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ABSTRACT 

The graphs known as trees have natural analogues in higher dimensional simplicial 
complexes. As an extension of  Cayley's formula n ~-2, the number of  these k-dimensional 
trees on n-labeled vertices is shown to be (~.) (kn - k 2 + 1) T M .  

One view of  graphs is that  they are 1-dimensional simplicial complexes, 
so graphs can be studied in this more general setting. The most  elementary 
connected graphs are of  course trees, and these have direct analogs in 
higher dimensions. The main purpose of  this paper  is to obtain a formula  
for the number  of  these "k-dimensional  trees" with n labeled vertices. 
Some interesting identities are obtained as side products.  Cayley [3] first 
showed that  the number  of  labeled (1-dimensional) trees on n vertices is 
n '~-2, and we earlier announced [2] that  there are (~)(2n --  3) n-4 labeled 
2-dimensional trees. These are special cases of  our general formula.  

One definition of  a tree is inductive: a single vertex is a tree, and a tree 
with n § 1 vertices is obtained when an (n -7  1)-st vertex is added 
adjacent to one vertex in a tree with n vertices. An analogous definition 
is given for k-dimensional trees (henceforth called k-trees): a set of  k 
mutually adjacent vertices is a k-tree, and a k-tree with n § 1 vertices is 
obtained when an (n q- l)-st vertex is added adjacent to each of  k already 
mutual ly adjacent vertices in a k-tree with n vertices. (This definition treats 
k-trees as graphs. It is effectively equivalent to the following statement 
in terms of  simplicial complexes. A ( k -  1)-dimensional simplex is a 
k-tree, and a k-tree with n -7 1 vertices is obtained when a k-dimensional 
simplex is added to a k-tree with n vertices and has precisely a (k --  1)- 
dimensional face in common  with it. It  is really of  little consequence 
whether a k-tree is considered as a k-dimensional simplicial complex 
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or as the 1-dimensional skeleton thereof; we choose the graph theory 
terminology.) 

In line with the terminology of topology, we make the following 
definition: an r-cell of  a k-tree is a complete subgraph of r q- 1 vertices. 
Thus, vertices are 0-cells and edges are 1-cells. Furthermore, the building 
blocks of  k-trees are k-cells, with joins being made along (k -- l)-cells. 
The number of r-cells in a k-tree with n vertices can readily be computed 
to be 

or equivalently 

k k 

(k)n-q-r(n -k--1) 
r q - 1  

Thus, there are �89 --  k --  1) edges, as well as n -- k of the k-cells and 
n k -  k~'q - 1 of the ( k -  1)-cells. These last two numbers appear in 
ormula (I) for the number Tk(n) of labeled k-trees on n vertices. 

A k-tree on n vertices is called labeled when the integers from 1 to n 
have been assigned to its vertices (one-to-one). Two labeled k-trees are 
considered different when there exist two integers which are assigned to 
adjacent vertices in one graph but not in the other. 

THEOREM. The number o f  labeled k-trees on n vertices is 

Tk(n) = ( ; ) (kn - k~ -~ l ) n-k-2. (1) 

As mentioned earlier, this specializes to known results for the I- and 
2-dimensional cases. Our proof  is based on that of Dziobek [4] for Cayley's 
result. A combinatorial identity will be utilized, the proof of which will 
be given in two lemmas following this proof. 

PROOF: Let Rk(n) denote the number of labeled k-trees on n labeled 
vertices which are rooted at a particular (k -- 1)-cell (set of k mutually 
adjacent vertices). Because there are (~) ways of selecting this cell, the 
number of labeled k-trees rooted at any (k -- 1)-ceU is (~) Rk(n). Therefore, 
because the number of ( k -  1)-cells in a k-tree with n vertices is 
kn --  k 2 q- 1, 

(kn --  k 2 + 1)T~(n) = ( ; )  R~(n). (2) 
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Now consider the following method for constructing labeled k-trees 
on n vertices (for n > k). Begin with a k-cell (that is, k § 1 vertices and 
all corresponding edges), and on each of its (k -- 1)-cells put a rooted 
k-tree. How many such constructions are possible? First, the original 
k-cell can be chosen in (k~) ways, then there are (k + 1)! possible 
orderings of its (k -- 1)-cells. The number of ways of distributing the 
remaining n -- k -- I vertices among the k + 1 cells is the multinomial 
coefficient 

n - - k - - l )  
l I 12 " "  lk+ 1 

where il + i2 -J- "'" -~- ik+l  is a partition of n -- k -- 1 into non-negative 
terms. Finally, on thej-th (k -- 1)-cell there are Rk(k  + i~) possible rooted 
k-trees. Therefore, the number of constructions is 

n (n. .--k--.  1 k+l 
( k +  1 ) ( k +  1)! y, ) I - IRk(k+i t ) ,  (3) 

(n -k - - l )  \ l l  12 " ' "  l k + l  Jffil 

where the notation will indicate that the sum is to be taken over all 
partitions of n -- k -- I into k + 1 parts. 

However, each labeled k-tree is constructed more than once via this 
procedure, in fact, in (n - - k ) ( k  + 1)! ways. This is because there are 
(n -- k) possible k-cells on which it can be built and, from a given k-cell, 
there are the (k + 1)! possible orderings of its (k -- 1)-cells. Therefore, 
the quantity in (3) is equal to 

(n --  k ) ( k  § 1)! Tk(n). (4) 

Taken with (2), the equality of (3) and (4) implies 

n k 1 k+l  

(k-f- 1)Rk(n) (kn k 2q-- 1) E ( -- -- ) = --  I-I R~(k -q- it). 
(,~-k-~) it i2 "'" i~+1 ~-1 

This equation will be instrumental in an induction proof of the equality 

Rk(m) = (mk  --  k 2 + 1) m-k-1 (m >~ k). (5) 

Statement (5) is certainly true for m = k and m = k + 1. Assume n > k 
and that (5) holds for all values of m less than n. Then, since k + it < n, 

Rk(k + i~) = (kij + 1) '~-x 
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so that 

(k + l)Rk(n) = (kn -- k" + 1) 
n - - k - -  1 ) k+x 
il '2 1-I (ki~ -~- 1) ij-1. 

(n--k- l )  " ' "  Ik+l  j ~ l  

By Lemma 2, this reduces to 

(k + l) Rk(n) = (k + 1)(kn -- k 2 + 1) "-*-2, 

which completes the induction proof. 

The theorem now follows at once from a combination of equations 
(2) and (5). 

The identity used in proving our main theorem requires another 
identity in its proof. The proof of this additional identity relies on a 
formula of Abel [1]. 

LEMMA 1. For a :/: O, 

in (mt a ~ (bh + 1 ) h - l ( b m  - -  bh + 
h=O h 

= (a + 1)(bin + a + 1)m-L 

a)m-h-1 

(6) 

PROOF: Two equivalent forms of an identity due to Abel are the 
following. For c ~: 0, 

ra--1 

(X + C) m-I = C E (m -- 1)" (bh + c)h-a(x -- bh) "-n-1 
~=o h 

and 

(7) 

(X Af_ c)m-1 

,n-1 m -  1) 
= c  ~ ( j ( b ( m - - j - - 1 ) + c ) " - J - 2 ( x - - b ( m - - j - - 1 ) )  j. (8) 

In (7) l e t x = b m + a a n d c =  1; then 

m--1 

(bm + a + 1) ' '-1 = Z (m -- 1) (bh + 1)h-X(bm -- bh + a) ''-h-x. (9) 
h~O h 

In (8) let x = bm + 1, and c = a, and replace j by h -- 1; then 

h~x (h  -- 1)(bin --  bh + a)'-h-l(bh + l) n-1. (10) ( b m + a +  1) ' ~ - l = a  1 
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The addition of  a times (9) to (10) and the utilization of  a well-known 
property of  binomial coefficients yield 

(a § l)(bm + a + 1) "-1 

ra--1 

( h )  (bh + 1)h-X(bm --  bh q- a) m-~-I q- a(bm + a) m-1 = a 
h=l 

q- a(a)-l(bm q- 1),--1 

----a ~ ("~)(b~ + 1)~-~(bm-  bh + a) ~-~-~. 
h=0 

This completes the proof  of the lemma. 

LEMMA 2. 

( n - - k - - l )  k+l 
il i2 "'" " l-I (kij + 1) ~j-1 = (k =- 1)(kn - -  k 2 -4- 1) n-k-2, 

(n--k--l) lk+l j=l 

where the sum is over all (k + 1)-part partitions of  n - -  k - -  1. 

PROOF: This will be proved by a rather intricate induction on the 
number  of  terms in the partition, that is, the number of  sums. Notat ion 
which will be used is the following. Let' 

r-1 
I ~ = n - - k - - l - - ~ i j  for r = l , 2  ..... k + l .  

J=l 

Then in general 

k+l 
t ,= Ei,,  

J~r 

and in particular I1 = n --  k - -  1 and Ik.l  = ik+l �9 Further,  let 

Sk+l ----- (kik+a + 1) ik*l-~. 

Assuming that S~+1 has been given, let 

19 

S~ = i~=0 ([~)(ki~+l)@-xsg+l'il9 

Then, because a multinomial coefficient can be expressed as a product  
of  binomial coefficients, $1 is the sum given in the statement of  the lemma. 
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The induction will show (in reverse) that  

S ~ = ( k - - r + 2 ) ( k l r + k - - r + 2 )  x'-I for  r =  1,2 ..... k +  1. 

This is clearly true for r : k § 1. Assume that  it is true for r ---- p + 1. 
Then 

S T : (k - -  p ~- 1) • \( ]~ )(ki~ q- 1)i~-l(k/~+x -Jr- k - -  p + 1) x~+l-1. 
i~=0 iT 

N o w  in the  iden t i t y  (6) o f  L e m m a  1 let  a ----- k - -  p d- 1, b = k,  h = i~ ,  
a n d  m : I~ (so m - -  h ---- I~+a). I t  fo l lows  t h a t  

S~ ----- (k  - - p  + 2)(kI~ + k - - p  + 2) ~-1,  

wh ich  c o m p l e t e s  the  i n d u c t i o n  step.  The re fo re  

Sa : (k q- 1)(nk - -  k s q- I) T M  

a n d  the  l e m m a  is p ro v ed .  
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