control ionic conditions in the cell and energise osmotic potentials, secondary transport schemes and ionotropic signalling.

A surprising finding from the Na+, K+-ATPase structure was the docking of two conserved tyrosine residues at the C-terminus of the alpha subunit into the transmembrane domain, hinting that this was a previously unidentified regulatory element. Several mutations causing human neurological syndromes have subsequently been mapped to the C-terminal structure element, also clearly indicating that conservation of the structure is important for pump function.

Mutational analysis confirmed this and prompted our further analysis by electrophysiology and molecular dynamics simulations, which have shown a profound effect of the C-terminus on the electrogenic transport properties. We further propose that the C-terminal region forms a binding pocket that can be exploited for pharmacological intervention in cardiovascular and neurological disease.

1103-Symp

Alternating Access Mechanism of Glutamate Transporters

Olga Boudker

Purdue Univ, West Lafayette, IN, USA.

In the central nervous system, glutamate transporters are responsible for the glutamate clearance following rounds of neurotransmission. They are molecular pumps, which utilizes the energy of pre-existing electrochemical gradients of ions to drive substrate uptake against steep concentration gradients. Site-directed aspartate transporter from Pyrococcus horikoshii, GltPh, is a homologue of the mammalian transporters and has served as a model system, within which to understand the molecular details of transport. The previously determined crystal structures of GltPh revealed the substrate and sodium binding sites located near the extracellular solution leaving the question of how they reach the cytoplasm unanswered. Recently, we have determined the crystal structure of a double cysteine mutant of GltPh, captured by cross-linking in a novel conformational state. In this state the substrate-binding sites are near the cytoplasmic surface of the protein. These findings suggest a novel and unexpected mechanism, by which GltPh and, by analogy, mammalian glutamate transporters catalyze trans-membrane transport of their substrates.

1104-Symp

Alternating Access of the Maltose Transporter

Jue Chen

Purdue Univ, West Lafayette, IN, USA.

No Abstract.

Platform R: Channel Regulation & Modulation

1105-Plat

Photopharmacology: Controlling Native Voltage-Gated Ion Channels with Light


1University of California Berkeley, Berkeley, CA, USA, 2University of Munich, Munich, Germany, 3Harvard Medical Schoo, Boston, MA, USA.

Optical control of proteins provides critical advantages for studying cell signalling and offers great promise in biotechnology and biomedical research. We have developed a series of photochromic ligands (PCLs) that target voltage-gated ion channels. They possess an azobenzene photoswitch connected on one side to a quaternary ammonium ligand (internal blocker for potassium, sodium and calcium channels) and on the other side to a variety of chemical groups. The azobenzene photoswitches between cis and trans configurations using different wavelengths of light, thereby repetitively turning on and off ion flow. Alteration of the R group makes our approach very modular. First, increasing hydrophobicity allows better membrane penetration and therefore greater potency of the PCL. Second, PCLs with a charged R group require hydrophilic pathways to cross cell membranes and can be specifically targeted to cells expressing entry-route proteins. Third, selectivity for certain ion channels can be attained, allowing a more precise control over cellular excitability. Fourth, some PCLs act as cis blockers, offering the advantage of being silent in the dark. Finally, modifying the R group can be used to tune the spectral characteristics of the PCL, with potential interest for vision restoration.

1106-Plat

Receptor and Subunit Specificity in AKAP79/150 Actions On M-Type(KCNQ) K⁺ Channels

Jie Zhang1, Oleg Zaika, Mark Shapiro, Oleg Zaika, Manjot Bal, Mark Shapiro.

UTHSCSA, San Antonio, TX, USA.

A-kinase-anchoring protein (AKAP79/150)mediated PKC phosphorylation of M-type (KCNQ) channels is involved in M current (IM) suppression by muscarinic M1, but not bradykinin B2 receptors (Hoshi et al. Nat. Cell Biol. 7:1066-73). In this study, we first explored the involvement of AKAP79/150 in muscarinic suppression of KCNQ currents by co-transfecting AKAP79 with KCNQ1-3 subunits in CHO cells stably expressing M1 receptors. Expression of AKAP79 sensitized KCNQ2-5 and KCNQ2/3, but not KCNQ1, channels to suppression by the M1 receptor agonist oxotremorine (oxo-M). Mutation of the PKC phosphorylation site on KCNQ4 (T553A) eliminated the effect of AKAP79, confirming the role of PKC. Co-transfection of wild-type, but not dominant negative, calmodulin abolished the effect of AKAP79 on KCNQ2/3 channels. We asked if purinergic and angiotensin suppression of IM in superior cervical ganglion (SCG) sympathetic neurons involves AKAP79/150, since purinergic P2Y receptors depress IM in SCG neurons via a similar mechanism to that of bradykinin, involving IP3-mediated Ca²⁺ signals, whereas angiotensin AT1 receptors depress IM via a similar mechanism as M1 receptors, by depletion of PIP2. Transfection of ΔA-AKAP79, which lacks the A-domain necessary for PKC binding, did not affect IM suppression by the purinergic agonist UTP (2 μM), nor by bradykinin (100 nM), but did reduce IM suppression by oxo-M (1 μM) and angiotensin II (500 nM). We also tested association of AKAP79 with M1, B2, P2Y4, and AT1 receptors via FRET experiments on CHO cells under TIRF microscopy, which revealed weaker FRET between AKAP79 and P2Y4 or B2 receptors than for M1 and AT1 receptors. Our data suggest AKAP79/150 action generalizes to KCNQ2-5 subtypes, is disrupted by calmodulin, and is involved in angiotensin, but not in purinergic, suppression of neuronal M current. Supported by NIH grants R01 NS043394 and R01 NS065136.

1107-Plat

Potassium Channel Modulation by A Toxin Domain in Matrix Metalloprotease 23

Srikant Rangaraju1, Keith Khoo2, Zhiping Feng2, George Crossley3, Daniel Nugent4, Ilya Khaytin4, Michael Pennington5, Raymond Norton5, K. George Chandy1.

1University of California Irvine, Irvine, CA, USA, 2Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia, Parkville, Australia, 3Bachem Bioscience Inc., 3700 Horizon Dr., King of Prussia, PA, USA, 4Bachem Bioscience Inc., King of Prussia, PA, USA, 5Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.

Peptide toxins found in a wide array of venoms block K⁺ channels causing profound physiological and pathological effects. Here, we describe the first functional K⁺ channel-blocking toxin domain in a mammalian protein. Matrix metalloprotease 23 (MMP23) contains a domain (MMP23TxD) that is evolutionarily related to peptide toxins from sea anemones. MMP23TxD shows close structural similarity to the sea anemone toxins BgK and ShK, and the domain blocks K⁺ channels in the nanomolar to low micromolar range (Kv1.6 > Kv1.3 > Kv1.1 = Kv3.2 > Kv1.4 in decreasing order of potency), while sparing other K⁺ channels (Kv2.2, Kv1.5, Kv1.7, Cav1.3). Full-length MMP23 suppresses K⁺ channels with a pattern of inhibition consistent with MMP23TxD activity. Our results provide clues to the structure and function of the vast family of proteins that contain domains related to sea anemone toxins. Evolutionary pressure to maintain a channel-modulatory function may contribute to the conservation of this domain throughout the plant and animal kingdom.

1108-Plat

Differential Redox Regulation of ORAI1 Channels: A Mechanism to Tune T-Cell Responses

Ivan Bogeski1, Carsten Kummerow1, Dalia Al-Ansary1, Richard Kochler1, Eva C. Schwarz1, Daisuke Kosai2, Nobuaki Takahashi3, Christine Peinelt1, Desiree Griesemer1, Monika Bozem1, Yasuo Mori2, Markus Hoth1, Barbara A. Niemeyer1.

1Biophysics, Homburg, Germany, 2Synthetic Chemistry and Biological Chemistry, Kyoto, Japan.

Phagocytes play an essential role in host defense against pathogens by generating reactive oxygen species (ROS). Effector T helper (Th) cells migrating to sites of infection will be exposed to this highly oxidative environment. Here we show how Th-cells respond and adapt to ROS. Oxidation affects different Ca²⁺-signalling pathways essential for T-cell function. ORAI1 channels are inhibited with an IC₅₀ of ~40 μM H₂O₂, while ORAI3 channels are insensitive. We identify cysteine (C195) of ORAI1, absent in ORAI3, as the major redox
sensor. A reduced sensitivity of effector Th-cells towards oxidation is due to upregulation of Orai3 and of cytosolic antioxidants. The differential redox regulation of ORAI channels is a novel mechanism to tune Th-cell based immune responses during clonal expansion and inflammation.

1109-Plat
Comparative Analysis of Cytosolic Sensitivity of Kir Channels: Role of the Cytoplasmic Domain
Avia Rosenhouse-Dantsker1, Edgar Leal-Pinto2, Diomedes E. Logothetis3, Irena Levitan1.
1University of Illinois at Chicago, Chicago, IL, USA, 2Virginia Commonwealth University, Richmond, VA, USA.

Kir channels are important in setting the resting membrane potential and modulating membrane excitability. A common feature of Kir2 channels and several other Kir channels that has emerged in recent years is that they are regulated by cholesterol, a major lipid component of the plasma membrane whose excess is associated with multiple pathological conditions. Yet, the mechanism by which cholesterol affects channel function is not clear.

Here we show that in addition to Kir2 channels, members of other Kir subfamilies are also regulated by cholesterol. Interestingly, while similarly to Kir2 channels, several Kir channels are suppressed by an increase in membrane cholesterol, the function of others is enhanced following cholesterol enrichment. Furthermore, similarly to Kir2.1, and independent of the impact of cholesterol on channel function, we find that mutation of residues in the CD loop affect cholesterol sensitivity of Kir channels.

Among Kir2.1 CD loop residues, we have recently shown that the L222I mutation has the strongest effect on cholesterol sensitivity. This result is surprising since Kir2.2, which is as cholesterol sensitive as Kir2.1, already has an isolucone at the corresponding position. Here we obtain further insight regarding the role of the cytosolic domain of Kir2 channels by examining mutations in adjacent cytosolic regions that also lead to loss of cholesterol sensitivity.

In addition, we trace the source of the difference between Kir2.1 and Kir2.2 to a residue in the EF loop, N251, whose mutation to an aspartate reverses the effect of the L222I residue, and restores cholesterol sensitivity.

These findings suggest an indirect role of the cytosolic domain of Kir channels in regulating the effect of cholesterol on channel function and provide insight into the structural determinants of their gating mechanism.

1110-Plat
Molecular Mapping of An IKS Channel Opener Reveals Crucial Interactions Between KCNNE1 and the KV7.1 Voltage Sensor Paddle
Yoni Haitin, Nataly Menaker, Simona Shats, Asher Peretz, Bernard Attali.
Sackler Medical School, Tel Aviv University, Tel-Aviv, Israel.

Voltage-gated K⁺ channels co-assemble with accessory subunits to form macromolecular complexes. In heart, assembly of KV7.1 pore-forming subunits with KV7.2 auxiliary subunits generates the repolarizing KV7.2 VSD paddle. DIDS binding at the KV7.1 VSD-KCNNE1 interface reveals a residue in the EF loop, N251, whose mutation to an aspartate reverses the effect of the L222I residue, and restores cholesterol sensitivity.

Furthermore, to Kir2.1, and independent of the impact of cholesterol on channel function, we find that mutation of residues in the CD loop affect cholesterol sensitivity of Kir channels.

1113-Plat
Telomeres Diffusion Study Implies on A Self-Organization Mechanism of the Genome in the Nucleus
Irena Bronshtein1, Yonatan Israel1, Eldad Kepten1, Sabine Mai2, Yaron Shav-Tal1, Eli Barkai1, Yuval Garini1.
1Physics Department, Bar Ilan University, Ramat Gan, Israel, 2Minolta Institute of Cell Biology, CancerCare Manitoba, University of Manitoba, Winnipeg, MB, Canada. The Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel.

The human genome contains tens of thousands of genes that are organized in chromosomes and packed in the nucleus of the cell. How can the chromosomes and DNA stay organized in territories without any compartmentalization? The human genome contains tens of thousands of genes that are organized in chromosomes and packed in the nucleus of the cell. How can the chromosomes and DNA stay organized in territories without any compartmentalization? The human genome contains tens of thousands of genes that are organized in chromosomes and packed in the nucleus of the cell. How can the chromosomes and DNA stay organized in territories without any compartmentalization?