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a b s t r a c t

A novel fabrication method using electroless and electrodeposited Ni/Ag/GDC for SOFC

anodes is presented. First a porous Ce0.9Gd0.1O2�x (GDC) scaffold was deposited on a YSZ

electrolyte by screen printing and sintering. The scaffold was then metallized with silver

using Tollens' reaction, followed by electrodeposition of nickel from a Watt's bath. The

electrodes (Ni/Ag/GDC) were tested in both symmetrical and fuel cell configurations. The

microstructures of the Ni/Ag/GDC anodes were analyzed using scanning electron micro-

scopy (SEM) and energy dispersive x-ray spectroscopy (EDX). Nano-particles of Ni formed in

the porous GDC scaffold provided triple phase boundaries (TPB). The electronic conduc-

tivity of the Ni/Ag/GDC (3.5/24.7/71.8 vol%) electrode was good even at relatively low Ni

volume fractions. The electrochemical performance was examined in different concen-

trations of humidified hydrogen (3% H2O) and over a range of temperatures (600e750 �C).

The total area specific resistance (ASR) of the anode at 750 �C in humidified 97 vol% H2 was

1.12 U cm2, with low-frequency polarization (R_l) as the largest contributor. The electrodes

were successfully integrated into a fuel cell and operated in both H2 and syngas.

© 2016 The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications

LLC. This is an open access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).
Introduction

Solid oxide fuel cells (SOFCs) could play a significant role in

sustainable energy futures because of their ability to convert a

diverse range of fuels to electricity at high efficiency. A typical

SOFC consists of dense yttria-stabilized zirconia (YSZ) as the

oxygen anion conducting electrolyte and Ni-cermets as the

anode. A variety ofmaterials are used as the cathode, including

doped manganites, cobaltites and ferrites. Ni is usually chosen
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as the metallic component of the anode because of its high

electronic conductivity and stability, excellent reforming

characteristics, and good electrocatalytic activity for electro-

chemical oxidation [1]. However, Ni can catalyze the deposition

of carbon on its surface when hydrocarbon fuels are used,

leading to cell deactivation under some conditions [2,3].

The performance of SOFC anodes is linked to the length of

the triple phase boundary (TPB), where the electrochemical

reactions occur. This region is dependent upon the optimi-

zation of anode porosity, microstructure and composition [4].
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The reaction sites can also be extended by using Ni/

Ce0.9Gd0.1O2�x (Ni/GDC) as compared to the widely used Ni/

YSZ anodematerials. GDC exhibits mixed ionic and electronic

conductivity in the reducing conditions found in an SOFC

anode, providing a GDC/gas interface or so-called double-

phase boundary (2 PB) that shows electrocatalytic activity

[5e7]. Moreover, GDC has the ability to enhance the electro-

catalysis of hydrocarbon oxidation, and enables improved

sulfur tolerance, via the Ce4þ/Ce3þ redox transition. It also

exhibits higher ionic conductivity than YSZ in the tempera-

ture range from 300 to 700 �C [8e13].

Ni/GDC anodes are commonly prepared by mechanically

mixing powders of NiO and GDC, followed by sintering at

~1300 �C and reducing in a hydrogen rich atmosphere [14,15]

However, this method requires a large volume of Ni (>30 vol

%) to achieve adequate electronic conductivity in the elec-

trodes. The impregnation or infiltration method enables the

formation of nano-sized oxide ormetal particles uniformly in a

porous scaffold matrix [16e18]. It allows the fabrication of

anode and cathode composites with a wide range of composi-

tions, particularly withmetals that cannot be processed at high

temperature (e.g. Cu) [19]. However, the impregnation method

is time consuming as it requires multiple steps to achieve

sufficient conductivity and hence may not be suitable for mass

production. Based on previous studies, ten successive metal

impregnation steps were required to achieve sufficient elec-

tronic conductivity throughout the electrode, demanding more

than 10 h for cell fabrication [20e22]. A faster impregnation-

irradiation technique (60 s/cycle) to accelerate conventional

impregnation methods has shown well distributed Ni in the

scaffold, however, repeated cycles can damage the thin scaf-

folds [23]. Therefore in this paper, we metallize the scaffold by

electroless and electrodeposition as an alternative to impreg-

nation as a fabrication method of scaffold electrodes.

Metallizing the scaffold by electroless and electrodeposi-

tion methods could be a scalable process due to its ability to

add a large amount of metal (including the low melting point

metals) to the porous ceramic scaffold in a fast process. An

electroless deposition involves chemically reducing metallic

ions or complexes onto a substrate in a controlled fashion [24].

Electrodeposition is a versatile technique since a metallic

coating is obtained on the surface of another metal or

conductive surface by the electroreduction of metal ions from

aqueous solutions [25]. This approach allows control of the

morphology of metal deposits and may be particularly useful

for the production of multilayer microstructures.

Electroless Ni deposition onto YSZ particles for Ni/YSZ

cermet anode fabrication has been carried out in several
Fig. 1 e Flowchart of GD
studies [26e28]. Among these studies, the lowest Ni content

that has been reported to result in sufficient electrical con-

ductivities for SOFC anode application is 20% vol Ni

(~160 S cm�1 at 750 �C) [26]. However, their development as

SOFC anodes is still at an early stage.

Electrodeposition techniques for SOFC anode fabrication are

usually applied to provide bimetallic electrodes especially to

avoid carbon formation. It has been shown that this technique

is a promising way to add Cu into porous Ni-based anodes at

low temperature (<100 �C) to suppress carbon deposition when

direct hydrocarbon fuels are used in the SOFC [19,29]. Electro-

deposition requires a conducting surface. This can be prepared

by several techniques, for example exposing n-butane onto

scaffolds at elevated temperature (850 �C) to form an electri-

cally conducting carbon layer [30], or pre-incorporating

ceramic-metallic composites (Ni/YSZ cermets) [29]. In this

study, we focused on the fabrication of Ni/GDC anodes using a

combination of electroless and electrodeposition techniques.

We used Ag to provide a thin but electronically conducting

layer for Ni electrodeposition, deposited by an electroless pro-

cess to form Ni/Ag/GDC anodes. This is part of our efforts to

fabricate anodes by metallizing, and a continuation from our

previous study in this direction [22]. The fabrication of the

scaffold provides additional means of microstructural control,

since modification of the screen printing ink with pore formers

to control porosity is feasible. In this paper, we present a study

with a GDC scaffold to fabricate electroless and electro-

deposited Ni/Ag/GDC anodes, assessing electrochemical per-

formance using symmetrical cells and a fuel cell.
Experimental

GDC ink and scaffold preparation

The GDC ink was prepared based on formulations developed by

Somalu [31] and used in our previous studies [20,32].

Ce0.9Gd0.1O1.95 powder (Fuel Cell Materials) and dispersant

(HypermerKD15)were thoroughlymixedwith ethanol using ball

milling for 24 h. Aftermilling themixturewas dried in an oven at

90 �C for 24 h. Then, terpineol solvent (Sigma Aldrich) and eth-

ylcelulose N7 grade binder (IMCD UK/Hercules) were added into

the milled mixture and stirred continuously to form an ink. The

ink was homogenized using a triple roll mill (EXAKT, 80E, Ger-

many) for 20 min. The ink preparation is summarized in Fig. 1.

The GDC scaffold was screen printed onto an 8 mol

%-yttria-stabilized zirconia disc with thickness of 290 mm

(8YSZ, Fuel Cell Materials). The scaffolds were sintered at
C ink preparation.
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Fig. 2 e Overall processes of electroless and electrolytic deposition of an electrode. The images on the right show the GDC

scaffold before and after metallizing process.
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1300 �C in air for 1 h. Half cells were fabricated using the same

procedures to form nominally identical anodes on both sides

of the YSZ disc. To fabricate a full fuel cell, the cathode was

screen printed using (La0.6Sr0.4)0.95(Co0.2Fe0.8)O3�x-

Ce0.9Gd0.1O1.95 (LSCF-GDC, 50:50 wt%) ink (Fuel Cell Materials)

and then sintered at 1100 �C for 3 h.
Electroless and electrodeposition

Silver was deposited into the porous GDC scaffold using

Tollens' method to provide an electronically conductive layer

for electrodeposition. Ni was plated onto the silver layers

using an Autolab PGSTAT302N from Ni2þ aqueous solution

http://dx.doi.org/10.1016/j.ijhydene.2016.04.061
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Table 1 e Details of YSZ electrolyte-supported electroless
and electrodeposited cells prepared in this study.

Code Cell composites Cell composition (%vol)

S001 Symmetrical cell:

Ni/Ag/GDC 7.5/15.1/77.5

S002 Fuel cell:

Anode:Ni/Ag/GDC

Cathode: LSCF/GDC

3.3/21.1/75.6

50/50a

S003 Symmetrical cell:

Ag/GDC 18.9/81.1

S004 Symmetrical cell:

Ni/Ag/GDC 3.5/24.7/71.8

a % wt.
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(Watt's bath) at 70 �C. The full details of the process have been

described previously [22]. The overall fabrication method is

summarized in Fig. 2.

Fig. 3 shows the symmetrical and fuel cells configurations

used in this study. Symmetrical cells of Ag/GDC (S003) and Ni/

Ag/GDC (S004) were also prepared to further understand the

electrode response and tomeasure the electrical conductivity of

the anode respectively. The metal content was determined by

the weight change after metal incorporation. The final compo-

sitions of the cells are listed in Table 1. A silver paste and plat-

inum mesh were used as the current collector for the fuel cell

and symmetrical cell respectively. Both symmetrical and fuel

cells were heated in air to oxidize Ni before they were annealed

in N2 and then reduced in 10 vol% H2 e 90 vol% N2 at 600 �C to

minimize themicrostructural changes in the nickel-metal layer.
DC conductivity

The DC electrical conductivity of an electrodeposited Ni/Ag/

GDC (S004) anode wasmeasured under reducing atmospheres

of humidified-10 vol% H2 (balance N2) at 500e750 �C after pre-

oxidation and annealing in N2 (as described in Section

Electroless and Electrodeposition). The conductivity data was

collected using the Van der Pauwmethod by connecting the 4-

point probe to an Autolab PGSTAT302N.
Characterization procedure

The electrochemical performance of symmetrical cells with

and without Ni-electrodeposit (S001 and S003), including a fuel

cell (S002) were measured. In symmetrical cell mode, imped-

ance spectroscopy was used to study anode performance from

600 to 750 �C in humidified-H2 (10e97 vol% H2, 3 vol% H2O). The

impedance data were obtained using a potentiostat (Autolab

PGSTAT302N), in the frequency range 10�1e 105 Hzusing anAC

signal amplitude of 20 mV and 10mV for symmetrical and fuel

cell modes respectively. Experiments were performed using a

two-electrode configuration in the temperature range

550e750 �C in fuel cell mode at various concentrations of hu-

midified H2 and humidified syngas (15 vol% H2: 25 vol% CO).

Themicrostructure of the electrodeswas examined using a

Scanning Electron Microscopy (LEO Gemini 1525 FEGSEM) and

EDX was performed using a JEOL-6400.
Fig. 3 e Symmetrical and fuel
Results and discussion

Fig. 2 depicts the SEM images of the porous GDC scaffold

before and after metallizing. The porosity of the GDC origi-

nated in part from the combustion of organic compounds in

the GDC ink (Fig. 2a). The value of open porosity for the elec-

trodeposited Ni/GDC was about 50e53 vol% with pore di-

ameters around 100e400 nm. The porosity of the scaffold was

calculated from its density, obtained from the mass and vol-

ume, and then compared to the theoretical GDC density

(7.21 g cm�3).

Fig. 2b depicts a uniform coverage of Ag metal onto the

GDC scaffold as well as a layer of Ni formed after electrode-

position (Fig. 2c). Around 1 h was required to metallize the

GDC scaffold with both Ag and Ni; around 7 times faster than

current impregnation methods (5 cycles of 0.5 h of decompo-

sition at 500 �C and ~1 h for heating and cooling) leading to

~7 vol% of Ni incorporation in the scaffold [20]. The metal

content of the cells prepared in this study were obtained by

weight difference (Table 1) with a measurement uncertainty

in the nickel content up to 25% linked to the instrument ac-

curacy of 0.1 mg and the relatively low metal content. The

amount of electrodeposited Ni in the porous GDC scaffolds

varied from one cell to another, which may reflect variability

in the electrodeposition technique and/or error in the mea-

surement. Despite this uncertainty, the electrodes showed an

adequate electrical conductivity (see below) with Ni contents

lower than those reported in the literature, which are in the
cell configurations used.

http://dx.doi.org/10.1016/j.ijhydene.2016.04.061
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range of 20e60 vol% [26,33,34]. The amount of Ni in cell S001

(7.5 vol%) almost reached the same amount of Ni as that ob-

tained using the impregnation method (8.2e13 vol%) [16,35],

however with a significantly faster fabrication method and

comparable formation of Ni particles (will be shown later in

Figs. 10a and 11a).

Conductivity of electrodeposited Ni/Ag/GDC

Fig. 4 presents the conductivity of S004. Also shown in this

figure is the electronic conductivity of Ni and Ag metals [36] as

well as GDC [37] for reference. The conductivity decreased to

19 S cm�1 when the temperature was increased to 750 �C;
indicating the metallic nature of the electrode. This value is

lower than values reported in the literature (150e620 S cm�1)

for electrodes with two to three times higher Ni loading.

Although Ni islands in the scaffold limit the electronic con-

ductivity of the electrode, the MIEC properties of GDC in

reducing atmospheres could help the conductivity of Ni islands

during the measurement [5,38,39]. Furthermore, the contribu-

tion of the Ni network on the surface of the electrode (Fig. 10b)

to the electronic conductivity needs to be considered in inter-

preting the Van der Pauw data. Despite the relatively small

amounts of metal, the conductivity of the metallized electrode

obtained in this studywas comparable to the value achieved by

combustion synthesized Ni/YSZ (20 S cm�1) with 30 vol% of Ni

[40], though not as good as that achieved byNi/YSZ andNi/GDC

cermets usingmechanical mixing (~400 S cm�1, 30e40 vol% Ni)

[33,41] and conventional impregnation methods with higher Ni

fractions (600e900 S cm�1, 12e16 vol% Ni) [20,42].

Symmetrical cell mode measurements

Two semicircles were observed in the impedance spectra at

most temperatures and atmospheres. The values of
Fig. 4 e Temperature dependence of the conductivity of an

electrodeposited electrode (S004) as measured by the Van

der Pauw method. The conductivity data was normalized

to the thickness of the S004 (7.1 mm). The line obtained in

this study was extrapolated at temperatures <500 �C. Also

shown in the graph are the conductivity of Ni and Ag

metals, and impregnated 12 vol%-Ni/GDC [20].
polarization resistance were estimated by fitting the data to

the equivalent electrical circuit shown in Fig. 5. The intercept

of the impedance spectra with the real axis at high fre-

quencies corresponds to the ohmic resistance (Rohm). The total

area specific resistance (ASR) of the electrode was calculated

by the difference of the low frequency intercept of the

impedance curve with the real axis and the Rohm. Then the

value was extracted from the fitting and normalized by

dividing by two and multiplying by the electrode area.

Fig. 6 indicates a relatively constant Rohm at the same

temperature with varying atmospheres. As expected, at

higher temperatures Rohm decreases from 8.0 to 5.4 U

(600e750 �C), since the ionic conductivity of the electrolyte is

thermally activated. The values of experimental Rohm were

higher than the expected values calculated from the YSZ

thickness and known conductivities. This difference might be

due to contact resistance, and/or an ohmic contribution from

the GDC scaffold, and/or a contribution from a reaction layer

at the GDC-YSZ interface [43]. This interdiffusion layer (GDC-

YSZ) may create lower ion conductivity, almost two orders of

magnitude lower than that of YSZ and GDC at 800 �C [44].

The total ASR, which characterizes the electrochemical

performance of the electrodes, are tabulated in the inset ta-

bles of Fig. 7 and Fig. 8. The low frequency impedance

response, R_l was observed to dominate the total ASR at all

concentrations of H2 and at different temperatures. The

lowest total ASR reached 1.12 U cm2 at 750 �C in 97 vol% H2.

The total ASR obtained in this study is higher than state of the

art conventional and impregnated Ni/GDC and Ni/YSZ cer-

mets in the literature, which are usually in the range of

0.15e0.35 U cm2 [20,34,45e47]. Although a faster metallization
Fig. 5 e The corresponding equivalent circuit used for data

fitting in this study.

Fig. 6 e Estimated and experimental Rohm of the YSZ

electrolyte.
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Fig. 7 e Impedance spectra (0.1e105 Hz) for the

symmetrical cells of S001 (Ni/Ag/GDC) operating at 750 �C
in different concentrations of H2eN2; and S003 (without Ni)

at humidified 97 vol% H2 (impedance data was normalized

to zero). Insets: the graph presents the intermediate

frequency behavior of the symmetrical cells, and the table

lists the polarization resistance of the electrodes in

different atmospheres.

Fig. 8 e Impedance spectra (0.1e105 Hz) for S001 operating

at 97 vol% H2 under different ranges of temperatures. The

inset table shows the total polarization of the electrode at

different temperatures.
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process of the scaffolds has been demonstrated in this study,

it must be noted that the amount and distribution of Ni elec-

trodeposited in the scaffold (7.5 vol%) still requires further

optimization before state of the art electrode performance can

be achieved. However, this work demonstrates the promise of

using electroless and electrodeposition technique for the

fabrication of scaffold electrodes.

Fig. 7 displays the effect of H2 concentration on the com-

plex impedance spectra on S001 and S003 cells (impedance

data was normalized to zero) at fixed T ¼ 750 �C. The polari-

zation associated with the intermediate-frequencies arc

(102e103 Hz), R_m was observed to be constant at 750 �C in all

H2 concentrations with a value of 0.06 ± 0.01 U cm2 for S001. A
blank symmetrical cell (without Ni, S003), was prepared to

measure the electrochemical response of the Ag/GDC scaffold.

The R_m value of S003 (0.04U cm2) was very close to the values

attained in S001, and these values are in accordance to those

reported in the literature, typically at<0.1U cm2 [48,49]. This is

clearly shown by the inset of Fig. 7. In Fig. 8, the R_m values

significantly decreased from 0.25 to 0.05 U cm2 when the

temperature was increased to 750 �C. These results suggest

that the R_m was associated with the charge transfer kinetics

of hydrogen oxidation at the GDC scaffold.

The low-frequency (<102 Hz) arcs were always larger than

the intermediate-frequency arcs, and became more signifi-

cant at low temperatures and lowH2 concentrations as shown

in Figs. 7 and 8 respectively. The lowest low-frequency po-

larization (R_l) obtained in this study was 1.07 U cm2 for 97 vol

% H2 at 750 �C. However, this value is higher than those re-

ported for GDC-impregnated Ni [50], Ni/GDC cermets [34] and

Ni-impregnated GDC [20] ranging from 0.1 to 0.4 U cm2 at

temperatures of 690e800 �C. There are several reasons that

could explain these observations:

(i) The high R_l values could be linked to the limited elec-

tronic conductivity of the electrodes, closely related to

the amount of metal deposited and the mixed conduc-

tivity of GDC. The value of R_l for S003 is three times

higher than S001 in the same operating conditions, but

with no Ni. This indicates that the electronic conduc-

tivity of the GDC scaffold contributes to the electro-

chemical activity.

(ii) The “chemical capacitance” effect that originates from

the variation in the oxygen non-stoichiometry (oxygen

vacancies) of GDC in reducing atmospheres, compli-

cates the interpretation of the R_l data [7,51].

(iii) The contribution of diffusional processes to the R_l

cannot be ignored as the R_l changed with gas compo-

sition (Fig. 7). This is probably attributed to: (1) the

diffusion of reactant gas to and reaction products from

the reaction sites (TPB and 2 PB) in the porous scaffold

[52]; (2) Knudsen effects due to the small pore size of the

scaffold (~0.25 mm) [49,53]; and/or (3) gas conversion

impedance (sensitive to gas composition and tempera-

ture) [34,48,54].

Further investigation to resolve these effects is on-going.

The slope of the Arrhenius plots of the electrode polariza-

tion resistances (R_m and R_l) were used to calculate the acti-

vation energy for S001 and S003 as depicted in Fig. 9. From the

inset table (Fig. 9), the activation energy for R_m changed from

1.49 to 0.85 eV (97 vol% e humidified H2) when small amounts

of Ni were added to the GDC scaffold. The activation energy for

R_m of S001 did not show any significant variation

(0.85± 0.03 eV) at different concentrations of humidifiedH2eN2

(10e97 vol%). This shows that the kinetics of hydrogen oxida-

tion on the surface of the electrode is improved by adding Ni.

For R_l, the activation energies were lower than for R_m,

and significantly decreased from 0.7 to 0.19 ± 0.04 eV when Ni

was added. This may be attributed to the limited electronic

conductivity of the GDC scaffold and/or diffusional processes

among other effects [55,56]. The small change in the activation

energies of R_l with temperature (600e750 �C) might be

http://dx.doi.org/10.1016/j.ijhydene.2016.04.061
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Fig. 9 e Arrhenius plots of the electrode ASR associated

with intermediate- (R_m) and low-frequency (R_l)

polarization over the range of temperature and in

humidified H2 (10e97 vol% H2) for symmetrical cells (S001

and S003).
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attributed to surface diffusion and/or adsorption/dissociation

of hydrogen species. These are restricted by the conductivity

of the GDC scaffold [34,57]. However, further investigation is

required to understand this behavior. Overall, the activation

energy obtained in this study is comparable to the values re-

ported in the literaturewith different fabricationmethods and

anodes (see Table 2).

The microstructure of S001 was examined after electro-

chemical testing (see Fig. 10). Since there was not enough Ni

(7.5 vol%) deposited inside the scaffold to form a continuous

film, individual nano-particles of Ni could be observed

(Fig. 10a). The Ni distribution and particle sizes (0.05e0.2 mm)

are similar to the electrode fabricated by five cycles of the

impregnation process (Fig. 11a). Furthermore these particle
Table 2 e Comparison of activation energy for different anode

Anode composition Fabrication method A

Ni/GDC

(96.5/3.5 vol%)

(91.5/8.5 vol%)

Ni/YSZ

(83/17 vol%)

(79/21 vol%)

Impregnation

Ni/GDC Solegel

Ni/GDC

(49/51 vol%)

Spray pyrolysis

SFMO/LSGM*

(symmetrical cell)

Impregnation

Ni/GDC

(11.6/88.4 vol%)

Impregnation

Ni/YSZ

(40/60 vol%)

Screen printing

Ni/YSZ (DK-SOFC project)

Ni/Ag/GDC

(7.5/15.1/77.4 vol%)

Electroless & Electrodeposition

SFMO/LSGM ¼ SrFe0.75Mo0.25O3�d/La0.9Sr0.1Ga0.8Mg0.2O3�d.
sizes are considerably smaller than those found in the con-

ventional powder mixing method (1.4e5 mm) [62,63]. This

shows that decoupling scaffold fabrication and metal incor-

poration into the scaffold provides independent control of

metal particle size, porosity and TPB density compared to

conventional electrodes fabrication (powder mixing). Perco-

lating and homogenous Ni distribution inside the electrodes

could be achieved with 50 vol% and 10e20 vol% of Ni by con-

ventional and impregnated electrodes respectively, much

higher than theamountofNi in this study. Thechallenge to the

method proposed here is to increase the amount of Ni added

into the GDC pores at lower temperatures (�70 �C) and with

greater speed than the impregnationmethod. Fig. 10b displays

aNinetworkon theGDCsurface. If thishad formed throughout

the porous GDC scaffold, it would have provided better elec-

tronicpathways fromthe reactionsites to thecurrent collector.

Moreover, the thickness of the scaffold obtained in this study is

about 7 mm (Fig. 10c), within the electrochemically active re-

action limit (�10 mm) [64,65]; increasing its thickness may

further improve the overall performance.

Under the experimental conditions, silver does not alloy

with nickel [66,67] and does not have a high wettability on

oxide substrates [68]. Ag films on YSZ become thermally un-

stable and eventually the film segregates and agglomerates to

form isolated islands at high temperatures [69,70]. These

islands are clearly shown in Fig. 11b when a Ni/Ag film was

heated in air at 800 �C for 1 h. The anode is usually pre-

oxidized at high temperature and annealed in nitrogen

before its measurement in reducing atmospheres (Step 4 in

Fig. 2). The identification of elements in Figs. 10 and 11 was

possible in combination with the results from EDX (not

shown). In the areas analyzed (Fig. 10), despite the initial

presence of silver (15.1 vol%), thismetal was not detected (EDX

detection limit >0.05 vol%). This suggests that the Ag evapo-

rated during operation at high temperatures, as observed by

Wang et al. [68] in air. Evaporation of Ag might be further

exacerbated in reducing atmospheres [71].
materials and fabrication routes.

ctivation energy
for R_m (eV)

Activation energy
for R_l (eV)

Reference

0.84

0.76

1.03

0.82

[16]

1.58e1.93 [34]

1.45 [58]

0.60 0.77 [59]

0.65 ± 0.15 0.23e0.34 [20]

0.9e1.1 1.2e1.6 [60]

1.1 1.6 [61]

0.85 ± 0.03 0.19 ± 0.03 This study
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Fig. 10 eAfter test characterization (S001) at 600e750 �C and different H2 concentrations: (a) higher magnification view of the

Ni/GDC scaffold interior, (b); surface of the Ni/GDC scaffold, and (c) cross section of the electrode.
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Fuel cell mode measurements

As a proof of fuel cell concept using electrodeposited Ni/Ag/

GDC, S002 was operated under 50 vol% H2-50 vol% N2 and syn-

gas at 750 �C. The voltage and power densities as a function of

currentdensity areshown inFig. 12a.Most losseswereohmic in

nature, dominated by the thick YSZ electrolyte (290 mm).

Reflecting this, themaximumpowerdensitiesweremodestand

reached about 56 mW cm�2 at ~0.7 V under 50 vol% H2-50 vol%

N2 with an ASR including electrolyte and electrodes of

4.79 U cm2. This value is consistent with the total cell polari-

zation obtained from the total impedance in Fig. 12b of
Fig. 11 e (a) Image of 5-cycles impregnation Ni/GDC from our ow

surface of the electrodeposited Ni/GDC scaffold after heating at
4.81 U cm2. The maximum power density achieved by S002

operating under syngaswas 33mWcm�2 at ~0.5 V. Futurework

will focus on depositing these electrodes onto much thinner

electrolytes.
Conclusions

The successful deposition of silver and nickel by electroless

and electrolytic methods into porous GDC scaffold was

achieved. This technique is much faster than conventional

impregnation methods, however the amount and
n work [20]; (b) segregation and agglomeration of Ag at the

800 �C in air.

http://dx.doi.org/10.1016/j.ijhydene.2016.04.061
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Fig. 12 e Fuel cell (S002) operation (a) voltage and power density curves vs. current density operating in 50 vol% H2 e 50 vol%

N2 and syngas at 750 �C; (b) impedance spectra (0.1e105 Hz) operating at 50 vol% H2 e 50 vol% N2 at different temperatures.

The inset table shows the polarization resistance of the cell at different temperatures.
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distribution of Ni deposited in the scaffold needs to be

further optimized to achieve state of the art electrode per-

formance. Metallizing the scaffold took place at tempera-

tures lower than 100 �C, well below the temperatures used

to process impregnated anodes. After operation at higher

temperatures (600e750 �C), there is evidence for the for-

mation of islands of nickel inside the scaffold that increase

the TPB of the electrode, when used on a mixed conducting

GDC scaffold. On the electrode surface, the nickel forms an

interconnected network that can be used as a current col-

lector. The main role of Ag is to provide a conductive sur-

face for Ni electrodeposition. Its contribution to the

electronic conductivity of the scaffold and electrochemical

reactions might be minimal. In regions analyzed by EDX,

silver was not detected, probably indicating agglomeration

in other regions, migration to the current collector or

evaporation due to high temperature and reducing

environments.

In the impedance measurements, there were two types of

electrode response. The first appeared at intermediate fre-

quencies (100e1000 Hz), and the second at low frequencies

(<100 Hz), showing a polarization resistance of 0.05 U cm2

and 1.07 U cm2 respectively, with a total ASR of 1.12 U cm2 at

750 �C (symmetrical cell mode, S001). The activation energy

of the electrode at R_m is always higher than at R_l, being

0.85 ± 0.03 eV and 0.19 ± 0.03 eV respectively. The cells are

able to be operated under both H2 and syngas (fuel cell

mode). Whilst the distribution and amount of Ni needs to be

further improved, this fabrication technique offers an alter-

native for processing SOFC anodes, especially for large scale

production.
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