∈ V ′, let Xv be the random variable equal 1 with probability Sv, and 0 with probability 1 − Sv.
These random variables constitute sequence of independent 0–1 trials. Let ' = E [∑v∈V ′ Xv] =∑
v∈V ′ Sv. Applying Chernoff bound (see [1]) we obtain

Pr

[∑
v∈V ′

Xv < '/2

]
< e−'/8 ,

and consequently, since ' � p
8 · 1

8 = p
64 , we have

Pr

[∑
v∈V ′

Xv < p/64

]
� Pr

[∑
v∈V ′

Xv < '/2

]

< e−'/8 � e−p/512 .
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Finally, observe that

Pr
[∃P⊆V : |P | = p/64 ∧ J(P) ∩ J = ∅]

� 1 − Pr

[∑
v∈V ′

Xv < p/64

]
,

which completes the proof of the lemma. �
We apply Lemma 3.3 in proving the following lower bound result.

Theorem 3.4. Any randomized algorithm solving Do-All with t tasks using p asynchronous message-
passing processors performs expected work

EW (p , t, d) = �(t + p min{d , t} logd+1(d + t))

against any d-adversary.

Proof. That the lower bound of �(t) holds with probability 1 is obvious. We consider three cases,
depending on how large is d comparing to t: in the first case d is very small comparing to t (in this
case the thesis follows from the simple calculations), in the second case we assume that d is larger
than in the first, but still no more than

√
t (this is the main case), and in the third case d is large

than
√
t (here the proof is similar to the second case, but is restricted to one stage). We now give

the details.

Case 1. Inequalities 1 � d �
√
t and 1 − e−p/512 · logd+1 t < 1/2 hold.

This case is a simple derivation. It follows that logd+1 t > e
p/512/2, and next 3

√
t > p + d + logd+1 t

for sufficiently large p and t. More precisely:
3
√
t > 3p for sufficiently large p , since t > logd+1 t > e

p/512;
3
√
t > 3d for sufficiently large p , since de

p/512/2 < t;
3
√
t > 3 logd+1 t for sufficiently large t, since d � 1 and by the properties

of the logarithm function.
Consequently, t = ( 3

√
t)3 > p d logd+1 t for sufficiently large p and t, and the lower bound

�(t) = �(p d logd+1 t) = �(p d logd+1(d + t))

holds, with the probability 1, in this case.

Case 2. Inequalities 1 � d �
√
t and 1 − e−p/512 · logd+1 t � 1/2 hold.

Consider anyDo-All algorithm. Similarly as in the proof of Theorem 3.1, the adversary partitions
computation into stages, each containing d steps.

Let us fix an execution of the algorithm through the end of stage s− 1. Consider stage s. We
assume that the adversary delivers to a processor all messages sent in stage s at the end of stage s,
provided the processor is not delayed at the end of stage s (any such message is processed by the
receivers at a later time). Let Us ⊆ T denote set of tasks that remain unperformed by the end of
stage s− 1. Here, by the adversarial strategy (no message is received and processed during stage s),
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processor 1

delayed

delayed

 –a time unit when a task outside set Js was selected by a processor

  –a time unit when a task from set Js was selected by a processor

processor 5

processor 4

processor 3

processor 2

Fig. 1. Strategy of the adversary during stage s, where p = d = 5. Using the set Js, which exists by Lemma 3.3, the
adversary delays a processor from the moment where it wants to perform a task from Js. Lemma 3.3 guarantees that at
least a fraction of processors will not be delayed during stage s, with high probability.

given that the execution is fixed at the end of stage s− 1, one can fix a distribution of processor i
performing the set of tasks Y during stage s—this distribution is given by the probabilities pi(Y).
The adversary derives the set Js ⊆ Us, using Lemma 3.3 according to the set of all processors, the set
of the unperformed tasks Us, and the distributions pi(Y) fixed at the beginning of stage s according
to the action of processors i in stage s. (In applying Lemma 3.3 we use the same notation, except
that the quantities are subscripted according to the stage number s.)

The adversary additionally delays any processor i, not belonging to some set Ps, that attempts
to perform a task from Js before the end of stage s. The set Ps is defined on-line (this is one of the
difference between the adversarial constructions in the proofs of the lower bounds for deterministic
and randomized Do-All algorithms): at the beginning of stage s set Ps contains all processors; every
processor i that is going to perform some task z ∈ Js at time � in stage s is delayed till the end of
stage s and removed from set Ps. We illustrate the adversarial strategy for five processors and d = 5
in Fig. 1.

We now give additional details of the adversarial strategy. Suppose us = |Us| > 0 tasks remain
unperformed at the beginning of stage s. As described above, we apply Lemma 3.3 to the setUs and
probabilities pi(Y) to find, at the very beginning of stage s, the set Js ⊆ Us such that the probability
that there exists a subset of processors Ps of cardinality p/64 such that none of them would perform
any tasks from Js during stage s is at least 1 − e−p/512. Next, during stage s the adversary delays (to
the end of stage s) all processors that (according to the random choices during stage s) are going
to perform some task from Js. By Lemma 3.3, the set Ps of not-delayed processors contains at least
p − 63p/64 � p/64 processors, and the set of the remaining tasks Us+1 ⊇ Js contains at least

us
d+1

tasks, all with probability at least 1 − e−p/512. If this happens, we call stage s successful.
It follows that the probability, that every stage s < logd+1 t is successful is at least 1 − e−p/512 ·

logd+1 t.Hence, using theassumption for this case,with theprobability at least 1 − e−p/512 · logd+1 t �
1/2, at the beginning of stage s there will be at least t · ( 1

d+1

)logd+1 t−1
> 1 unperformed tasks and
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work will be at least (logd+1 t − 1) · dp/64, since the work in one successful stage is at least p/64 (the
number of undelayed processors) times d (the duration of one stage). It follows that the expected
work of this algorithm in the presence of our adversary is �(p d logd+1 t) = �(p d logd+1(d + t)),
because 1 � d �

√
t. This completes the proof of Case 2.

Case 3. Inequality d >
√
t holds.

Here, we follow similar reasoning as in the Case 2, except that we consider a single stage. Consider
first min{d , t/6} steps. Let T be the set of all tasks, and pi(Y) denote the probability that proces-
sor i ∈ V performs tasks in Y ⊆ T of cardinality min{d , t/6} during the considered steps. Applying
Lemma 3.3 we obtain that at least p/64 processors are undelayed during the considered steps, and
after these steps at least min{d ,t/6}

d+1 � 1 tasks remain unperformed, all with the probability at least 1 −
e−p/512. Since 1 � logd+1(d + t) < 2, work is �(p min{d , t/6}) = �(p min{d , t} logd+1(d + t)). This
completes the proof of the third case and of the theorem. �

4. Contention of permutations

In this section, we extend and generalize the notion of contention of permutations [2], and study
its properties. We use braces 〈· · ·〉 to denote an ordered list. For a list L and an element a, we use the
expression a ∈ L to denote the element’s membership in the list, and the expression L− S to stand
for L with all elements in S removed.

We next provide a motivation for the material in this section. Consider the situation where
two asynchronous processors, p1 and p2, need to perform t independent tasks with known unique
identifiers from the set [t] = {1, . . . , t}. Assume that before starting a task, a processor can check
whether the task is complete; however, if both processors work on the task concurrently, then the
task is done twice. We are interested in the number of tasks done redundantly. Let +1 = 〈a1, . . . , at〉
be the sequence of tasks giving the order in which p1 intends to perform the tasks. Similarly, let
+2 = 〈as1 , . . . , ast 〉 be the sequence of tasks of p2. We can view +2 as +1 permuted according to
, = 〈s1, . . . , st〉 (+1 and +2 are permutations). With this, it is possible to construct an asynchronous
execution for p1 and p2, where p1 performs all t tasks by itself, and any tasks that p2 finds to be
unperformed are performed redundantly by both processors.

In the current context, it is important to understand how does the structure of +2 affect the num-
ber of redundant tasks. Clearly, p2 may have to perform task as1 redundantly. What about as2? If
s1 > s2 then by the time p2 gets to task as2 , it is already done by p1 according to +1. Thus, in order for
as2 to be done redundantly, it must be the case that s2 > s1. It is easy to see, in general, that for task
asj to be done redundantly, it must be the case that sj > max{s1, . . . , sj−1}. Knuth [17] refers to such
sj as a left-to-right maximum of ,. The total number of tasks done redundantly by p2 is thus the
number of left-to-rightmaxima of ,. Not surprisingly, this number isminimizedwhen , = 〈t, . . . , 1〉,
i.e, when +2 is the reverse order of +1, and it is maximized when , = 〈1, . . . , t〉, i.e., when +1 = +2.
In this section, we will define the notion contention of permutations that captures the relevant
left-to-right maxima properties of permutations that are to be used as processor schedules.

Now we proceed with formal development. Consider a list of some idempotent computational
jobswith identifiers from the set [n] = {1, . . . , n}. (Wemake the distinction between tasks and jobs for
convenience to simplify algorithm analysis; a job may be composed of one or more tasks.) We refer
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Fig. 2. Algorithm ObliDo.

to a list of job identifiers as a schedule. When a schedule for n jobs is a permutation of job identifiers
+ in Sn, we call it a n-schedule. Here, Sn is the symmetric group, the group of all permutations on
the set [n]; we use the symbol ◦ to denote the composition operator, and un to denote the identity
permutation. For a n-schedule + = 〈+(1), . . . ,+(n)〉 a left-to-right maximum (see Knuth [17, vol. 3,
p. 13]) is an element +(j) of + that is larger than all of its predecessors, i.e., +(j) > maxi<j{+(j − i)}.

Given a n-schedule+, we define lrm(+) to be the number of left-to-rightmaxima in the n-schedule
+ (see [2]). For a list� = 〈+0, . . . ,+n−1〉 of permutations from Sn and a permutation - in Sn, the con-
tention of � with respect to - is defined as Cont(�, -) = ∑n−1

u=0 lrm(-−1 ◦ +u). The contention of
the list of schedules � is defined as Cont(�) = max-∈Sn{Cont(�, -)}. Note that for any �, we have
n � Cont(�) � n2. A family of permutations with low contention was introduced in [2], where the

following is shown
(
Hn is the nth harmonic number, Hn = ∑n

j=1
1
j

)
.

Lemma 4.1. [2] For any n > 0 there exists a list of permutations � = 〈+0, . . . ,+n−1〉 with Cont(�) �
3nHn = �(n log n).

For a constant n, a list � with Cont(�) � 3nHn can be found by exhaustive search. This costs
only a constant number of operations on integers (however, this cost might be of order (n!)n).

4.1. Contention and oblivious tasks scheduling

Assume now that n distinct asynchronous processors perform the n jobs such that processor i
performs the jobs in the order given by +i in �. We call this oblivious algorithm ObliDo and give
the code1 in Fig. 2. (Here, each “processor” may be modeling a group of processors following the
same sequence of activities.)

Since ObliDo does not involve any coordination among the processors the total of n2 jobs are
performed (counting multiplicities). However, it was shown [2] that if we count only the job ex-
ecutions such that each job has not been previously performed by any processor, then the total
number of such job executions is bounded by Cont(�), again counting multiplicities. We call such
job executions primary; we also call all other job executions secondary. Note that the number of
primary executions cannot be smaller than n, since each job is performed at least once for the first
time. In general, this number is going to be between n and n2, because several processors may be
executing the same job concurrently for the first time.

1 We borrow the parallel parbegin/parend notation, but of course the processors have no shared memory.
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Note that while an algorithm solving the Do-All problem may attempt to reduce the number
of secondary job executions by sharing information about complete jobs among the processors,
it is not possible to eliminate (redundant) primary job executions in the asynchronous model we
consider. The following lemma [2] formalizes the relationship between the primary job executions
and the contention of permutations used as schedules.

Lemma 4.2 ([2]). In algorithmObliDowith n processors, n tasks, and using the list� of n permutations,
the number of primary job executions is at most Cont(�).

4.2. Generalized contention

Nowwegeneralize thenotionof contentionanddefine d-contention. For a schedule+ = 〈+(1), . . . ,
+(n)〉, an element +(j) of + is a d-left-to-right maximum (or d-lrm for short) if the number of ele-
ments in + preceding and greater than +(j) is less than d , i.e., |{i : i < j ∧ +(i) > +(j)}| < d .

Given a n-schedule +, we define (d)-lrm(+) as the number of d-lrm’s in the schedule +. For a list
� = 〈+0, . . . ,+p−1〉 of permutations from Sn and a permutation - in Sn, the d-contention of � with
respect to - is defined as

(d)-Cont(�, -) =
p−1∑
u=0

(d)-lrm(-−1 ◦ +u) .

The d-contention of the list of schedules � is defined as

(d)-Cont(�) = max
-∈Sn

{(d)-Cont(�, -)} .

We first show a lemma about the d-contention of a set of permutations with respect to un, the
identity permutation.

Lemma 4.3. Let � be a list of p random permutations from Sn. For every fixed positive integer d , the
probability that (d)-Cont(�, un) > n ln n+ 8p d ln(e + n/d) is at most e−(n ln n+7p d ln(e+ n

3d )) ln(7/e).

Proof. For d � n/5 the thesis is obvious. In the remainder of the proof we assume d < n/5.
First, we describe a well-known method for generating a random schedule by induction on the

number of elements n′ � n to be permuted. For n′ = 1 the schedule consists of a single element
chosen uniformly at random. Suppose we can generate a random schedule of n′ − 1 different ele-
ments. Now, we show how to schedule n′ elements uniformly and independently at random. First,
we choose uniformly and independently at random one element among n′ and put it as the last
element in the schedule. By induction we generate random schedule from remaining n′ − 1 elements
and put them as the first n′ − 1 elements. Simple induction proof shows that every obtained schedule
of n′ elements has equal probability (since the above method is a concatenation of two independent
and random events).

A random list of schedules � can be selected by using the above method p times, independently.
For a schedule + ∈ �, let X(+, i), for i = 1, . . . , n, be a random value such that X(+, i) = 1 if +(i)

is a d-lrm, and X(+, i) = 0 otherwise.
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Claim.For any+ ∈ �,X(+, i) = 1with probabilitymin{d/i, 1}, independently from other valuesX(+, j),
for j > i. Restated precisely, we claim that Pr[X(+, i) = 1|∧j>i X(+, j) = aj] = min{d/i, 1}, for any
0–1 sequence ai+1, . . . , an.

This is so because +(i)might be a d-lrm if during the (n− i − 1)th step of generating +, we select
uniformly and independently at random one among the d greatest remaining elements (there are i
remaining elements in this step). This proves the claim.

Note that

(1) for every + ∈ � and every i = 1, . . . , d , +(i) is d-lrm, and
(2) E

[∑
+∈�

∑n
i=d+1 X(+, i)

] = p d ·∑n
i=d+1

1
i = p d (Hn − Hd).

Applying the well-known Chernoff bound of the following form: for 0–1 independent random
variables Yj and any constant b > 0,

Pr
[∑

j Yj > E
[∑

j Yj

]
(1 + b)

]
<
(

eb

(1+b)1+b
)E [∑

j Yj

]
< e

−E
[∑

j Yj

]
(1+b) ln 1+b

e ,

and using the fact that 2 + n ln n
p d(Hn − Hd)

> 0, we obtain

Pr


∑
+∈�

n∑
i=d+1

X(+, i) > n ln n+ 3p d(Hn − Hd)




= Pr


∑
+∈�

n∑
i=d+1

X(+, i) > p d(Hn − Hd)

(
1 +

(
2 + n ln n

p d(Hn − Hd)

))
� e

−(n ln n+3p d(Hn−Hd)) ln n ln n+3p d(Hn−Hd )
e·p d(Hn−Hd )

� e−[n ln n+3p d(Hn−Hd)] ln(3/e) .

Since ln i � Hi � ln i + 1 and n > 5d , we obtain that

Pr

[∑
+∈�

n∑
i=1

X(+, i) > n ln n+ 5p d ln
(
e + n

d

)]

� Pr


∑
+∈�

n∑
i=d+1

X(+, i) > n ln n+ 3p d(Hn − Hd)+ p d




� e−[n ln n+3p d(Hn−Hd)] ln(3/e) . �

Now we generalize the result of Lemma 4.3.

Theorem 4.4. For a random list of schedules � containing p permutations from Sn, the event:
“for every positive integer d , (d)-Cont(�) > n ln n+ 8p d ln(e + n/d),′′

holds with probability at most e−n ln n·ln(7/e2)−p .
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Proof. For d � n/5 the result is straightforward, moreover the event holds with probability 0. In
the following, we assume that d < n/5.

Note that since � is a random list of schedules, then so is ,−1 ◦�, where , ∈ Sn is an arbitrary
permutation. Consequently, by Lemma 4.3, (d)-Cont(�, ,) > n ln n+ 8p d ln(e + n/d) holds with
probability at most e−[n ln n+7p d ln(e+ n

3d )] ln 7
e .

Hence, the probability that a random list of schedules � has d-contention greater than n ln n+
8p d ln(e + n/d) is at most

n! · e−[n ln n+7p d ln(e+ n
3d )] ln

7
e � en ln n−[n ln n+7p d ln(e+ n

3d )] ln
7
e

� e
−n ln n·ln 7

e2
−7p d ln(e+ n

d ) .

Then the probability that, for every d , (d)-Cont(�) > n ln n+ 8p d ln(e + n/d), is at most

∞∑
d=1

Pr
[
(d)-Cont(�) > n ln n+ 8p d ln(e + n/d)

]

�
n/5−1∑
d=1

e−n ln n·ln(7/e2)−7p d ln(e+n/d) +
∞∑

d=n/5
0

� e−n ln n·ln(7/e2) ·
n/5−1∑
d=1

(e−7p )d

� e−n ln n·ln(7/e2) · e−7p

1 − e−7p

� e−n ln n·ln(7/e2)−p . �

Using the probabilistic method we obtain the following.

Corollary 4.5. There is a list of p schedules � from Sn such that (d)-Cont(�) � n log n+ 8p d ln(e +
n/d), for every positive integer d.

We put our generalized notion of contention to use in the delay-sensitive analysis of work-
performing algorithms in Section 6.

5. Deterministic algorithms DA

We now present a deterministic algorithm for Do-All with p processors and t tasks. We show
that its work W is O(tpε + p min{t, d}�t/d�ε) for any constant ε > 0, when t � p , and its message
complexity M is O(p · W).

5.1. Construction of algorithm DA(q)

Let q be some constant such that 2 � q � p . We assume that the number of tasks t is an integer
power of q, specifically let t = qh for some h ∈ �. When the number of tasks is not a power of q
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we can use a standard padding technique by adding just enough “dummy” tasks so that the new
number of tasks becomes a power of q; the final results show that this padding does not affect
the asymptotic complexity of the algorithm. We also assume that logq p is a positive integer. If
it is not, we pad the processors with at most qp “infinitely delayed” processors so this assump-
tion is satisfied; in this case the upper bound is increased by a (constant) factor of at most q.
The algorithm uses a list of q permutations � = 〈+0, . . . ,+q−1〉 from Sq such that � has the min-
imum contention among all such lists. We define a family of algorithms, where each algorithm
is parameterized by q, and a list � with the above contention property. We call this algorithm
DA(q). In this section, we first present the algorithm for p � t, then state the parameterization for
p < t.

Algorithm DA(q), utilizes a q-ary boolean progress tree with t leaves, where the tasks are as-
sociated with the leaves. Initially, all nodes of the tree are 0 (false) indicating that no tasks have
been performed. Whenever a processor learns that all tasks in a subtree rooted at a certain node
have been performed, it sets the node to 1 (true) and shares the news with all other processors. Each
processor, acting independently, searches for work in the smallest immediate subtree that has re-
maining unperformed tasks. It then performs any tasks it finds, and moves out of that subtree when
all work within it is completed. When exploring the subtrees rooted at an interior node at height m,
a processor visits the subtrees in the order given by one of the permutations in �. Specifically, the
processor uses the permutation +s such that s is the value of the m-th digit in the q-ary expansion
of the processor’s identifier.

5.1.1. Data structures
Given the t tasks, the progress tree is a q-ary ordered tree of height h, where t = qh. The num-

ber of nodes in the progress tree is l = ∑h−1
i=0 q

i = (qh+1−1)/(q−1) = (qt−1)/(q−1). Each node of
the tree is a boolean, indicating whether the subtree rooted at the node is done (value 1) or not
(value 0).

The progress tree is stored in a boolean array Tree[0..l− 1], where Tree[0] is the root, and the q
children of the interior node Tree[n] being the nodes Tree[qn+ 1],Tree[qn+ 2], . . . ,Tree[qn+ q].
The space occupied by the tree is O(t). The t tasks are associated with the leaves of the progress
tree, such that the leaf Tree[n] corresponds to the task Task(n+ t + 1 − l).

We represent the pid of each of the p processors in terms of its q-ary expansion. We care on-
ly about the h least significant q-ary digits of each pid (thus when p > t several processors may be
indistinguishable in the algorithm). The q-ary expansions of each pid is stored in the array x[0..h− 1].

5.1.2. Control flow
The code is given in Fig. 3. Each of the p processors executes two concurrent threads. One thread

(lines 10–14) traverses the local progress tree in search work, performs the tasks, and broadcasts
the updated progress tree. The second thread (lines 20–26) receives messages from other processors
and updates the local progress tree. (Each processor is asynchronous, but we assume that its two
threads run at approximately the same speed. This is assumed for simplicity only, as it is trivial to
explicitly schedule the threads on a single processor.) Note that the updates of the local progress
tree Tree are always monotone: initially each node contain 0, then once a node changes its value to
1 it remains 1 forever. Thus, no issues of consistency arise.
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Fig. 3. The deterministic algorithm DA (p � t).

The progress tree is traversed using the recursive procedure Dowork (lines 40–54). The order of
traversals within the progress tree is determined by the list of permutations � = 〈+0,+1, . . . ,+q−1〉.
Each processor uses, at the node of depth m, the mth q-ary digit x[m] of its pid to select the permu-
tation +x[m] from �. The processor traverses the q subtrees in the order determined by +x[m] (lines
47–49), but it traverses within a subtree only if the corresponding bit in the progress tree is not set
(line 43). In other words, each processor pid traverses its progress tree in a post-order fashion using
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the q-ary digits of its pid and the permutations in � to establish the order of the subtree traversals,
except that when the messages from other processors are received, the progress tree of processor
pid is potentially pruned based on the progress of other processors.

5.1.3. Parameterization for large number of tasks
When the number of tasks t′ exceeds the number of processors p , we divide the tasks into jobs,

where each job consists of atmost �t′/p� tasks. The algorithm in Fig. 3 is then usedwith the resulting
p jobs (p = t), where Task(j) now refers to the job number j (1 � j � t).

5.1.4. Correctness
We claim that algorithm DA(q) correctly solves the Do-All problem. This follows from the ob-

servation that a processor leaves a subtree by returning from a recursive call to Dowork if and only
if the subtree contains no unfinished work and its root is marked accordingly. We formalize this as
follows.

Lemma 5.1. In any execution of algorithm DA(q), whenever a processor returns from a call to Do-
work(n,m), all tasks associated with the leaves that are the descendants of node n have been performed.

Proof. First, by code inspection (Fig. 3, lines 45, 51, and 52), we note that processor pid reaching
a leaf n at depth m = h broadcasts its Treepid with the value Treepid [n] set to 1 if and only if it
performs the task corresponding to the leaf.
We now proceed by induction on m.
Base case, m = h:
In this case, processor pid makes the call to Dowork(n,m). If Treepid [n] = 0, as we have already
observed, the processor performs the task at the leaf (line 45), broadcasts its Treepid with the leaf
value set to 1 (lines 51–52), and returns from the call. IfTreepid [n] /= 0 then the processor must have
received a message from some other processor indicating that the task at the leaf is done. This can
be so if the sender itself performed the task (as observed above), or the sender learned from some
other processor the fact that the task is done.

Inductive step, 0 � m < h:
In this case, processor pid making the call to Dowork(n,m) executes q calls to Dowork(n′,m+
1), one for each child n′ of node n (lines 47–49). By inductive hypothesis, each return from Do-
work(n′,m+ 1) indicates that all tasks associated with the leaves that are the descendants of node
n′ have been performed. The processor then broadcasts its Treepid with the the value Treepid [n]
set to 1 (lines 51–52), indicating that all tasks associated with the leaves that are the descendants of
node n have been performed, and returns from the call. �
Theorem 5.2. Any execution of algorithmDA(q) terminates in finite time having performed all tasks.

Proof. The progress tree used by the algorithm has finite number of nodes. By code inspection, each
processor executing the algorithm makes at most one recursive call per each node of the tree. Thus,
the algorithm terminates in finite time. By Lemma 5.1, whenever a processor returns from the call to
Dowork(n(= 0),m(= 0)), all tasks associated with the leaves that are the descendants of the node
n = 0 are done, and the value of node is set to 1. Since this node is the root of the tree, all tasks are
done. �
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5.2. Complexity analysis of algorithm DA(q)

We start by showing a lemma that relates the work of the algorithm, against the d-adversary, to
its recursive structure.

We consider the case p � t. Let W(p , t, d) denote work of algorithm DA(q) through the first
global step in which some processor completes the last remaining task and broadcasts the message
containing the progress tree where T [0] = 1. We note that W(p , 1, d) = O(p). This is because the
progress tree has only one leaf. Each processor makes a single call to Dowork, performs the sole
task and broadcasts the completed progress tree.

Lemma 5.3. For p-processor, t-task algorithm DA(q) with p � t and t and p divisible by q:

W(p , t, d) = O(Cont(�) · W(p/q, t/q, d)+ p · q · min{d , t/q}) .

Proof. Since the root of the progress tree has q children, each processor makes the initial call to
Dowork(0, 0) (line 13) and then (in the worst case) it makes q calls to Dowork (lines 47–49) corre-
sponding to the children of the root. We consider the performance of all tasks in the specific subtree
rooted at a child of the progress tree as a job, thus such a job consists of all invocations of Dowork
on that subtree. We now account separately for the primary and secondary job executions (recall
the definitions in Section 4).

Observe that the code in lines 47–49 of DA is essentially algorithm ObliDo (lines 02–04 in Fig.
2) and we intend to use Lemma 4.2. The only difference is that instead of q processors we have
q groups of p/q processors where in each group the pids differ in their q-ary digit corresponding
to the depth 0 of the progress tree. From the recursive structure of algorithm DA it follows that
the work of each such group in performing a single job is W(p/q, t/q, d), since each group has p/q
processors and the job includes t/q tasks. Using Lemma 4.2 the primary task executions contribute
O(Cont(�) · W(p/q, t/q, d)) work.

If messages were delivered without delay, there would be no need to account for secondary
job executions because the processors would instantly learn about all primary job completions.
Since messages can be delayed by up to d time units, each processor may spend up to d time
steps, but no more than O(t/q) steps performing a secondary job (this is because it takes a
single processor O(t/q) steps to perform a post-order traversal of a progress tree with t/q

leaves). There are q jobs to consider, so for p processors this amounts to O(p · q · min{d , t/q})
work.

For each processor there is also a constant overhead due to the fixed-size code executed per
each call to Dowork. The work contribution is O(p · q). Finally, given the assumption about
thread scheduling, the work of message processing thread does not exceed asymptotically the
work of the Dowork thread. Putting all these work contributions together yields the desired
result. �
We now prove the following theorem about work.

Theorem 5.4.Consider algorithmDA(q) with p processors and t tasks where p � t. Let d be the max-
imum message delay. For any constant ε > 0 there is a constant q such that the algorithm has work
W(p , t, d) = O(p min{t, d}�t/d�ε).
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Proof. Fix a constant ε > 0. Without loss of generality we can assume that ε � 1. Let a be the
sufficiently large positive constant “hidden” in the big-oh upper bound for W(p , t, d) in Lemma
5.3. We consider a constant q > 0 such that logq(4a log q) � ε. Such q exists since limq→∞ 3 =
limq→∞ logq(4a log q) = 0 (however, q is a constant of order 2

log(1/ε)
ε ).

First, suppose that logq t and logq p are positive integers. We prove by induction on p and t that

W(p , t, d) � q · tlogq(4a log q) · p · d 1−logq(4a log q) .

For the base case of t = 1 the statement is correct sinceW(p , 1, d) = O(p). For t > 1 we choose the list
of permutations� with Cont(�) � 3q log q per Lemma 4.1. Due to our choice of parameters, logq t
is an integer and t � p . Let 3 stand for logq(4a log q). Using Lemma 5.3 and inductive hypothesis
we obtain

W(p , t, d) � a ·
(
3q log q · q ·

( t
q

)3 · p
q

· d 1−3 + p · q · min{d , t/q}
)

� a ·
((
q · t3 · p · d 1−3) · 3 log q · q−3 + p · q · min{d , t/q}

)
.

We now consider two cases:

Case 1: d � t/q. It follows that

p · q · min{d , t/q} = p qd � p qd 1−3 ·
( t
q

)3
.

Case 2: d > t/q. It follows that

p · q · min{d , t/q} = p t � p qd 1−3 ·
( t
q

)3
.

Putting everything together we obtain the desired inequality

W(p , t, d) � a
((
q · t3 · p · d 1−3 · q−3) 4 log q) � q · t3 · p · d 1−3 .

To complete the proof, consider any t � p . We add t′ − t, where t′ − t < qt − 1, new “dummy” tasks
and p ′ − p , where p ′ − p < qp − 1, new “virtual” processors, such that logq t

′ and logq p ′ are positive
integers. We assume that all “virtual” processors are delayed to infinity. It follows that

W(p , t, d) � W(p ′, t′, d) � q · (t′)3p ′ · d 1−3 � q2+3t3p · d 1−3 .

Since 3 � ε, we obtain thatworkof algorithmDA(q) isO(min{tεp d 1−ε, tp}) = O(p min{t, d}�t/d�ε),
which completes the proof of the theorem. �
Now we consider the case p < t. Recall that in this case we divide the t tasks into p jobs of size at
most �t/p�, and we let the algorithm work with these jobs. It takes a processor O(t/p)work (instead
of a constant) to process a single job.
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Theorem 5.5. Consider algorithm DA(q) with p processors and t tasks where p < t. Let d be the
maximum message delay. For any constant ε > 0 there is a constant q such that DA(q) has work
W(p , t, d) = O(tpε + p min{t, d}�t/d�ε).
Proof. We use Theorem 5.4 with p jobs (instead of t tasks), where a single job takes O(t/p) units
of work. The upper bound on the maximal delay for receiving messages about the completion of
some job is d ′ = �p d/t� = O(1 + p d/t) “job units,” where a single job unit takes �(t/p) time. We
obtain the following bound on work:

O
(
p min{p , d ′}�p/d ′�ε · t

p

)
= O

(
min

{
p2, pεp(d ′)1−ε

}
· t
p

)

= O
(
min

{
tp , tpε + ptεd 1−ε

})
= O

(
tpε + p min{t, d}

⌈
t

d

⌉ε)
. �

Finally, we consider message complexity.

Theorem 5.6. Algorithm DA(q) with p processors and t tasks has message complexity M(p , t, d) =
O(p · W(p , t)).
Proof. In each step, a processor broadcasts at most one message to p − 1 other processors. �

6. Permutation algorithms PA

In this section, we present and analyze a family of algorithms that are simpler than algorithms
DA and that directly rely on permutation schedules. Two algorithms are randomized (algorithms
PaRan1 and PaRan2), and one is deterministic (algorithm PaDet).

The common pattern in the three algorithms is that each processor, while it has not ascertained
that all tasks are complete, performs a specific task from its local list and broadcasts this fact to
other processors. The known complete tasks are removed from the list. The code is given in Fig.
4. The common code for the three algorithms is in lines 00–29. The three algorithms differ in two
ways:

(1) The initial ordering of the tasks by each processor, implemented by the call to procedureOrder
on line 20.

(2) The selection of the next task to perform, implemented by the call to function Select on line
24.

We now describe the specialization of the code made by each algorithm (the code for Or-
der+Select).

As with algorithm DA, we initially consider the case of p � t. The case of p < t is obtained by
dividing the t tasks into p jobs, each of size at most �t/p�. In this case we deal with jobs instead of
tasks in the code of permutation algorithms.
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Fig. 4. Permutation algorithm and its specializations for PaRan1, PaRan2, and PaDet (p � t).

Randomized algorithm PaRan1. The specialized code is in Fig. 4, lines 40–44. Each processor pid
performs tasks according to a local permutation +pid . These permutations are selected uniformly
at random at the beginning of computation (line 41), independently by each processor. We refer
to the collection of these permutation as �. The drawback of this approach is that the number of
random selections is p · min{t, p}, each of O(logmin{t, p}) random bits (we have min{t, p} above
because when p < t, we use p jobs, each of size �t/p�, instead of t tasks).

Randomized algorithm PaRan2. The specialized code is in Fig. 4, lines 50–52. Initially, the tasks are
left unordered. Each processor selects tasks uniformly and independently at random, one at a time
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(line 52). Clearly, the expected work EW is the same for algorithms PaRan1 and PaRan2, however,
the (expected) number of random bits needed by PaRan2 becomes at most EW · log t and, as we
will see, this is an improvement.

Deterministic algorithm PaDet. The specialized code is in Fig. 4, lines 60–64. We assume the exis-
tence of the list of permutations� chosen per Corollary 4.5. Each processor pid permutes its list of
tasks according to the local permutation +pid ∈ �.

6.1. Complexity analysis

In the analysis, we use the quantity n defined as n = min{t, p}. When t < p , n represents the num-
ber of tasks to be performed.When t � p , n represents the number of jobs (of size atmost �t/p�) to be
performed; in this case, each task in Fig. 4 represents a single job. In the sequel we continue referring
to “tasks” only—from the combinatorial perspective there is no distinction between a task and a job,
and the only accounting difference is that a task costs �(1) work, while a job costs �(�t/p�) work.

Recall that we measure global time units according to the time steps defined to be the smallest
time between any two clock-ticks of any processor (Section 2). Thus, during any d global time steps
no processor can take more than d local steps.

For the purpose of the next lemma, we introduce the notion of a (d , ,)-adversary, where , is a
permutation of t tasks. This is a specialization of the d-adversary that schedules the asynchronous
processors so that each of the t tasks is performed for the first time in the order given by ,. More
precisely, if the execution of the task ,i is completed for the first time by some processor at the
global time �i (unknown to the processor), and the task ,j , for any 1 � i < j � t, is completed for
the first time by some processor at time �j , then �i � �j . Note that any execution of an algorithm
solving the Do-All problem against the d-adversary corresponds to the execution against some
(d , ,)-adversary for the specific ,.

Lemma 6.1. For algorithms PaDet and PaRan1, the respective worst-case work and expected work
is at most (d)-Cont(�) against any d-adversary.

Proof. Suppose processor i starts performing task z at (real) time �. By the definition of d-adver-
sary, no other processor successfully performed task z and broadcast its message by time (� − d).
Consider (d , ,)-adversary, for any permutation , ∈ Sn.

For each processor i, let Ji contain all pairs (i, r) such that i performs task +i(r) during the com-
putation. We construct function L from the pairs in the set

⋃
i Ji to the set of all d-lrm’s of the list

,−1 ◦� and show that L is a bijection. We do the construction independently for each processor i.
It is obvious that (i, 1) ∈ Ji, and we let L(i, 1) = 1. Suppose that (i, r) ∈ Ji and we defined function L
for all elements from Ji less than (i, r) in lexicographic order. We define L(i, r) as the first s � r such
that (,−1 ◦ +i)(s) is a d-lrm not assigned by L to any element in Ji .

Claim. For every (i, r) ∈ Ji, L(i, r) is well defined.
For r = 1 we have L(i, 1) = 1. For the (lexicographically) first d elements in Ji this is also easy to

show. Suppose L is well defined for all elements in Ji less than (i, r), and (i, r) is at least the (d + 1)st
element in Ji . We show that L(i, r) is also well defined. Suppose, to the contrary, that there is no
position s � r such that (,−1 ◦ +i)(s) is a d-lrm and s is not assigned by L before the step of the
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construction for (i, r) ∈ Ji . Let (i, s1) < . . . < (i, sd ) be the elements of Ji less than (i, r) such that
(,−1 ◦ +i)(L(i, s1)), . . . , (,−1 ◦ +i)(L(i, sd )) are greater than (,−1 ◦ +i)(r). They exist from the fact,
that (,−1 ◦ +i)(r) is not a d-lrm and all “previous” d-lrm’s are assigned by L. Let �r be the global
time when task +i(r) is performed by i. Obviously task +i(L(i, s1)) has been performed at time that
is at least d + 1 local steps (and hence also global time units) before �r . It follows from this and the
definition of (d , ,)-adversary, that task +i(r) has been performed by some other processor in a local
step, which ended also at least (d + 1) time units before �r . This contradicts the observation made
at the beginning of the proof of lemma. This proves the claim.

That L is a bijection follows directly from the definition of L. It follows that the number of per-
formances of tasks, which is equal to the total number of local steps until completion of all tasks,
is at most (d)-Cont(�, ,), against any (d , ,)-adversary. Hence, work is at most (d)-Cont(�) against
the d-adversary. �

Theorem 6.2. Algorithms PaRan1 and PaRan2 perform expected work EW (p , t, d) =
O(t log n+ p min{t, d} log(2 + t/d)) and have expected communication EM (p , t, d) = O(tp log n+
p2 min{t, d} log(2 + t/d)).

Proof. We prove the work bound for algorithm PaRan1 using the random list of schedules
� and Theorem 4.4, together with Lemma 6.1. If p � t we obtain the formula O(t log t +
p min{t, d} log(2 + t/d)) with high probability, in view of Theorem 4.4, and the obvious upper
bound for work is tp . If p < t then we argue that d ′ = �p d/t� is the upper bound, in terms of
the number of “job units,” that it takes to deliver a message to recipients, and consequently
we obtain the formula

O(p log p + p d ′ log(2 + p/d ′)) · O(t/p) = O(t log p + p d log(2 + t/d)),

which, together with the upper bound tp , yields the formula

O(t log p + p min{t, d} log(2 + t/d)).

Since the only difference in the above two cases is the factor log t that becomes log p in the case
where p < t, we conclude the final formula for work. All these derivations hold with the proba-
bility at least 1 − e−n ln n·ln(7/e2)−p . Since the work can be in the worst-case tp with probability at
most e−n ln n·ln(7/e2)−p , this contributes at most the summand t to the expected work.

Message complexity follows from the fact that in every local step each processor sends p − 1
messages. The same result applies to PaRan2 as observation in the description of the the
algorithm. �
Theorem 6.3.There exists a deterministic list of schedules� such that algorithm PaDet performswork
W(p , t, d) = O(t log n+ p min{t, d} log(2 + t/d)) and has communicationM(p , t, d) = O(tp log n+ p2

min{t, d} log(2 + t/d)).

Proof. The result follows from using the set � from Corollary 4.5 together with Lemma 6.1, using
the same derivation for work formula as in the proof of Theorem 6.2. Message complexity follows
from the fact, that in every local step each processor sends p − 1 messages. �
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We now specialize Theorem 6.2 for p � t and d � t and obtain our main result for algorithms
PaRan1 and PaRan2.

Corollary 6.4. Algorithms PaRan1 and PaRan2 perform expected work EW (p , t, d) = O(t log p +
p d log(2 + t/d)) and have expected communication EM (p , t, d) = O(tp log p + p2d log(2 + t/d)) for
any d < t, when p � t.

Finally, we specialize Theorem 6.3 for p � t and d � t and obtain our main result for algorithm
PaDet.

Corollary 6.5. There exists a list of schedules� such that algorithm PaDet performs workW(p , t, d) =
O(t log p + p d log(2 + t/d)) and has communicationM(p , t, d) = O(tp log p + p2d log(2 + t/d)), for
any d � t, when p � t.

7. Discussion and future Work

In this paper, we presented the first message-delay-sensitive analysis of the Do-All problem for
asynchronous processors. We gave a delay-sensitive bounds for the problem and presented de-
terministic and randomized algorithms that have subquadratic in p and t work complexity for
any message delay d as long as d = o(t). One of the two deterministic algorithms relies on large
permutations of tasks with certain combinatorial properties. This leads to the open problem of
how to construct such permutations efficiently. There also exists a gap between the upper and the
lower bounds shown in this paper. It will be very interesting to narrow the gap. Finally, while the
focus of this paper is on the work complexity, it is also important to investigate algorithms that
simultaneously control work and message complexity.

Appendix A. Proof of Lemma 3.2

Lemma 3.2 For 1 � d � √
u

1
4

�

(
u− d

u/(d + 1)

)
(

u

u/(d + 1)

) �
1
e
.

Proof. We have(
u− d

u/(d + 1)

)
(

u

u/(d + 1)

) = (u− d) · (u− d − 1) · · · (u− d − u
d+1 + 1)

u · (u− 1) · · ·
(
u− u

d+1 + 1
)

=
(
1 − d

u

)
·
(
1 − d

u− 1

)
· · ·
(
1 − d

u− u
d+1 + 1

)
.
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For every i = 0, . . . , u
d+1 − 1 we can bound

(
1 − d

u− u
d+1 + 1

)
�
(
1 − d

u− i

)
�
(
1 − d

u

)
.

It follows, that

(
1 − d

u− u
d+1 + 1

) u
d+1

�

(
u− d

u/(d + 1)

)
(

u

u/(d + 1)

) �
(
1 − d

u

) u
d+1

,

and consequently, since

(
1 − d

u− u
d+1 + 1

) u
d+1

=
(
1 − d

u− u
d+1 + 1

) u− u
d+1+1
d

d
u− u

d+1+1
u
d+1

�
(
1
4

) d
u− u

d+1+1
u
d+1 =

(
1
4

) du
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�
1
4

and (
1 − d

u

) u
d+1

� e−
d
d+1 �

1
e
,

we obtain the thesis of the lemma. �
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